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Electron differential inverse mean free paths for volume-plasmon excitations and differential probabili-

ties for surface-plasmon exeitations have been calculated using dielectric response theory. A model

dielectric function which satisfled sum rules and agreed with optical data was established for these calcu-

lations. In surface-plasmon calculations, we considered electron-impact emissions of the reflected

electron-energy-loss spectroscopy. Formulations were made for obliquely incident electrons with the

recoil effect and without the small-scattering-angle assumption. For volume-plasmon excitations, we

evaluated corrections due to the exchange and Z& effects. Comparison between calculated results and

experimental data extracted from reflected electron-energy-loss spectra showed good agreement. Calcu-

lated differential cross sections have been used to solve the transport equation for the angular and energy

flux spectra of reflected electrons. Contributions to the spectra from single and plural plasmon excita-

tions were analyzed. It was found that calculated spectra were in good agreement with measured data.

I. INTRODUCTION

Quantitative information on inelastic interaction cross
sections of low-energy electrons in solids is important in
surface analysis such as Auger electron spectroscopy, x-
ray photoelectron spectroscopy, reflected electron-
energy-loss spectroscopy (REELS), etc. Computations of
this information require the dielectric response theory'
for electron-solid interactions through, primarily, volume
and surface excitations. Alternatively, this information
can be extracted from measured REELS spectra. The
advancement of both theoretical and experimental data
on electron inelastic cross sections leads to significant im-
provements in accurate surface analysis.

In this work, we calculate electron differential inverse
free paths (DIMFP's) for volume-plasmon excitations and
differential probabilities for surface-plasmon excitations
and compare the results with those extracted from mea-
sured REELS spectra. Our approach involves the use of
a dielectric response theory for inelastic interactions and
a Boltzmann equation for electron transport in solids.
Some minor effects contributing to the energy losses of
low-energy electrons, e.g. , the recoil effect in surface exci-
tations and the correlation, exchange and Z& effects in
volume excitations, are included in our theory. Other
effects such as the quantal interference between scattered
electrons and residual ions, which are negligibly small in
the energy range considered in this work, i.e., 300 eV —10
keV, are omitted. A review about the validity and the
limitation of dielectric response theory for low-energy
electrons is available. A discussion on the applicability
of the Boltzmann transport equation to low-energy secon-
dary electrons is also available. The rationale underly-

ing the modeling of the transport of swift electrons in
solids was given there. Due to the complex interactions
and transport of these electrons, our results seem quite
encouraging.

The volume energy-loss function, or the imaginary part
of the negative inverse dielectric function, Im( —I/e),
was modeled previously as a sum of Drude response
function terms. In that model, the leading coefficients
were determined by a fit of the energy-loss-function in the
optical limit to experimental data. Although Kramers-
Kronig transformations may be applied to derive the
real part of the dielectric function, c&, and the imaginary
part of this function, cz, these transformations often pro-
duce unreliable results due to the incompleteness of mea-
sured energy-loss functions over a wide range of energy
transfers. Any small errors occurring near the faint
humps corresponding to interband transitions in the
energy-loss function may result in amplifying errors in
the derived c& and ez. ' Thus, the model based on the
volume energy-loss function should not be applied to
compute the surface energy-loss function where accurate
c, and cz over an extended range of energy and momen-

tum transfers are required. To improve this model, Kwei
and Tung" considered c.z as a sum of Drude response
terms in a modified approach. They chose to fit cz to ex-
perimental data in the optical limit. Then, z

&
and

Im( —I/e) were determined using fitted coefficients. In
this work, we further generalize this approach by requir-
ing a11 fitted critical-point energies to match those
identified in interband transitions and by allowing a back-
ground dielectric constant to account for the influence of
polarizable ion cores. ' In addition, we require that sum
ruies for E~ and Im( —1/E) are satisfied.
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%ith the present model for dielectric functions, an esti-
mate of surface and volume energy-loss functions can be
made more accurately. One can subsequently calculate
the DIMFP for volume-plasmon excitations and the
differential probability for surface-plasmon excitations.
Here we calculate these quantities for swift electrons in-
teracting with several solids and compare our results with
data extracted from measured REELS spectra. Since
these spectra contain single, plural and multiple scatter-
ing energy-loss peaks, they must be deconvoluted in order
to separate out individual scattering contributions. This
can be done by solving the electron-transport equation
under simulated REELS conditions. Our calculations
show that the relative importance of surface to volume
excitations depends on the solid material and on the elec-
tron energy. The calculated results are in good agree-
ment with experimental data.

II. THEORY

A. Plasmon excitations

In REELS, incident electrons interact inelastically
with solid electrons in the sample mainly through volume
and surface excitations. Solid electrons near the surface
are responsible primarily for surface excitations, while
those deep inside contribute mostly to volume excita-
tions. Both surface and volume excitations may be de-
scribed by a complex dielectric function of the sample.

In this paper we use atomic units for quantities and
units unless otherwise specified. Considering a swift elec-
tron of velocity v impinging on a homogeneous and iso-
tropic solid, the DIMFP of this electron with energy
E=v /2 to lose energy cv for volume excitations is given
in the first-Born approximation as"

2 '+1 —1p'„"(E~E co) = f——Im dk,
k s(k, co)

where k is the momentum transfer and k +=&2E +&2(E co) comes fro—m the conservation of en-
ergy and momentum. The validity of the first-Born ap-
proximation of Eq. (1) has been discussed. ' ' It was
argued that this approximation gave a good estimate of
the electron DIMFP for valence-band excitations under
the condition E &7EF. In this work, the incident elec-
tron energies range from 0.3 to 10 keV and the Fermi en-
ergies, E~, lie in the interval 10—15 eV. Therefore, Eq.
(1) should work reasonably well. To estimate the accura-
cy of this equation, we can apply the second-order Born
approximation. Following the derivation in the Z, effect
of the stopping power formula, ' ' we find

p„(E~E co) =p',"(E~—E co)+p'„'(E +E—cv), — —

(2)

I', (E~E—co,v~v —k) = 21k, l

n v(cosa)k

XIm R,(e —1)

proximation and L(cv)=(co/v )I(ycv/v). In this work,
we take y= 1/&2c0 (Ref. 20) and tabulated data for the
I(yco/v). '

In the Born approximation, it is assumed that succes-
sive interactions between an energetic electron and ions
and electrons in the medium are independent. Therefore,
a quasiparticle representation may be formed. For a
low-energy electron, its mean free path in the solid may
be only a few angstroms. Such an electron and its polar-
ization dressing can be so strongly damped that the
quasiparticle description may lose its validity. It was
evaluated by Quinn that the damping rate was at most
16% for low-energy electrons in aluminum metal. Thus,
Ritchie et al. have concluded that the quasiparticle con-
cept should be reasonable for low-energy electrons in any
electron gas of density comparable to that of the conduc-
tion electrons in aluminum. Recently, a theory was deter-
mined for the description of elastic and inelastic in-
teractions in terms of quasiparticle representations in-
volving damped one-electron functions. In our model
dielectric function, each quasiparticle is characterized by
a separate oscillator with its effective mass, bond
strength, and damping to be determined by a fit of this
function to the optical data. Thus, our treatment is
equivalent to the above quasiparticle theory except that
we determine characteristic properties experimentally. A
detailed discussion about our model dielectric function
will be presented in the next section.

The inverse mean free path (IMFP) of an electron for
volume excitations is then given by

gp„(E)=f p„(E~E, co)dco—. (4)

Note that we denote DIMFP by double variables separat-
ed by an arrow in the parenthesis and IMFP by a single
variable within the parenthesis.

The dielectric response theory also provides a descrip-
tion about surface excitations. The differential probabili-
ty per unit energy loss per unit momentum transfer of an
electron for such excitations may be in terms of the
dielectric function too. This probability was derived by
Ritchie for normal incident electrons through the
neglect of the recoil effect. Omitting the same effect,
Raether worked out such a probability under the small-
scattering-angle approximation for obliquely incident
electrons. The present work derives this probability for
obliquely incident electrons with the recoil effect and
without the small scattering-angle approximation. For a
sample of thickness s, we find

where

p, ', '(E~E—co) = Im I.(co)(2) 2 1

n v' &(0,c0)

is the correction term contributed by the second Born ap-

kX5 co —v.k+
2

for the differential probability of an electron with energy
E to lose energy co and transfer momentum k in surface
excitations. Here
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unit energy loss as
(6)

sin (st/2U) cos (sm/2v)
a+ tanh(sk, /2) a+ coth(sk, /2)

a is the angle between the surface normal and the direc-
tion of the incident electron, k, is the parallel component
of momentum transfer along the surface plane, and 5( )

denotes the conservation of energy and momentum. In
REELS applications, the sample thickness is large
enough to reach a saturated surface excitation probabili-
ty. In such situations, Eq. (5) reduces to

2Ik, I

P, (E~E—co, v~v —It) =
n. u(cosa)k

(E —1)X Im
e c+1

P, (E~E —co) =P,+(E~E a—))+P, (E~E—a)), (9)

where

I + Ik,'I (E—1)2
Im dk

m.v (cosa) "- k s«+1)P,+(E~E co)—=

(10)

and
'2' 1/2

k,'= k — —+co k
U 2U

Q7 kcosa' —+ sina .
U 2U

2

X5 N V k+
2

(7)

%e can decompose k into k~ and k~~ corresponding to the
perpendicular and parallel components of k along v. As-
suming that the scattering angle 8 lies on the plane of the
incident electron, as sketched in Fig. l, we can write

k, =k~cosakk~~sina,

Since k,
'

is different for positive and negative signs in Eq.
(11), an asymmetry effect exists in the surface excitation
probability with respect to scattering angle orientations.
This effect has been confirmed experimentally.

If we neglect the recoil term in Eq. (7) and carry out
the integration over k

~~,
we obtain

2Ik, I

P,~(E~E—co,v~v —lt) =
n v (cosa)(kf+a) /u )

where the positive (negative) sign is for the like (opposite)
signs of 8 and a. Carrying out the integration over k in
Eq. (7), we obtain the surface excitation probability per

with

XI
e(a+1) (12)

N
k, =k~cosak —sina . (13)

/

k sin a k cosa

Taking a =0 in Eq. (12), we find that the result of Ritchie
for a normal incident electron is a special case of this
equation. Letting 0 « 1 and k «U in Eq. (12), we get the
result of Raether for obliquely incident electrons under
the small-scattering-angle approximation.

B.Dielectric functions

The model dielectric function used in this work is an
extended Drude model applied to the valence band (or
conduction band for metals) of a solid. The real and
imaginary parts of the dielectric function are given by '

I I
I I

I

k cos

k sin a

A, [co —(a), +k /2) ]
e, (k, co) =Eb —g 2

( +k2/2)2]2+~2y2

and

c4) P co
(k, )=g

[a) —(co;+k /2) ] +a) y,

(14)

(15)

FIG. l. A sketch of the electron configuration in REELS.
Here ko, k&, and k are, respectively, electron momentum before
the scattering, electron momentum after the scattering, and the
momentum transfer; k& and kI~ are, respectively, the perpendic-
ular and parallel components of k along ko,' a and 8 are, respec-
tively, the angle between the surface normal and the electron in-
cident direction and the scattering angle (either positive or neg-
ative). The scattering angle is assumed to lie on the plane of in-
cidence.

where A;, y;, and co;, are, respectively, the oscillator
strength, damping coefficient, and critical-point energy,
all associated with the ith interband transition. Note that
we include in Eq. (14) an sb term to account for the back-
ground dielectric constant due to the influence of polariz-
able ion cores. ' This term can be important at energy
transfers just below the threshold energy of inner-shell
electrons. Since the exact dependence of the dielectric
function on momentum transfer is seldom known, an ex-
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trapolation from the optical limit to other momentum
transfers must be made. The expression adopted in Eqs.
(14) and (15) for the k dependence works correctly at the
two ends of the momentum transfer, i.e., k~O and
k~ao, with an accuracy proportional to k . The
energy-loss function can then be calculated using

—1
Im

e(k, a) )

E,2

6)+Ep

and

toe (O, to)dco= —g A =—to
7T 77

0 2 . ' 2
I

(17)

Q) Im co=
0 e O, lt)

where co is the plasma energy of valence electrons.
Besides plasmon damping and ion polarizability, there

are other efFects which contribute to the DIMFP of low-
energy electrons. These include the local-field correc-
tions due to correlation and exchange. With our model
dielectric function fitted to experimental data, the
influence of correlation is already incorporated. The ex-
change correction, arising from the requirement of an an-
tisymmetric wave function for an assembly of electrons
under interchange of spin and space coordinates, can be
estimated using a semiempirical scheme. ' ' This scheme
is based on the Moiler difFerential cross section. For
metals, the exchange-corrected DIMFP is given by

p'„"(E~E co) =p, (E~E—co)+p„(E~co—)
—[p„(E~E a) )p„(E~to) ]'—. (19)

Additional modifications to the DIMFP of very low-
energy electrons, such as the quantal interference be-
tween scattered electrons and residual ions, have been
discussed by Ritchie et al. Since these modifications are
negligibly small for electrons in the energy range of
current interest, we can omit them in this work.

C. REELS spectra

As illustrated in Fig. 2, an incident electron of energy
Eo and direction Qo travels the zigzag trajectory inside a
solid before it is rejected back to vacuum with energy E
and direction Q. Elastic and inelastic interactions con-
tribute mainly to, respectively, the angular deflection and
the energy loss of this electron. Inelastic interactions

Parameters in Eq. (15) will be determined by a fit of
this equation, in the limit k~0, to the optical dielectric
function data taken from energy-loss and optical mea-
surements. These two measurements are often comple-
mentary to each other in producing reliable data over a
wide range of energy transfers. Generally, optical experi-
ments provide detailed information on interband transi-
tions at small energy transfers. Whereas, energy-loss ex-
periments give accurate data on energy-loss functions at
large energy transfers. To ensure the accuracy of fitted
parameters, we require that the model dielectric function
satisfies two sum rules, i.e., '

~ surface plasmon

o elastic scattering
~ inelastic scattering

FIG. 2. A sketch of the zigzag trajectory of an electron inside
the solid for REELS simulations.

= S(r,E,Q, t)

+f f$(r,E', Q', t)p(E'~E, Q'~Q)dE'dQ'

—f f$(r, E,Q, t)p(E~E', Q~Q')dE'dQ',

(20)

where S(r,E,Q, t) is the number of source electrons per
unit volume, solid angle, and energy at time t. The dou-
ble DIMI'P, p(E'~E, Q'~Q), is the probability per
unit pathlength, energy, and solid angle that an electron
of initia1 energy E' and direction Q' reaches the fina1 en-
ergy E and direction Q.

In general, it is difficult to solve Eq. (20) because of the

consist of single-electron excitations (interband transi-
tions) and ionizations, volume-plasmon excitations, and
surface-plasmon excitations. To get an idea of how these
interactions occur in the solid, we consider, as an exam-
ple, the reflection of a 500-eV electron from aluminum.
In this case, the mean pathlength traveled by the elec-
tron, the elastic mean free path, and the inelastic mean
free path (excluding surface-plasmon excitations) are
about ' ' 125, 5.8, and 12.4 A, respectively. Therefore,
the average number of elastic and inelastic interactions in
the solid are about 22 and 10. For surface-plasmon exci-
tations, the effective region extends into the solid to a
depth about u jco„' where co, is the surface-plasrnon fre-
quency. Since m, =10 eV, this depth is around 9 A,
sufficient only for a single surface-plasmon excitation. It
can be predicted that multiple surface plasmons are un-
likely to occur for a normally incident electron. Only
when the electron makes a very large glancing angle,
plural surface plasmons can be possible. This conclusion
agrees with experimental observations.

The starting point for a theoretical description of elec-
tron angular and energy flux distribution in REELS is the
Bolzmann transport equation. This equation represents a
continuity relation in phase space, which is made up of
coordinates r, the kinetic energy E, and the direction of
motion 0, of the transport electron. The mathematical
formulation for the energy and angular electron flux at
time t is given by

—+V Q P(r, E,Q, t)
a
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energy-angle correlating DIMFP involved in this equa-
tion. However, it is reasonable to assume that only
elastic interactions contribute to the angular deflection
and only inelastic interactions contribute to the energy
loss. Hence, one may separate the DIMFP according to

where A, is the electron inelastic mean free path. Equa-
tion (24) could also be derived by assuming a Landau dis-
tribution for G(O, E,R). The present derivation, howev-

er, does not resort to such an energy distribution.
Defining a relative electron flux-density distribution as

p(E'~E, Q'~Q) =p, (Q'~Q)6(E' E—)

+p;(E'~E)6(Q' —Q), (21)

~r ~ +L
f(O, E,rt)= $(O,E,rt),

90~9 i

(28)

where p, and p; are, respectively, elastic and inelastic
DIMFP's. For the moment, we consider p, in Eq. (21)
consisting of volume-plasmon excitations and interband
transitions but not of surface-plasmon excitations. One
may decouple the electron flux into angular and energy
parts according to

one gets

f(O, E, ri) =5(E—Eo)

A,;L+ p; E'~E OE', q dE' . (29)

P(r, E,Q, t }=Q(r,Q, t)G(r, E, t) . (22)

Assuming an azimuthal symmetry for REELS and
defining g =cos0 and R =vt, one obtains

'a a+i) Q(x, rt, R)=5(x)5(i)—rto)5(R )

+fQ(x, rt', R )p, (i)'~g)di)'

—f Q(x, 7),R )p, (rt~i)')d q'

(23)

If we neglect elastic scatterings in Eq. (29), i.e., assuming
L »A, ;, the leading factor on the right-hand side (RHS)
becomes A, ,

'. Thus, this equation reduces to the com-
mon transport equation for an electron slowing-down
spectrum due to inelastic interactions. On the other
hand, if we assume L &&A, , the leading factor on the
RHS of Eq. (29) becomes L '. Then, the energy spec-
trum in REELS is modified by elastic scatterings.

If only small energy losses are concerned, Eq. (29) may
be solved by an iteration process. One obtains

for the angular distribution function at depth x and path-
length R and

G(x,E,R) =5(x )5(E—Eo)6(R )
a

BR

A,;L
f(O, E, rt) =5(E Eo)+ —p;(EO~E)

A.;+L

+ fG(x, E', R)p, (E'~E)dE'
—fG(x, E,R)p;(E~E')dE' (24)

Xp, (E'~E)dE'+

Q(O, rI, R )= A(rto, rt)A, , 'e (25)

where k, is the transport elastic mean free path, L =2k, ,
is the attenuation length, and A(iso, il) depends on the
directional cosines of incident and exit angles of the elec-
tron.

To find the time integral of the energy and angular dis-
tribution Aux, one defines

p(O, E, rt) = f Q(0, ),R7)G(O, E,R )dR .
0

This flux can be determined by multiplying Eq. (24) by
Q(O, i),R ) and integrating the result over R. Combining
it with Eqs. (25) and (26), we find

A(iso, i))
5(E—Eo)= I,;+L

P(O, E,q)
k;L

—f $(O, E', g)p, (E'~E)dE',

(27)

for the corresponding energy distribution function.
The solution of Eq. (23) may be found by expanding

the angular distribution function in terms of the Legen-
dre polynomial. It gives

(30)

where the first, second, and third terms on the RHS
represent, respectively, electron-energy-loss flux due to
zero, single, and double inelastic interactions. So far, we
have excluded the contribution from surface excitations
in Eq. (30) because it required a different treatment. Sur-
face excitations are characterized not by a DIMFP but by
a differential probability. Their occurrence follows a
description of the Poisson statistics. Thus, we may in-
clude these excitations to Eq. (30) by the replacement of

A,;L
A.,

- +L p;(E'~E)

with K'(E'~E), where

A,;LK'(E'~E)= p;(E'~E)+P, (E'~E) . (31}
A, , +L

In order to compare with the effective inelastic-scattering
cross section defined in Ref. 3, we let K(E'~E) be the
normalized function of K'(E'~E). Explicitly, we may
write the transport equation for REELS spectra as
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A-Lf(O,E, ri) =5(E—Eo )+P,(Eo~E)+ p; (Eo~E)
A,;+2

A,;L+ f [P,(Eo +E—')p; (E'~E )+p; (Eo~E')P, (E'~E )]dE'
A,;+L

A,;L+ fp;(Eo~E')IJ, , (E'~E)dE'+ fP, (Eo~E')P, (E'~E)dE'+
A, ,-+L (32)

Here we label contributions from the first, second, third,
etc. , terms on the RHS of Eq. (32} by 0, ls, lv, lsv, 2v,
etc. In Fig. 3, we plot the results of measured REELS
spectrum for an electron of 2 keV energy and 25' incident
angle in Al. It is clearly seen that strong peaks in the
spectrum correspond to zero plasmon, a surface plasmon,
a volume plasmon, a surface plasmon and a volume
plasmon, and two volume plasmons, etc. The lack of a
peak at -20 eV indicates that the probability of plural
surface-plasmon excitations is negligibly small. This
confirms the discussion presented previously. For solids
of a broader energy-loss function, the identification of in-
dividual plasmon contributions could be difticult due to
the overlapping of plasmon peaks in the spectrum.

III. RESULTS AND DISCUSSION

Eo-E (eV}

20 30 40 50

Tables I and II list parameters in the model dielectric
function obtained by a fit of Eq. (15), in the limit of k ~0,
to optical data for Fe, ' Pd, Cu, and Au.
In these fits, we check not only the accuracy of et(0, co),

s2(0, c0), and Im[ —1/s(O, co) ] determined by Eqs.
(14)-(16) but also the extent to which they satisfy the
sum rules of Eqs. (17) and (18). Furthermore, we require

that the total valence oscillator strength, i.e., g;A;,
agrees with the prediction from observed plasmon ener-
gies. ' Figure 4 shows a comparison of s, (O, co), e2(O, co),
and Im[ —I/e(0, co)] for Fe calculated presently (solid
curves) and determined experimentally (dashed curves}.
It is seen that good agreement is found between present
results and experiment data for all functions plotted. For
Fe, Cu, and Au, our fits cover the loosely bound inner
shells due to the overlapping of oscillator strengths be-
tween the valence band and these shells in the vicinity of
their binding energies.

Based on the model dielectric function, we have calcu-
lated the DIMFP for volume-plasmon excitations. Fig-
ure 5 shows the results of these calculations for a 500-eV
electron in Cu. It is seen that the second Born approxi-
mation reduces the DIMFP of the first Born approxima-
tion by a tiny amount at all energy losses. This reduction
becomes even smaller for higher-energy electrons. It will

have little effect on the resulting REELS spectra. The ex-
change effect further decreases the DIMFP by also a
small amount. At any rate, we have incorporated the
second Born approximation and the exchange effect in
our calculations. Figure 6 shows the results of the
DIMFP for volume excitations, the difFerential probabili-
ty for surface excitations, and the sum of these two quan-
tities for electrons with various energies in Fe. Here we
took a=20' for surface calculations in order to compare
our results with data extracted from REELS spectra. It
is revealed that the contribution from volume excitations

(E =2 keV) TABLE I. Parameters in the model dielectric function of Eq.
(15) for Fe and Pd.

2U

Fe
cb =1.12

Pd
gb =1.00

g,. (eV ) y,. (eV) m; (eV) A; (eV ) y; (eV) co; (eV)

2000 1990 1980 1970 1960 1950

E (ev)

FIG. 3. The identi6cation of individual contributions from
surface- and volume-plasmon excitations to the measured
REELS spectrum for a 2-keV electron in Al (Ref. 3). Here 0, 1s,
1v, 1sv, etc. denote zero plasmon, a surface plasmon, a volume

plasmon, a surface and a volume plasmon, etc.
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TABLE II. Parameters in the model dielectric function of
Eq. (15) for Au and Cu.

2.0 I
I

I
I

CU

cb = 1.05
Au

cb =1.00

64
6
6.5
5.5
4

55
42

172
80

240
90
85

200
500
664

0.03
0.3
0.65
0.7
0.7
2.6
4.76

10.18
8

32
30
30
25
65

160

0
0.3
2.5
F 1
3.7
5.05
8.93

14.74
25.6
40
55
65
83

120
200

79

36
17
60

100
120
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145
280
360
183

0.1

1

1.9
2.3
4
9

10
6
7.2

20
28
26

0
3.1

4.1

5.3
8.17

12
14
21.3
29.5
38.5
63

100

(eV ) y (eV) ~; (eV) A; (eV ) y; (eV) ~; (eV)l j

oQ

t

1.5—
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FIG. 5. The differential inverse mean free path of a 500-eV
electron in Cu. The first Born approximation, q.E . (1) the
second Born approximation, Eqs. (2) and (3), and the exchange
effect, Eq. (19), are used for calculations.

increases with electron energy. The contribution from
surface excitations, however, dominates at small energy
losses for, especially, low-energy electrons. This domina-
tion gradually turns over to volume excitations as e ec-
tron energy becomes greater. In all cases, the agreement
between calculated results (solid curves) and experimental
data (dashed curves) is good over a wide range of electron
energies and energy losses. A similar plot of these results
for electrons in Pd is shown in Fig. 7. Again, we too
a=20' for surface calculations. In this case, the surface
plasmon peaks are steeper and narrower than the volume

Figure 8 shows a comparison of E(E'~E) calculated
presently (solid curve), extracted from measured REELS
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spectra (dashed curve), and determined using two
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tron in Au. It is shown that the agreement of REELS
data with present results is better than that with other
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(Refs. 38 and 39) and calculated results (solid curves) on the real
part of the dielectric function c,(0,co), the imaginary part of the
dielectric function c.2(0,cu), and the energy-loss function
Im[ —1/e(o, co)] for Fe.

FIG. 6. A plot of the differential scattering probabihty for
electrons with different energies in Fe. The dashed, dotted,
chain and solid curves, are, respectively, data extracted from
measured REELS spectra, calculated results of the surface ex-
citation probability, calculated results of the volume excitation
probability, and calculated results of the total excitation proba-
bility.
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in Fe. Good agreement is found over a wide range of en-

ergy losses. Individual contributions (dotted curves) from
single and plural plasmon excitations are also plotted.
Owing to the overlapping of these contributions, the
gross REELS spectrum shows a broad peak with a full-
width at half-rnaximurn of about 30 eV.

IV. CONCLUSIONS

A theoretical model based on an improved dielectric
function was used for calculations of the DIMFP for
volume-plasmon excitations and the differential probabil-
ity for surface-plasmon excitations under REELS condi-
tions. In surface-plasmon calculations, we considered ob-
liquely incident electrons with the recoil effect and
without the small-scattering-angle assumption. For
volume-plasmon excitations, we evaluated the corrections
due to exchange and Z

&
effects. Results of these calcula-

tions were substituted into the transport equation to solve
the energy and angular Aux distribution of rejected elec-
trons. Comparison between present results and experi-
mental data for all calculated quantities showed close
agreement to each other. It also showed that present re-
sults were better than other model calculations at, espe-
cially, small energy losses. Individual contributions to

the REELS spectrum from single- and multiple-plasmon
excitations were also analyzed. It revealed that the prob-
ability of plural surface-plasmon excitations was negligi-
bly small for electrons with small incident angles.

Finally, it is noted that the present theory has treated
elastic scatterings in Eqs. (23) and (25) using the P, ap-
proximation which assumed electron scatterings with iso-
lated atoms randomly distributed in the solid. This as-
sumption is only applicable to polycrystalline or amor-
phous solids where the Bragg diffraction is relatively
weak. ' The effect of Bragg diffraction takes into account
the phase difference between waves scattered from each
atom. For single crystals, this effect will focus the elec-
tron beam in a certain direction due to the periodic struc-
ture of these crystals. For polycrystalline or amorphous
solids, the random elastic scatterings will apparently de-
focus the electron beam so that the diffraction has little
effect on electron-transport properties.
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