

Home Search Collections Journals About Contact us My IOPscience

Effects of layer sequence and postdeposition annealing temperature on performance of

 $\rm La_2O_3$ and $\rm HfO_2$ multilayer composite oxides on $\rm In_{0.53}Ga_{0.47}As$ for MOS capacitor application

This content has been downloaded from IOPscience. Please scroll down to see the full text. 2014 Appl. Phys. Express 7 031201 (http://iopscience.iop.org/1882-0786/7/3/031201)

View the table of contents for this issue, or go to the journal homepage for more

Download details:

IP Address: 140.113.38.11 This content was downloaded on 25/12/2014 at 03:22

Please note that terms and conditions apply.

Effects of layer sequence and postdeposition annealing temperature on performance of La_2O_3 and HfO_2 multilayer composite oxides on $In_{0.53}Ga_{0.47}As$ for MOS capacitor application

Wen-Hao Wu¹, Yueh-Chin Lin¹, Ting-Wei Chuang¹, Yu-Chen Chen¹, Tzu-Ching Hou¹, Jing-Neng Yao¹, Po-Chun Chang¹, Hiroshi Iwai², Kuniyuki Kakushima², and Edward Yi Chang^{1,3}

¹Institute of Materials Science and Engineering, National Chiao-Tung University, Hsinchu 30010, Taiwan, R.O.C. ²Tokyo Institute of Technology, Meguro, Tokyo 152-8550, Japan ³Department of Electronics Engineering, National Chiao-Tung University, Hsinchu 30010, Taiwan, R.O.C. E-mail: edc@mail.nctu.edu.tw

Received November 20, 2013; accepted January 29, 2014; published online February 13, 2014

In this paper, we report on high-*k* composite oxides that are formed by depositing multiple layers of HfO₂ and La₂O₃ on In_{0.53}Ga_{0.47}As for MOS device application. Both multilayer HfO₂ (0.8 nm)/La₂O₃ (0.8 nm)/In_{0.53}Ga_{0.47}As and La₂O₃ (0.8 nm)/HfO₂ (0.8 nm)/In_{0.53}Ga_{0.47}As MOS structures were investigated. The effects of oxide thickness and postdeposition annealing (PDA) temperature on the interface properties of the composite oxide MOS capacitors were studied. It was found that a low CET of 1.41 nm at 1 kHz was achieved using three-layer composite oxides. On the other hand, a small frequency dispersion of 2.8% and an excellent D_{it} of 7.0 x 10¹¹ cm⁻²·eV⁻¹ can be achieved using multiple layers of La₂O₃ (0.8 nm) and HfO₂ (0.8 nm) on the In_{0.53}Ga_{0.47}As MOS capacitor with optimum thermal treatment and layer thickness. © 2014 The Japan Society of Applied Physics

ecently, $In_xGa_{1-x}As$ metal-oxide-semiconductor field-effect transistors (MOSFETs) have been widely investigated owing to the high electron mobility of the $In_xGa_{1-x}As$ material and the much lower turn-on voltage of $In_xGa_{1-x}As$ devices than of conventional Si devices.¹⁻⁴ Rare-earth oxides (REOs) exhibit high dielectric constant and high conduction band offset with respect to silicon and are currently being investigated as high-k gate dielectrics for future ultrascaled devices.^{5–9)} Among the binary REOs, La₂O₃ is considered as one of the most promising gate dielectric materials owing to its high κ and high band-gap energy. However, strong interdiffusion between InGaAs and La₂O₃ occurs after postdeposition annealing (PDA) when La_2O_3 is in direct contact with the $In_xGa_{1-x}As$ material.¹⁰⁾ In recent years, several groups have studied composite oxides such as HfO_2/Al_2O_3 ,¹¹⁾ CeO₂/Al₂O₃,¹²⁾ and CeO₂/HfO₂¹³⁾ on InGaAs for next-generation device applications.

In this work, high-*k* composite oxides of La₂O₃ and HfO₂ are investigated for n-In_{0.53}Ga_{0.47}As MOS capacitor application. HfO₂ is chosen because it has a *k* of 25 and an energy band gap of 5.5 eV, and is known to demonstrate inversion behavior with In_xGa_{1-x}As.¹⁴⁻¹⁸ An in situ molecular beam deposition (MBD) system was used to deposit the multiple layers of HfO₂ (0.8 nm) and La₂O₃ (0.8 nm) on n-In_{0.53}Ga_{0.47}As. The effects of PDA temperature and annealing gas atmosphere on the interface properties and device performances of HfO₂/La₂O₃/n-In_{0.53}Ga_{0.47}As and La₂O₃/HfO₂/ n-In_{0.53}Ga_{0.47}As MOS capacitors are studied.

The device structure includes a 100 nm In_{0.53}Ga_{0.47}As layer with 5 × 10¹⁷ cm⁻³ Si doping grown on the n-InP substrate by molecular beam epitaxy (MBE). The device process can be divided into four parts: surface treatment, oxide deposition, gate metal deposition, and ohmic contact formation. The wafers were first cleaned in 4% HCl solution for 3 min, followed by an (NH₄)₂S solution dip for 30 min at room temperature. Then, the wafers were loaded into the MBD system to deposit the HfO₂ (0.8 nm)/La₂O₃ (0.8 nm) multilayers on n-In_{0.53}Ga_{0.47}As at 300 °C. The 10 layers of HfO₂ (0.8 nm) and La₂O₃ (0.8 nm) MOS capacitors were fabricated and annealed at temperatures ranging from 400 to 550 °C in N₂ for 5 min. Then, Ni/Au was deposited on the front side of the wafer as the gate contact metal and Au/Ge/Ni/Au was deposited on the back side of the n+ InP substrate as ohmic metal; both were deposited using an e-beam evaporator and the ohmic metal was annealed at 250 °C for 30 s for optimum contact resistance.

Figure 1 shows the X-ray photoelectron spectroscopy (XPS) spectra of the HfO₂ $(0.8 \text{ nm})/\text{La}_2\text{O}_3 (0.8 \text{ nm})/$ n-In_{0.53}Ga_{0.47}As and La₂O₃ (0.8 nm)/HfO₂ (0.8 nm)/n-In_{0.53}-Ga_{0.47}As composite oxide structures annealed at 400, 500, and 550 °C in N₂ for 5 min. The As 3d, Ga $2p_{3/2}$, In $3d_{5/2}$, and O 1s XPS spectra of the samples with different PDA temperatures were analyzed to determine the film compositions and interface properties. In general, with increasing PDA temperature, more interactions between oxides and semiconductors occur, and the number of As-As bonds is reduced owing to the high-temperature annealing, as indicated by As 3d in Fig. 1. When the PDA temperature was increased to 500 °C, the amounts of As-, Ga-, and In-related oxides decreased for both composite oxide structures. The amount of La₂O₃ increased for the La₂O₃/HfO₂/n-In_{0.53}-Ga_{0.47}As structure, as indicated by the XPS O 1s peak in Fig. 1. The slight reduction of the native oxides could be explained by the conversion of As-O, Ga-O, and In-O bonds to InAs, GaAs, and La₂O₃ during thermal annealing for the La₂O₃/HfO₂/n-In_{0.53}Ga_{0.47}As structure. However, the amount of La2O3 that diffused into InGaAs increased with temperature for the HfO₂/La₂O₃/n-In_{0.53}Ga_{0.47}As structure. The 500 °C annealing not only converted the As-O, Ga-O, and In-O bonds to InAs and GaAs bonds but also resulted in the increase in the amount of La₂O₃ diffusing into InGaAs for the HfO₂/La₂O₃/n-In_{0.53}Ga_{0.47}As structure. Furthermore, the amounts of As-, Ga-, and In-related oxides increased significantly for both composite oxide structures when the PDA temperature was increased to 550 °C, as indicated by the As 3d, Ga $2p_{3/2}$, and In $3d_{5/2}$ spectra in Fig. 1. This indicates that at the PDA temperature of 550 °C, the diffusions of As, Ga, and In into the oxide layers were quite significant for both composite oxide structures.

Figure 2 shows the comparison of capacitance–voltage (C-V) curves at 1 MHz for the five layers of HfO₂ (0.8 nm)/ La₂O₃ (0.8 nm) and the five layers of La₂O₃ (0.8 nm)/ HfO₂ (0.8 nm) composite oxides on n-In_{0.53}Ga_{0.47}As MOS capacitors, and the HfO₂ (8 nm)/n-In_{0.53}Ga_{0.47}As MOS

Fig. 1. As 3d, Ga $2p_{3/2}$, In $3d_{5/2}$, and O 1s XPS spectra of La₂O₃ (0.8 nm)/HfO₂ (0.8 nm)/n-In_{0.53}Ga_{0.47}As and HfO₂ (0.8 nm)/La₂O₃ (0.8 nm)/n-In_{0.53}Ga_{0.47}As with postdeposition annealing temperatures of 400, 500, and 550 °C in nitrogen gas for 5 min.

Fig. 2. Comparison of C-V characteristics of HfO₂ (8 nm)/ n-In_{0.53}Ga_{0.47}As, La₂O₃ (0.8 nm)/HfO₂ (0.8 nm)/n-In_{0.53}Ga_{0.47}As and HfO₂ (0.8 nm)/La₂O₃ (0.8 nm)/n-In_{0.53}Ga_{0.47}As MOS capacitors.

capacitor. The electrical characteristics of the composite oxide MOS capacitor were markedly improved when the devices were annealed at the PDA temperature of 500 °C in N₂ for 5 min. The dielectric constants of 15.2 and 14.8 were estimated for the five layers of the La₂O₃ (0.8 nm)/HfO₂ (0.8 nm) and HfO₂ (0.8 nm)/La₂O₃ (0.8 nm) composite oxides on n-In_{0.53}Ga_{0.47}As MOS capacitors, respectively.

Some reports show that the semiconductor elements will diffuse into the oxide after annealing, resulting in the decrease in the oxide dielectric constant and the increase in the device capacitance equivalent thickness (CET).¹⁹⁾ In this case,

$$CET = \frac{\varepsilon_0 \varepsilon_{SiO2}}{C(\text{accum}.@\ f = 1 \text{ k})}$$

where $C(\text{accum}.@\ f = 1 \text{ kHz})$ is the capacitance of the accumulation region at frequency = 1 kHz, ε_0 is the vacuum permittivity, and $\varepsilon_{\rm SiO2}$ is relative permittivity of SiO2. A CET of 2.2 nm at 1 kHz with a low interface trap density $(D_{\rm it})$ of 7.0 \times 10¹¹ cm⁻²·eV⁻¹ was achieved, as estimated by the conductance method²⁰⁾ for the $La_2O_3/HfO_2/$ n-In_{0.53}Ga_{0.47}As capacitor, as shown in Fig. 3(a). A higher $D_{\rm it}$ and a lower CET were obtained for the HfO₂ (0.8 nm)/ La_2O_3 (0.8 nm)/n-In_{0.53}Ga_{0.47}As device owing to the strong interaction between La₂O₃ and n-In_{0.53}Ga_{0.47}As. When the PDA temperature was increased, the interaction between the oxide and the semiconductor increased. The Gp/wqA vs frequency plot and D_{it} vs energy plot for the 5 layers $La_2O_3 (0.8 \text{ nm})/HfO_2 (0.8 \text{ nm})$ and $HfO_2 (0.8 \text{ nm})/$ of La2O3 (0.8 nm) on n-In0.53Ga0.47As MOS capacitors with PDA at 500 °C are shown in Figs. 4(a) and 4(b), respectively. From Fig. 4(b), the low D_{it} of 7.0×10^{11} - 1.0×10^{12} $cm^{-2}{\cdot}eV^{-1}$ in the energy range of 0.47–0.44 eV above the In_{0.53}Ga_{0.47}As valence band maximum was obtained for the La₂O₃ $(0.8 \text{ nm})/\text{HfO}_2$ $(0.8 \text{ nm})/n-\text{In}_{0.53}\text{Ga}_{0.47}\text{As}$ device. When the PDA temperature was increased to 550 °C, the capacitance decreased from 1.46 (500 °C) to $1.39 \,\mu\text{F/cm}^2$ (550 °C) and 1.44 (500 °C) to $1.20 \,\mu\text{F/cm}^2$ (550 °C) for the $La_2O_3/HfO_2/n-In_{0.53}Ga_{0.47}As$ structure and $HfO_2/La_2O_3/$ n-In_{0.53}Ga_{0.47}As structure, respectively. The larger capacitance decrease, particularly for the HfO2 (0.8 nm)/La2O3 (0.8 nm)/n-In_{0.53}Ga_{0.47}As capacitor, was due to the strong interdiffusion between La2O3 and InGaAs after high-temperature annealing. The C-V characteristics of the composite oxide capacitors with PDA temperatures of 400, 500, and 550 °C and different oxide thicknesses are compared in Table I.

 Table I.
 Comparison of C-V characteristics of HfO₂ (8 nm)/n-In_{0.53}Ga_{0.47}As, La₂O₃ (0.8 nm)/HfO₂ (0.8 nm)/n-In_{0.53}Ga_{0.47}As and HfO₂ (0.8 nm)/La₂O₃ (0.8 nm)/n-In_{0.53}Ga_{0.47}As MOS capacitors.

Device oxide structure			CET at 1 kHz (nm)	Accumulation capacitance $(\mu F/cm^2)$		Frequency dispersion	$D_{\rm it}$ (10 ¹² cm ⁻² ·eV ⁻¹)
				at 1 kHz	at 1 MHz	(70)	
$8 \text{ nm HfO}_2 \text{ PDA at } 500 ^\circ\text{C} \text{ in } N_2$			2.71	1.30	1.07	5.1	2.58
$(La_2O_3/\mathrm{HfO}_2)\times 5$ PDA at (°C)	400	N2	_		_	_	25.10
	500	N2	2.21	1.60	1.46	3.5	0.70
		Forming gas	2.34	1.51	1.42	2.9	1.05
	550	N ₂	2.23	1.58	1.39	3.5	0.90
$(La_2O_3/HfO_2) \times 4$ PDA at (°C)	500	N ₂	1.77	2.0	1.71	4.6	1.52
$(La_2O_3/HfO_2) \times 3$ PDA at (°C)	500	N ₂	1.41	2.52	2.04	5.0	2.21
$(HfO_2/La_2O_3) \times 5$ PDA at (°C)	400	N ₂	2.26	1.56	1.35	4.2	2.91
	500	N ₂	2.25	1.57	1.44	2.8	0.97
		Forming gas	2.50	1.41	1.32	2.6	1.12
	550	N ₂	2.52	1.40	1.20	4.2	1.80

Fig. 3. C-V characteristics of 5 layers of (a) La₂O₃ (0.8 nm)/ HfO₂ (0.8 nm) and (b) HfO₂ (0.8 nm)/La₂O₃ (0.8 nm) on n-In_{0.53}Ga_{0.47}As MOS capacitors with PDA at 500 °C in N₂ gas for 5 min.

Furthermore, the device performance was further improved by forming gas (5% H₂ + 95% N₂) annealing. Figure 5 shows the *C*–*V* characteristics of the 5 layers of La₂O₃ (0.8 nm)/HfO₂ (0.8 nm) and the 5 layers of La₂O₃ (0.8 nm)/ HfO₂ (0.8 nm) on n-In_{0.53}Ga_{0.47}As MOS capacitors with PDA at 500 °C in forming gas for 5 min. Frequency dispersion was improved owing to H₂ treatment,²¹⁾ especially for the La₂O₃/HfO₂/n-In_{0.53}Ga_{0.47}As structure. The frequency dispersions were reduced from 3.5 to 2.9% and 2.8

Fig. 4. (a) Gp/wqA (A: $1.33 \times 10^{-4} \text{ cm}^2$) vs frequency curves at different gate biases and (b) D_{it} vs energy curves after 500 °C PDA for 5 layers of La₂O₃ (0.8 nm)/HfO (0.8 nm) and HfO₂ (0.8 nm)/La₂O₃ (0.8 nm) on n-In_{0.53}Ga_{0.47}As MOS devices.

to 2.6% for the $La_2O_3/HfO_2/n-In_{0.53}Ga_{0.47}As$ structure and $HfO_2/La_2O_3/n-In_{0.53}Ga_{0.47}As$ structure, respectively. However, the capacitances of both devices decreased after forming

Fig. 5. C-V characteristics of the five layers of (a) La₂O₃ (0.8 nm)/ HfO₂ (0.8 nm) and (b) HfO₂ (0.8 nm)/La₂O₃ (0.8 nm) on n-In_{0.53}Ga_{0.47}As MOS capacitors with PDA at 500 °C in forming gas for 5 min.

Fig. 6. C-V characteristics of three layers of La₂O₃ (0.8 nm)/ HfO₂ (0.8 nm) on n-In_{0.53}Ga_{0.47}As MOS capacitors with PDA at 500 °C in nitrogen gas for 5 min.

gas annealing. The device CET was improved for the 3 and 4 layers of the La₂O₃ (0.8 nm)/HfO₂ (0.8 nm) structure on the n-In_{0.53}Ga_{0.47}As device after PDA at 500 °C for 5 min in N₂ atmosphere. The *C*–*V* curves for the 3-layer device are shown in Fig. 6; for the composite oxide with 3 and 4 layers of the La₂O₃ (0.8 nm)/HfO₂ (0.8 nm) structure, the CETs were reduced to 1.77 and 1.41 nm, respectively, after 500 °C annealing, as measured at 1 kHz.

In summary, high-*k* composite dielectrics composed of La₂O₃ and HfO₂ layers on n-In_{0.53}Ga_{0.47}As for MOS capacitor application are investigated. Overall, the La₂O₃/HfO₂ structure on the n-In_{0.53}Ga_{0.47}As MOS capacitor demonstrates better performance than the HfO₂/La₂O₃ structure on the n-In_{0.53}Ga_{0.47}As MOS capacitor after thermal treatment owing to the interaction between the composite oxides and InGaAs materials. A low CET of 1.41 nm at 1 kHz for 3 layers, a small frequency dispersion of 2.6%, and an excellent D_{it} of 7.0 × 10¹¹ cm⁻²·eV⁻¹ can be achieved using multiple layers of La₂O₃ (0.8 nm) and HfO₂ (0.8 nm) on In_{0.53}Ga_{0.47}As MOS capacitors with PDA at 500 °C.

Acknowledgment The authors would like to thank the Ministry of Education and the National Science Council of the Republic of China for supporting this research under contract Nos. 102-2911-I-009-302 and 101-2221-E-009-173-MY2.

- Y. Xuan, Y. Q. Wu, H. C. Lin, T. Shen, and P. D. Ye, IEEE Electron Device Lett. 28, 935 (2007).
- N. Goel, P. Majhi, C. O. Chui, W. Tsai, D. Choi, and J. S. Harris, Appl. Phys. Lett. 89, 163517 (2006).
- Y. Xuan, Y. Q. Wu, and P. D. Ye, IEEE Electron Device Lett. 29, 294 (2008).
- 4) Y. Xuan, H. C. Lin, P. D. Ye, and G. D. Wilk, Appl. Phys. Lett. 88, 263518 (2006).
- C.-H. Chen, I. Y.-K. Chang, J. Y.-M. Lee, and F.-C. Chiu, Appl. Phys. Lett. 92, 043507 (2008).
- W.-H. Kim, W. J. Maeng, M.-K. Kim, J. Gatineau, and H. Kim, J. Electrochem. Soc. 158, G217 (2011).
- 7) W.-H. Kim, M.-K. Kim, W. J. Maeng, J. Gatineau, V. Pallem, C. Dussarrat, A. Noori, D. Thompson, S. Chu, and H. Kim, J. Electrochem. Soc. 158, G169 (2011).
- M. S. Rahman, E. K. Evangelou, I. I. Androulidakis, and A. Dimoulas, Electrochem. Solid-State Lett. 12, H165 (2009).
- 9) Y. Nishikawa, N. Fukushima, N. Yasuda, K. Nakayama, and S. Ikegawa, Jpn. J. Appl. Phys. 41, 2480 (2002).
- 10) Y.-C. Lin, C.-H. Chang, K. Kakushima, H. Iwai, T.-E. Shie, G.-N. Huang, P.-C. Lu, T.-C. Lin, and E. Y. Chang, ECS Trans. 35 [3], 397 (2011).
- 11) R. Suzuki, N. Taoka, M. Yokoyama, S. Lee, S. H. Kim, T. Hoshii, T. Yasuda, W. Jevasuwan, T. Maeda, O. Ichikawa, N. Fukuhara, M. Hata, M. Takenaka, and S. Takagi, Appl. Phys. Lett. 100, 132906 (2012).
- 12) L. Yan, L. B. Kong, Q. Li, and C. K. Ong, Semicond. Sci. Technol. 18, L39 (2003).
- 13) K. Karakaya, B. Barcones, Z. M. Rittersma, J. G. M. van Berkum, M. A. Verheijen, G. Rijnders, and D. H. A. Blank, Mater. Sci. Semicond. Process. 9, 1061 (2006).
- 14) H.-D. Trinh, Y.-C. Lin, H.-C. Wang, C.-H. Chang, K. Kakushima, H. Iwai, T. Kawanago, Y.-G. Lin, C.-M. Chen, Y.-Y. Wong, G.-N. Huang, M. Hudait, and E. Y. Chang, Appl. Phys. Lett. 97, 042903 (2010).
- 15) É. O'Connor, S. Monaghan, R. D. Long, A. O'Mahony, I. M. Povey, K. Cherkaoui, M. E. Pemble, G. Brammertz, M. Heyns, S. B. Newcomb, V. V. Afanas'ev, and P. K. Hurley, Appl. Phys. Lett. 94, 102902 (2009).
- 16) Y. Xuan, Y. Q. Wu, T. Shen, T. Yang, and P. D. Ye, IEDM Tech. Dig., 2007, p. 637.
- 17) F. Zhu, H. Zhao, I. Ok, H. S. Kim, M. Zhang, S. Park, J. Yum, S. Koveshnikov, V. Tokranov, M. Yakimov, S. Oktyabrsky, W. Tsai, and J. C. Lee, IEEE CSIC Symp., 2008, p. 100.
- 18) H.-D. Trinh, Y.-C. Lin, H.-C. Wang, C.-H. Chang, K. Kakushima, H. Iwai, T. Kawanago, Y.-G. Lin, C.-M. Chen, Y.-Y. Wong, G.-N. Huang, M. Hudait, and E. Y. Chang, Appl. Phys. Express 5, 021104 (2012).
- 19) L. Sambuco Salomone, J. Lipovetzky, S. H. Carbonetto, M. A. García Inza, E. G. Redin, F. Campabadal, and A. Faigón, J. Appl. Phys. 113, 074501 (2013).
- 20) E. H. Nicollian and A. Goetzberger, Appl. Phys. Lett. 7, 216 (1965).
- 21) H. D. Trinh, E. Y. Chang, P. W. Wu, Y. Y. Wong, C. T. Chang, Y. F. Hsieh, C. C. Yu, H. Q. Nguyen, Y. C. Lin, K. L. Lin, and M. K. Hudait, Appl. Phys. Lett. 97, 042903 (2010).