
IEEE Communications Magazine • April 2014112 0163-6804/14/$25.00 © 2014 IEEE

Ying-Dar Lin, Chun-Nan
Lu, and Zongo Pawend-
taore Eliezer are with
National Chiao Tung
University. Yuan-Cheng
Lai is with National Tai-
wan University of Science
and Technology.

INTRODUCTION

Testing is one of the methods used to discover
product defects in the development stage, and
aims at reducing the number of after-sale fail-
ures found by customers [1]. A defect is usually
a kind of inherent fault in the product. If the
defect is triggered, in certain situations the prod-

uct would produce the wrong results, which
means failures. Even though they pass a series of
tests during their development, networking
devices may still reveal customer found defects
(CFDs) when they are used under real-world
conditions. This could be explained by the fact
that laboratory testing often uses artificial traces
that have less realistic properties, and less diver-
sity and complexity in terms of applications and
protocols [2]. For instance, applications such as
peer-to-peer (P2P), video streaming services,
and online games often have proprietary proto-
cols or diverse behaviors, which are hard to
mimic with artificial traffic. In order to reduce
CFDs, networking devices should be tested using
real-world as well as artificial traffic, because
there is a higher chance of triggering device bugs
or failures that would not easily be discovered
when using artificial traffic because of the com-
plicated context of the real world.

In order to reproduce failures to facilitate the
debugging process, real-world traffic needs to be
captured and later replayed. The major con-
straints of real-world traffic replay are twofold:
high volume of captured traces and time con-
sumption [3]. For example, during peak hour
traffic, the captured network traffic volume at
the Beta Site [1] could reach 60 Gbytes in 30
minutes, and even during regular hours around
midnight, the traffic volume could still reach at
least 20 Gbytes in 30 minutes. Reproducing a
failure triggered by high volume traffic is time-
consuming. The downsizing of such a failure-
triggering packet trace, called a bug trace in this
work, to reduce the time to trigger the failures
turns out to be a very crucial and imperative
operation.

To reduce the size of traces while maintain-
ing authentic and reliable information capable of
reproducing the very same failures triggered by
the original traces is not trivial. Failure-driven
trace downsizing is challenging since the down-
sized traces should be representative of the
entire original traces and able to ensure failure
reproduction while reducing testing time.

There has been some work on network traffic
data reduction and compression. Two trace

ABSTRACT

Testing networking devices before releasing
them onto the market is a way of ensuring quali-
ty and robustness. Replaying artificial or real-
world traffic is a method to test networking
devices. Using real-world traffic is desirable as it
uncovers more realistic properties. The chal-
lenges of testing with real-world traffic are main-
ly the high volume of the captured traces and the
prolonged time required for replay testing. In
order to efficiently reproduce the failures of net-
working devices and reduce the replay time, it is
necessary to reduce the size of the traces that
have triggered the failures. In this work, two
algorithms used to downsize the traces but still
retain the failures they triggered, Binary Down-
sizing (BD) and Linear Downsizing (LD), are
proposed. Meanwhile, a metric called downsizing
ratio (DR), the ratio between the size of the
downsized traces and that of the original traces,
is defined in order to evaluate the efficiency of
the trace downsizing. Three kinds of probes fol-
lowing the basic RFC benchmarking require-
ments, ARP, ICMP, and HTTP requests, are
regularly sent to diagnose the devices during the
testing. ARP and ICMP probes test the reacha-
bility of a networking device hosted on the local
network, and HTTP probes check if the device
still responds to users’ requests. The evaluation
of failure distribution shows that 70 percent of
failures happened because they failed to respond
to one of the three probes, 23 percent failed to
respond to two probes, and 7 percent failed to
respond to all probes. From the downsizing
experiments, LD was inferred to have a slightly
higher DR than that of BD, but BD generally
would require fewer iterations than LD.

DESIGN AND IMPLEMENTATION

Ying-Dar Lin, Chun-Nan Lu, Yuan-Cheng Lai, and Zongo Pawendtaore Eliezer

Bug Traces: Identifying and Downsizing
Packet Traces with Failures Triggered in
Networking Devices

LU_LAYOUT.qxp_Layout 4/4/14 12:00 PM Page 112

IEEE Communications Magazine • April 2014 113

reduction approaches were based on the concept
of entropy and were aimed at reducing traces
with the objective of improving traffic trace anal-
ysis by removing data redundancy in a large trace
[3, 4]. While those two investigations focused on
traffic data reduction, in [5–7] the emphasis fell
instead on the compression of packet headers.
Their goal was to apply a trace compression
technique to online packet headers, allowing
communication over low-bandwidth channels.
While the purpose of these investigations was to
reduce trace collection storage, none of them
resulted in failure-driven trace downsizing.

In our failure-driven trace downsizing
approach, we differentiate the failures that occur
with different types of devices based on the dis-
tinct observed features and then reduce the
traces in different groups. The downsized fail-
ure-triggering traces were evaluated by measur-
ing the downsizing ratio (DR), and the possible
causes of the networking device failures can be
addressed by doing a forensic investigation of
the downsized traces.

The first to be identified among the raw large
traces were those that triggered device failures.
The testing technique used was based on that of
in-laboratory real testing (ILRT) [8], where the
devices under test (DUTs) are constantly moni-
tored during replay testing. Once a failure is
triggered, the identified traces are downsized
using a linear or binary downsizing algorithm,
named Linear Downsizing (LD) and Binary
Downsizing (BD), respectively. LD is done
through an incremental rollback and replay tech-
nique, while BD is based on a binary search
technique, and is used as a complement to LD.
The final step consists of splitting and classifying
traces according to the failures triggered.

The rest of this article is organized as follows.
In the next section, some important related liter-
ature is surveyed. We then describe the termi-
nologies and discuss the related issues. Next, our
proposed algorithms are presented, and their
performance is evaluated. Finally, our conclu-
sions are given.

RELATED WORK

TRAFFIC CAPTURE
Testing networking devices with real-world traf-
fic requires the capture of traces in a more con-
trolled environment. The quality of the captured
traces is a determining factor of the accuracy
and efficiency of tests performed on products or
experimental studies [9]. There is a beta site
testing environment within the National Chiao
Tung University campus where the network traf-
fic generated by volunteers can be captured [1].
This environment, called Beta Site, pursues the
goal of evaluating products’ performance with
real-world traffic. More than 800 students were
invited as volunteers, and their daily traffic is
captured in files with PCAP format. Beta Site
provides a good way to evaluate DUTs in an on-
line live mode or an offline replay mode.

STABILITY TESTING
Networking devices that have passed laboratory
tests still have a good chance of failing in a real-
world environment. CFDs, the defects found

after the release of the devices, are not trivial to
clarify because of the unclear context experi-
enced by customers, and are likely to damage a
manufacturer’s reputation. In order to assess as
early as possible whether a networking device can
stably work for an extended time, the Network
Benchmarking Lab (NBL) [10] used ILRT and
NATreplay [8] to test the stability of WLAN
routers. NATreplay is a modified replayer based
on Tcpreplay [11] and integrated with a Network
Address Translation (NAT) functionality. Stabili-
ty testing consisted of replaying network traffic to
a DUT while monitoring it with a tool called
CheckDev. Figure 1 shows the overview of ILRT.
CheckDev is a probing tool that regularly sends
Address Resolution Protocol (ARP), HTTP, and
Internet Control Message Protocol (ICMP)
queries to a DUT to check if the DUT is still
alive. The PCAP Library stores the traffic traces
fetched from Beta Site, and NATreplay separates
the traffic into two directions, and sends them to
the LAN and WAN interfaces of the DUT.

The traffic used to test a DUT was double-
checked after each round of replay test. If it trig-
gered some failures, it was regarded as valuable
and stored; otherwise, the traffic was discarded.
Figure 2 shows the trace collection process.
First, the traces were fetched from Beta Site,
and then replayed to multiple DUTs using ILRT.
If the traffic triggered failures on several DUTs
simultaneously, the replayed traffic was marked
as a bug trace, and collected to another reposito-
ry. Figure 2 illustrates the process of using n
DUTs as the threshold.

TRACE REDUCTION
There are several studies related to network traf-
fic trace reduction. They aim at different objec-
tives, and their approaches are diverse. The
main objective of Botta et al. [3] consists of
improving data collection and analysis on one
hand and reducing the size of the original data
set with an acceptable loss of properties on the

Figure 1. In-laboratory replay test.

NCTU Beta Site

NBL PCAP library

NBL traffic-replay

DUT

Monitor: NBL checkdev

LU_LAYOUT.qxp_Layout 4/4/14 12:00 PM Page 113

IEEE Communications Magazine • April 2014114

other. It proposes an offline entropy-based
approach for reducing large data sets applied to
Counter-Strike traffic traces. It aims at produc-
ing network traffic statistics by completely char-
acterizing and modeling network traffic without
losing sensible information. The proposed offline
technique to reduce traffic trace data sets has
the advantage of correctly capturing mean, stan-
dard deviation, and marginal distributions of
network traffic traces, without compromising
time properties.

The study of Yong Liu et al. [5] proposes a
compression algorithm that removes redundancy
in order to produce substantially smaller traces.
A method to compress and anonymize packet
traces [7] intends to resolve two main problems
in packet trace collection and analysis: volume of
data and privacy issues. It is based on the fact
that there are many fields in the IP, UDP, and
TCP headers that do not change over the life-
time of a connection when observed at a single
location.

It is obvious that these approaches all share
the objective of either reducing or compressing
traces in order to either improve data storage or
reduce the complexity of traffic trace analysis.
However, these do not meet one of the require-
ments of our study: the trace reduction methods
are not failure-driven, as we propose. The pur-
pose of our work consists first of identifying
traces that have triggered failures of networking
devices, then downsizing the traces in order to
reduce their volume. Therefore, it is failure-driv-
en downsizing of bug traces.

TRACE DOWNSIZING ISSUES
Lin et al. [1] suggest that one month and one
year of beta site testing are minimum test dura-
tions for low-end and high-end products, respec-
tively. In order to reproduce and analyze the
triggered failures, real-world traffic needs to be
captured and later replayed. The obstacles to
replaying the captured real-world traffic are the
enormous storage requirements for the captured
traffic traces and the lengthy replay time
required to trigger the failures. In order to save
the storage and replay time required to repro-
duce the failures, the captured traces have to be
downsized. However, trace downsizing is not

trivial because the results and causality of the
triggered failures should still be retained after
the downsizing operation. The downsized traces
can be used not only to analyze the reasons why
the failures happened, but also to test other sim-
ilar networking devices, whether they have the
same failures or not. In this section, three relat-
ed issues are addressed.

FAILURE DISTRIBUTION
Beta site testing is good at triggering stability
failures because of the inherent complicated
user behaviors and diverse application contents
of real-world traffic. During the stability testing
process, three types of probes, ARP, ICMP, and
HTTP, are sent by the CheckDev to DUTs [8].
ARP and ICMP probes are used to test the
reachability of a networking device hosted on a
local network. If too many such probes failed,
the DUT is likely to be regarded as down, which
affects the overall path routing and dynamic
topology of the network and, even worse,
degrades the overall performance. HTTP probes
are used to check if a networking device still
responds to a user’s requests. If such probes fail,
it means the DUT is functionally faulty. Based
on the combinations of responses, seven kinds of
failures were differentiated and classified into
three groups: single-failure, combined-failure, and
hanging, which means all three types of probes
failed. The single-failure group is composed of a
failure caused by any one of the ARP, ICMP, or
HTTP probes failing to respond. The combined-
failure group encompasses the failures caused by
any two ARP, ICMP, or HTTP probes failing to
respond, and hanging happens when all three
probes fail to respond. Failure distribution is a
means that could reveal the observable structure
of stability failures of networking devices.

DOWNSIZING RATIO
DR is the ratio between the size of reduced
traces and that of the original traces. It is an
expression of the number of times by which orig-
inal traces have been reduced and is a metric to
evaluate the effect of the downsizing process.
However, DR is meaningful only in a situation
where the original triggered failures are kept.
Networking devices with similar functionalities
differ in the way they are implemented. They
might not function the same way under the same
conditions, and thus are unlikely to trigger the
same failures. Besides, DR would also be affect-
ed by the types of failures. For example, DR
would be higher for failures caused by some crit-
ical packet than failures caused by a series of
accumulated mistakes. Lastly, even for the same
failures, different replay throughput settings may
cause distinct replay results because they put dif-
ferent pressure on resource allocation. Higher
replay throughput implies less time to adjust
resource allocation and hence raises the possibil-
ity of failures, which indirectly affects DR.

FACTORS CAUSING DEVICE FAILURES
Finally, a very important aspect worth investigat-
ing is an analysis of the causes of device failures.
Packet trace properties [8, 9] would trigger
faulty operations of networking devices. For
instance, traffic such as P2P that is generated by

Figure 2. Bug trace collection.

NCTU Beta
Site

≥ n DUTs failed?

Fetch packet
traces

Replay to
multiple DUTs

Record
replayed

traces

Monitor DUTs
status

Bug traces

No

Yes

LU_LAYOUT.qxp_Layout 4/4/14 12:00 PM Page 114

IEEE Communications Magazine • April 2014 115

multiple concurrent connections often causes a
sudden burden on DUTs in terms of resource
allocation and garbage collection, thus affecting
their stability. Digging out the factors causing
failures from downsized traces would be an effi-
cient way to improve the quality of DUTs in a
short period of time.

PACKET TRACE IDENTIFICATION AND
DOWNSIZING

The design of our solution is composed of two
major components. The first component is trace
identification, where individual triggered failures
are correlated with the corresponding bug traces
via the failure logs. Each of the failure logs
includes the types of failures that occurred, the
failure occurrence time, the number of built con-
nections, and the total size of replayed traffic,
which are all used to find and extract the suspi-
cious traces from the original traces.

The other component is trace downsizing,
where two downsizing algorithm alternatives, a
Linear Downsizing (LD) algorithm and a Binary
Downsizing (BD) algorithm, are invoked to
downsize the volume of bug traces and still
retain the triggered failures. The basic process-
ing unit in both LD and BD is a packet. Without
loss of generality, it was assumed that there was
no a priori knowledge of what was contained in
real-world traffic; otherwise, testers could quick-
ly locate the critical packet(s) or flow(s) that
triggered the failures by test reports or logs.

LINEAR DOWNSIZING
The idea of LD is rollback-and-replay. Whenever
a failure is triggered, the failure would be logged
and the sequential traces triggering the failure
are abstractly regarded as a whole and divided
into equal-sized pieces of traces from the begin-
ning based on a predefined size, the rollback size.
Next, the traces are replayed from the last trace
toward the first one. If the failure cannot be trig-
gered again, LD repeatedly involves the rollback
size of previous adjacent traces that were
replayed right before the failure occurred, and
replayed from the beginning of the new, larger,
combined traces until the failure is reproduced.
Then the replayed traces triggering the failure
would be stored as the final downsized ones. LD
is likely to be advantageous if the traffic traces
triggering the failure belong to the last few
replayed traces.

BINARY DOWNSIZING
BD locates the sequential traces triggering the
failure by recursively splitting the traces in
halves and replaying the smaller ones in turn
until the failure is missed. Next, the traces locat-
ed between the last two testing rounds are itera-
tively augmented in halves to replay until the
original failure is reproduced. Then the replayed
traces triggering the failure are stored as the
final downsized ones.

Figure 3 is an illustration of how LD and BD
actually work. In the illustration, the volume of
the original bug traces triggering the failure is
8047 Mbytes, and the rollback size is set to 500
Mbytes for LD.  means that the traces trig-

gered the failure while  means that the traces
did not. In Fig. 3a, each time the bug traces left
are regarded as a whole, split into halves in turn,
and replayed, while in Fig. 3b, the candidate out-
put traces are augmented and replayed until the
failure is reproduced. The final downsized traces
are 1572 Mbytes and 1547 Mbytes for BD and
LD, respectively.

EXPERIMENT STUDIES AND
RESULTS ANALYSIS

In this section, the experiments conducted to
identify the traces that trigger the failures of net-
working devices are discussed. The outcomes of
the two downsizing algorithms, LD and BD, are
compared, and a case that triggered a DUT to
crash is studied.

TRACE SELECTION AND EXPERIMENTAL TESTBED
To conduct the experiments, we use the network
traffic captured from the NCTU Beta Site and
employ ILRT testing to retain 34 PCAP files caus-
ing the failure of four WLAN routers. The total
size of the 34 files is 1.2 Tbytes, and the applica-
tion profile of the traces is listed in Table 1.

There are hundreds of applications detected,
and only the applications with volume ratio larg-

Figure 3. BD and LD illustrations: a) BD process; b) LD process.

1547
= 3 * 500 + 47

8047
= 16 * 500
+ 47

47

47500

47500500

47500500500

500 500 500 500 500 ... 500 47

Downsized traces
= 63 + 503 + 1006

= 1572 Mbytes

8047 Mbytes √

4024

20122012

4024 √

√

√

10061006 X

1006503

1006251251 503

√1006126

(a)

(b)

503

√

√

100663 503

100632 503

X

X

X

X

X

LU_LAYOUT.qxp_Layout 4/4/14 12:00 PM Page 115

IEEE Communications Magazine • April 2014116

er than 0.01 percent are listed. The four WLAN
routers are used as the DUTs. They are labeled
DUT1, DUT2, DUT3, and DUT4.

TESTBED CONFIGURATION
The experimental testbed used is based on that
of ILRT, and throughout our experiments the
replay throughput is set to 50 Mb/s. CheckDev is
configured with the information of medium
access control (MAC) and IP addresses of the
DUT and NATreplay, the LAN and WAN sub-
nets, and the timeout. The timeout is the maxi-
mal allowable interval between the probe and
the corresponding response from the DUT. If
CheckDev cannot collect the responses from the
DUT in time, the issued probes are judged to
have failed. The traffic captured in PCAP files is
separated into two sides, primary and secondary,
and the network addresses contained are bound
to different interfaces of NATreplay. In this way,
the DUT can see that the traffic a host in the
primary side initiates to another host in the sec-
ondary side will go through it one way, and the
response will go through it the other way.

FAILURE DISTRIBUTION
The DUT would be regarded as normal if it could
reply to all probes within the timeout interval;
otherwise, it is likely that the DUT has suffered
some failures. These results show that most DUTs
still have failures when measured against their
specifications even though they passed the labora-
tory test. For the single-failure group, the individ-
ual occurrence of the ARP, HTTP, and ICMP
failures is 10, 31, and 29 percent, respectively; for
the combined-failure group, the occurrence of
ICMP/HTTP, ARP/ICMP, and ARP/HTTP fail-
ure is 17, 3, and 3 percent, respectively. Finally,
the percentage of the ARP/ICMP/HTTP failure
(i.e., the hanging failure) is 7 percent. The sum of
single-failure groups (i.e., 70 percent) dominates
the total failures because:
• They are the most fundamental probes, and

in general cases, if a networking device
works, it must be able to respond to these
probes.

• Compared to ARP requests, ICMP and
HTTP requests require more CPU
resources, which is difficult when the CPU
is overburdened with heavy loads.

DOWNSIZING RATIO
Two equations are proposed to evaluate the DR
of the two downsizing algorithms. The first equa-
tion, DR1, compares each single downsized trace
with respect to its corresponding failure. In this
case, each failure’s DR is the size of the down-
sized trace over that of the trace triggered the
failure. DR1 is expressed as

where (Pj
Li)d represents the downsized jth trace

Pj, which triggered the ith failure, log Li. |Pj|
means the size of Pj, and n is the total number of
triggered failures.

DR2 compares each single downsized trace
with respect to the original trace, P, instead. In
this case each failure’s DR is the size of the
downsized trace over that of the original trace
used for the testing, and DR2 is expressed as

The overall DR is evaluated by using the two
equations DR1 and DR2, and the rollback size is
set to 500 Mbytes. Using DR1, the DR of BD
and LD is 77.2 and 79.6 percent, respectively.
With DR2, the DR of BD and LD is 81.9 and
84.1 percent, respectively. Based on these results,
DR2 evaluation results in a DR slightly higher
than that of DR1. This is because with DR2 the
size of the downsized trace was compared against
that of the whole original trace, which is usually
high in volume (1.2 Tbyte in our case). Hence,

∑
()

= −

=

DR

P

P

n
1 ,

i j
n

j
L

d

j
L

1

, 1

i

i

∑ ()
= −

=
DR

P

P
1 .

i j
n

j
L

d
2

, 1
i

Table 1. The application profile of the original raw traces.

Name Ratio (%) Name Ratio (%) Name Ratio (%) Name Ratio (%) Name Ratio (%)

HTTP 29.3 UDP 2.73 Garena 0.43 ku6speedup 0.12 webmail 0.04

PPStream 10.76 YouTuBe 1.9 SSH 0.3 Steam 0.07 YouKu 0.04

FTP 10.33 Flashcom 1.5 RTSP 0.23 FlashGet 0.06 DNS 0.04

TCP 9.84 MSN 1.4 tudou 0.21 VNC 0.06 Dropbox 0.03

PPLive 9.84 QQTV 1.33 Gmail 0.2 qingyule 0.06 Shoutcast 0.03

RDP 4.61 QVOD 0.94 Fs2you 0.15 KuGoo 0.06 Warcraft 0.02

BitTorrent 3.77 eDonkey 0.96 iTunes 0.13 Telnet 0.05 SMB 0.02

Funshion 3.69 Skype 0.56 RTP 0.13 Direct Play7 0.05 TTPlayer 0.01

Xunlei 3.43 HTTPS 0.49 TeamViewer 0.12 Gnutella 0.05 IMAPs 0.01

LU_LAYOUT.qxp_Layout 4/4/14 12:00 PM Page 116

IEEE Communications Magazine • April 2014 117

LD is inferred to have a slightly higher DR than
that of BD, 81.85 (LD) and 79.55 percent (BD),
but BD generally would require fewer iterations
than LD, which only requires 64.3 percent of LD
in time.

INVESTIGATING THE DETERMINING CAUSES OF
FAILURES: CASE STUDY

The DUTs used in our experiments behave as
black boxes because they do not disclose
detailed information about the triggered fail-
ures. In order to gain more insight about the
failures, an open source third-party firmware,
DD-WRT [12], has been installed on DUT4, and
then DUT4 was used to redo the replay testing
using downsized traces. Figure 4a shows the
logs as the testing proceeded, and one message,
nf_conntrack: table full, dropping packet, was
shown repeatedly, generated by the function of
connection tracking of the Netfilter framework
[13]. Connection tracking allows the kernel to
keep track of all logical network connections or
sessions, and thereby relates all of the packets,
which is used by NAT to translate all related
packets to make up the connections. The
repeated message means that the NAT table
was too full to receive any more new packets,
so the DUT was forced to drop subsequent
packets. In Figure 4b, the other observed mes-
sages show that the DUT had to handle up to
99 percent of the maximum number of accept-
able connections, which almost overloaded the
DUT, resulting in a high CPU utilization of 94
percent, and consequently failed to respond to
any probes.

With the help of product developers, we fur-
ther explore the observations and find that they
are mostly caused by the mutual interaction
between resource allocation and garbage collec-
tion. If there is a new connection to build,
resource allocation would be invoked to allo-
cate resources; if there is a dated one to clean
up, garbage collection would be invoked to
retrieve the resources allocated previously. If
too many resource allocation requests and
garbage collection tasks burst out in a short
time, and their execution orders are not well
scheduled, it is very likely to trigger failures,
resulting in performance degradation or even
DUT crashing.

CONCLUSIONS
Replaying artificial or real-world traffic is an
alternative way to test networking devices. Using
real-world traffic is preferable as it uncovers
more realistic properties. However, the high vol-
ume of captured traces and the lengthy replay
time are unavoidable obstacles. Therefore, it is
necessary to downsize the captured bug traces to
more efficiently reproduce the triggered failures.

This work analyzed bug traces collected from
the NCTU Beta Site and distinguished seven dif-
ferent types of device failures, which were later
classified into three groups: single-failure, com-
bined-failure, and hanging. The triggered failures
correspond to three types of probes, ARP, ICMP
and HTTP queries sent to probe the DUTs. The
corresponding percentage of the total failures
for the three groups is 70 , 23 , and 7 percent,
respectively. According to these results, most

Figure 4. Observations by DD-WRT: a) logs observed; b) internal status observed.

99%

CPU model Broadcom BCM4716 chip rev 1

CPU clock 480 MHz

4096

Load average

IP filter maximum ports

4054Active IP connections

2.09, 0.55, 0.18

(a)

(b)

94%

CPU

Network

If there are too many

resource allocation

requests and

garbage collection

tasks burst out in a

short time and their

execution orders are

not well-scheduled,

it is very likely to

trigger failures,

resulting in

performance

degradation or even

DUT crashing.

LU_LAYOUT.qxp_Layout 4/4/14 12:00 PM Page 117

IEEE Communications Magazine • April 2014118

DUTs still have failures in this real-world replay-
ing testbed, even they have passed laboratory
testing. The single-failure group (70 percent)
dominates the total failures because:
• They are the most fundamental probes, and

in general cases, if a networking device
works, it must be able to respond to these
probes.

• Compared to ARP requests, ICMP and
HTTP requests require more CPU
resources, which is difficult when the CPU
is overburdened with heavy loads.
Two downsizing algorithms, Linear Downsiz-

ing and Binary Downsizing, were proposed to
downsize the bug traces that triggered the fail-
ures of networking devices. From the downsizing
experiments, LD was inferred to have a slightly
higher DR than that of BD, 81.85 (LD) and
79.55 percent (BD), but BD generally would
require fewer iterations than LD, which only
requires 64.3 percent of LD in time. PCAP Lib
[14], a library of packet traces developed based
on the framework of bug trace collections, is the
concrete implementation and has been a test
service of NBL.

In investigating the causes of the failures, we
observed that the failures were easier to trigger
while the NAT table was filled with the connec-
tions and the CPU was overloaded for a long
time, which might not be easy to generate in a
laboratory test. The context of real-world traffic
is more complicated and harder to track, which
always forces the CPU and resource allocation
mechanisms to decide which connections should
be abandoned or executed.

LESSONS LEARNED
In this work, the distinct observed failures were
used as key features of classification on the
premise that we had no a priori knowledge
about the implementation details of DUTs. If
the details can be obtained, the development
defects can be included as features as well.
Although it may happen that multiple triggered
failures all map into a single defect, it is worth-
while to retain all triggered failures for further
analysis. Even for the same defect, different
triggered failures may imply distinct logic flaws,
which should be highly valued. For example,
when the NAT table is too full to receive any
more new packets, the system may become
unstable and start to trigger many failures.
However, a full NAT table may be caused by
the following:
• A connection that is uncompleted but

selected to be removed may reenter the
NAT table soon because of inadequate vic-
tim-connection-selection operations.

• Imperfect resource recovery operations that
the resource allocated to a completed con-
nection should recover correctly and quick-
ly.

Thus, in order to retain the completeness and
correctness of a test, only the failures confirmed
by product developers are removed from our
bug trace.

Apart from the above conclusions, we also
learned several valuable lessons in replay testing
with real-world traffic and list them as follows.
For product developers:

1) A user’s behavior is highly complicated
and cannot be imagined, let alone that of thou-
sands of users. Unpredictable contexts of an
individual connection and numerous connections
orthogonally affect the resource reservation and
performance of a networking device. The con-
text of each trace that triggered failures once
should be confirmed, clarified, and revised to
improve the quality of products. Meanwhile, a
library of user behavior can be established for
other development and testing of products.

2) Resource allocation and recovery opera-
tions are critical and likely to be invoked fre-
quently during the operation. However, each
invocation could be far from perfect and would
accumulate side-effects. Whether the DUTs
remain stable under such circumstances is diffi-
cult to quantify. The unpredictable and frequent
access DUTs of real-world users can help to test
product stability.

3) A networking device should be able to
respond to all ARP, ICMP, and HTTP probes
based on specifications. It should be more
aggressive to consume the requests that are wait-
ed to be handled. Passively dropped or discarded
requests would be misunderstood as failed. Too
many failed probes may alter the network topol-
ogy and ultimately degrade the performance.
For product testers:

1) The DUTs passing laboratory tests are not
guaranteed to be free from failures. Replay
using real-world traffic can be used to comple-
ment the insufficiency in using artificial traffic
for the diversity and completeness of prerequi-
site test cases. Replaying using artificial traffic is
suitable for specified or small-scale coverage
because it can respond in a short time; replaying
using real-world traffic is suitable for large-scale
or comprehensive tests because it can trigger
more logic or consequent flaws that are not easy
to find.

2) Replaying real-world traffic is not particu-
larly targeted, which is a comprehensive test for
the DUTs. However, replaying using the original
raw traces captured from the real world wastes
storage and is time-consuming. BD can be
invoked to quickly downsize the raw traces while
retaining the triggered failures.

3) Bug traces can be used to efficiently repro-
duce similar failures. For the DUTs of the same
family, utilizing bug traces can save a lot of test-
ing time.

Based on lesson 2 for developers, we found
an interesting open research question on how
to design a protection mechanism for advanced
features in resource-limited devices. Due to
resource limitation, if the operations on
advanced features are not carefully designed, it
is very possible to affect the performance or
stability of the system and even crash the sys-
tem in the end. For example, if the resource
allocation or recovery operations cannot oper-
ate well for a networking device, after frequent-
ly interleaved invocations of the two kinds of
imperfect operations, the accumulated side-
effects, like resource leakage, would finally
crash the system. Hence, the question of how to
design a mechanism that can ensure the execu-
tion correctness of each operation to protect
the system is worth exploring.

The context of

real-world traffic is

more complicated

and harder to track,

which always forces

CPU and the

resource allocation

mechanisms to

decide which

connections should

be abandoned or

executed.

LU_LAYOUT.qxp_Layout 4/4/14 12:00 PM Page 118

IEEE Communications Magazine • April 2014 119

ACKNOWLEDGMENTS

This work was supported in part by the National
Science Council, and in part by ZyXEL Inc. and
D-Link Corp. The authors would also like to
thank the staff engineers at Network Bench-
marking Lab (NBL, www.nbl.org.tw) for their
continuous laboratory technical support.

REFERENCES
[1] Y.-D. Lin et al., “On Campus Beta Site: Architecture

Designs, Operational Experience, and Top Product
Defects,” IEEE Commun. Mag., vol. 48, no. 12, Dec.
2010.

[2] M. K. Daskalantonakis, “A Practical View of Software
Management and Implementation Experiences within
Motorola,” IEEE Trans. Software Engineering, vol. 18,
no. 11, Nov. 1992, pp. 998–1010.

[3] Alessio Botta, Alberto Dainotti, Antonio Pescape, Gior-
gio Ventre, “Reducing Network Traffic Data Sets,” IEEE
ICC, 2007.

[4] A. Pescape, “Entropy-Based Reduction of Traffic Data,”
IEEE Commun. Letters, vol. 11, no. 2, Feb. 2007, pp.
191–93.

[5] Y. Liu et al., “An Information-theoretic Approach to
Network Monitoring and Measurement,” Proc. 5th
ACM SIGCOMM Conf. Measurement, 2005.

[6] G. Iannaccone et al., “Monitoring Very High Speed
Links,” Proc. 1st ACM SIGCOMM Wksp. Internet Mea-
surement, 2001.

[7] M. Peuhkuri, “A Method to Compress and Anonymize
Packet Traces,” Proc. 1st ACM SIGCOMM Wksp. Inter-
net Measurement, 2001.

[8] Y.-D. Lin et al., “In-Lab Replay Testing with a Case
Study on SOHO Router,” submitted to J. Internet Tech.,
available upon request.

[9] Y.-D. Lin et al., “Low-Storage Capture and Loss-Recov-
ery Selective Replay of Real Flows,” IEEE Commun.
Mag., vol. 50, no. 4, Apr. 2012, pp. 114–21.

[10] Network Benchmarking Lab, http://nbl.org.tw.
[11] TCPReplay, http://tcpreplay.synfin.net/.

[12] DD-WRT, http://www.dd-wrt.com/.
[13] Netfilter, http://www.netfilter.org.
[14] PCAP Lib, http://security.nbl.org.tw.

BIOGRAPHIES
YING-DAR LIN [F’13] is a Distinguished Professor of computer
science at National Chiao Tung University (NCTU), Taiwan.
He received his Ph.D. in computer science from the Univer-
sity of California at Los Angeles (UCLA) in 1993. He served
as a visiting scholar at Cisco Systems, San Jose, California,
during 2007–2008. Since 2002, he has been the founder
and director of the Network Benchmarking Lab (NBL),
which reviews network products with real traffic. His
research interests include quality of services, network secu-
rity, deep packet inspection, P2P networking, and embed-
ded hardware/software co-design. His work on multihop
cellular was the first along this line, and has been cited
over 600 times and standardized into IEEE 802.11s, WiMAX
IEEE 802.16j, and 3GPP LTE-Advanced. He is an IEEE Distin-
guished Lecturer for 2014 and 2015, and currently on the
editorial boards of several IEEE journals and magazines. He
published a textbook, Computer Networks: An Open
Source Approach, with Ren-Hung Hwang and Fred Baker
(McGraw-Hill, 2011).

CHUN-NAN LU (cnlu@cs.nctu.edu.tw) received his B.S. and
M.S. degrees in computer science from National Tsing Hua
University in 2000 and 2002. He is a Ph.D. student in com-
puter science at National Chiao-Tung University. His
research focuses on network security and traffic measure-
ment/analysis.

YUAN-CHENG LAI (laiyc@cs.ntust.edu.tw) received his Ph.D.
degree in computer Science from NCTU in 1997. He joined
the faculty of the Department of Information Management
at National Taiwan University of Science and Technology in
2001 and has been a professor since 2008. His research
interests include wireless networks, network performance
evaluation, network security, and content networking.

ZONGO PAWENDTAORE ELIEZER (zepaw@hotmail.com) received
his M.S. in computer science from the Department of Com-
puter Science of NCTU.

If the resource allo-

cation or recovery

operations cannot

operate well for a

networking device,

after frequently inter-

leaved invocations of

the two kinds of

imperfect operations,

the accumulated side

effects, like resource

leakage, would final-

ly crash the system.

LU_LAYOUT.qxp_Layout 4/4/14 12:01 PM Page 119

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Cadmus settings for Acrobat Distiller 9)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 2400
 /PresetName (Cadmus_Flattener_Presert)
 /PresetSelector /UseName
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

