
This article was downloaded by: [National Chiao Tung University 國立交通大學]
On: 24 December 2014, At: 17:45
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House,
37-41 Mortimer Street, London W1T 3JH, UK

Click for updates

International Journal of Systems Science
Publication details, including instructions for authors and subscription information:
http://www.tandfonline.com/loi/tsys20

Scheduling of multiple in-line steppers for
semiconductor wafer fabs
Chie-Wun Chiou a & Muh-Cherng Wu a
a Department of Industrial Engineering and Management , National Chiao Tung University ,
Hsin-Chu 300 , Taiwan
Published online: 27 Sep 2012.

To cite this article: Chie-Wun Chiou & Muh-Cherng Wu (2014) Scheduling of multiple in-line steppers for semiconductor wafer
fabs, International Journal of Systems Science, 45:3, 384-398, DOI: 10.1080/00207721.2012.724093

To link to this article: http://dx.doi.org/10.1080/00207721.2012.724093

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”) contained
in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no
representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the
Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and
are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and
should be independently verified with primary sources of information. Taylor and Francis shall not be liable for
any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever
or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of
the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic
reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any
form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at http://
www.tandfonline.com/page/terms-and-conditions

http://crossmark.crossref.org/dialog/?doi=10.1080/00207721.2012.724093&domain=pdf&date_stamp=2012-09-27
http://www.tandfonline.com/loi/tsys20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/00207721.2012.724093
http://dx.doi.org/10.1080/00207721.2012.724093
http://www.tandfonline.com/page/terms-and-conditions
http://www.tandfonline.com/page/terms-and-conditions

Scheduling of multiple in-line steppers for semiconductor wafer fabs

Chie-Wun Chiou and Muh-Cherng Wu*

Department of Industrial Engineering and Management, National Chiao Tung University, Hsin-Chu 300, Taiwan

(Received 22 November 2010; final version received 1 August 2012)

A few prior studies noticed that an in-line stepper (a bottleneck machine in a semiconductor fab) may have a
capacity loss while operated in a low-yield scenario. To alleviate such a capacity loss, some meta-heuristic
algorithms for scheduling a single in-line stepper were proposed. Yet, in practice, there are multiple in-line
steppers to be scheduled in a fab. This article aims to enhance prior algorithms so as to deal with the scheduling
for multiple in-line steppers. Compared to prior studies, this research has to additionally consider how to
appropriately allocate jobs to various machines. We enhance prior algorithms by developing a chromosome-
decoding scheme which can yield a job-allocation decision for any given chromosome (or job sequence). Seven
enhanced versions of meta-heuristic algorithms (genetic algorithm, Tabu, GA–Tabu, simulated annealing,
M-MMAX, PACO and particle swarm optimisation) were then proposed and tested. Numerical experiments
indicate that the GA–Tabu method outperforms the others. In addition, the lower the process yield, the better is
the performance of the GA–Tabu algorithm.

Keywords: scheduling; semiconductor; flow shop; port capacity constraints; genetic algorithm; meta-heuristic
algorithms

1. Introduction

In semiconductor manufacturing, in-line steppers (or
simply called steppers) are the most expensive
machines, which may cost up to 40 million dollars
per tool and usually become the bottleneck of a fab
(semiconductor factory). Effective scheduling for step-
pers is very important because it could significantly
affect the fab throughput, cycle time and on-time
delivery.

Most prior studies on scheduling stepper are
developed under a high-yield assumption (Chern and
Liu 2003; Dabbas and Flowler 2003; Duwayri,
Mollaghasemi, Nazzal, and Rabadi 2006; Sha, Hsu,
Che, and Chen 2006; Wu, Huang, Chang, and Yang
2006; Morrison and Martin 2007; Wu and Chang 2007,
2008; Wu, Chiou, and Chen 2008; Wu, Jiang, and
Chang 2008; Chen 2009). That is, they implicitly
assumed the production yield is 100% and no wafer
will be scrapped. Each wafer lot (a container for
transporting wafers) is always a full-lot (typically
carrying 25 wafers). Under this assumption, they
took a stepper as a single machine and a wafer lot as
a job for scheduling. This implies that a stepper will
not be idle as long as it has wafer lots waiting to be
processed.

Recently, a few studies (Chiou and Wu 2009; Wu
and Chiou 2010) noticed that a stepper in a low-yield
scenario may become idle even though it has many

wafer lots waiting to be processed. They modelled the
interior configuration of an in-line stepper as a special-

featured flow shop, which comprises a series of cham-
bers and each piece of wafer has to travel through the
flow shop. They discovered that some chambers of the

flow shop might become idle due to the inclusion of
small-lots (i.e. carrying less than 25 wafers) and
developed some scheduling algorithms to alleviate

such chamber idleness in order to increase the
throughput of steppers. These algorithms were devel-

oped in the context of scheduling a single in-line
stepper.

However, in practice, there are multiple in-line
steppers to be scheduled. This article enhances the

prior scheduling algorithms to deal with the scheduling
for multiple in-line steppers. Such a scheduling problem
involves two decisions: (1) how to allocate jobs to each

stepper and (2) how to sequence the allocated jobs for
each stepper.

In this research, given N jobs to be allocated and
scheduled on multiple steppers, a sequence of the N

jobs is called a chromosome. We developed a novel
chromosome-decoding scheme that can unveil the two
decisions suggested by a given chromosome. Then,

various enhanced versions of meta-heuristic algorithms
(genetic algorithm (GA), Holland 1975; Tabu;
GA–Tabu; simulated annealing (SA); M-MMAX;

PACO; particle swarm optimisation (PSO)) were

*Corresponding author. Email: mcwu@mail.nctu.edu.tw

International Journal of Systems Science, 2014
Vol. 45, No. , – , http://dx.doi.org/10.1080/00207721.201 .3 2 7 023 3 8 4 94 9 38

C© 2014 Taylor & Francis

D
ow

nl
oa

de
d

by
 [

N
at

io
na

l C
hi

ao
 T

un
g

U
ni

ve
rs

ity
]

 a
t 1

7:
45

 2
4

D
ec

em
be

r
20

14

proposed and tested. Of the tested algorithms, numer-
ical experiments indicate that the GA–Tabu outper-
forms the others in most cases.

The remainder of this article is organised as follows.
Section 2 explains the research problem in more detail.
Section 3 describes how to compute the performance of
a scheduling solution. Section 4 presents the chromo-
some-decoding scheme. Section 5 describes the solution
architecture of the GA–Tabu algorithm. Numerical
experiments are reported in Section 6 and concluding
remarks are in the last section.

2. Problem statement

The research problem is introduced by first describing
the interior configuration, the exterior interfacing
equipments and the transportation mechanisms of an
in-line stepper. Then, we use an example to illustrate
that such an in-line stepper may suffer a capacity loss
in a low-yield scenario. Finally, the problem for
scheduling multiple in-line steppers and its perfor-
mance metric are presented.

The interior configuration of an in-line stepper
comprises a sequence of manufacturing stages, each of
which involves one or more than one functionally
identical chambers (Quirk 2001). Each chamber pro-
cesses one piece of wafer at a time. To undergo the
operation at the stepper, a piece of wafer has to travel
through all the manufacturing stages. Of these cham-
bers, a particular type (called the aligner chamber) may
need a setup. The aligner chamber is typically the
bottleneck chamber and involves only one chamber at
this manufacturing stage. Such a configuration can be
seen as a flow shop if we consider each stage as a
workstation and each chamber as a machine in a
workstation (Yang 1999; Pinedo 2008). A simplified
illustration of an in-line stepper is shown in Figure 1,
where each manufacturing stage involves only one
chamber.

The exterior of an in-line stepper is directly
interfaced with a dock area which generally
involves four ports (Figure 1). Each port serves as a

one-job-buffer for the in-line stepper, which can
accommodate only one job at a time. A job (or a
wafer lot) is a container, which involves at most 25
pieces of wafers. Apart from the dock area, a large-
sized stocker (also called the WIP area) is equipped to
store the wafer jobs that are to be transported to the
dock area.

The transportation mechanisms of an in-line step-
per are explained below. A wafer job has to undergo a
round-trip travel (Figure 1). A job first moves from the
WIP area to the dock area, placed on a free port. Then,
each piece of wafer will sequentially exit the job (a
container), go through the in-line stepper and back to
the job. Finally, the job is triggered to move back to
the WIP area, while all its wafers complete operations.
In summary, there is a transportation incompatibility in
the round-trip travel. That is, the transportation unit
between the WIP area and the dock area is a job, while
that between the dock area and the chamber area is a
piece of wafer.

Notice that the buffer capacity at the dock area is
quite limited. Suppose the dock area involves only four
ports. Then, the dock area can simultaneously accom-
modate at most four jobs. That is, we cannot move an
additional job to the dock area if each of the four ports
is currently occupied or not free.

Due to limited buffer capacity in the dock area, we
may face a capacity loss of chambers in a low-yield
scenario, as explained by the following example.
Consider a simplified case where an in-line stepper
comprises 22 stages and each stage involves only one
chamber, four jobs (A, B, C and D) are on the dock
area, and one job (E) is waiting in the WIP area. Job A
contains 25 wafers and jobs B, C and D in total carry
only 17 wafers. Suppose the processing sequence is
A!B!C!D. Following the sequence, the
(25þ 17) wafers of the four jobs will successively
travel through the chambers and back to the ports.
While the last wafer of job A just finishes its opera-
tions, job A must still stay on the port in order to get
this wafer back. At this instant, the 17 unfinished
wafers of jobs B, C and D will occupy the last 17
chambers of the stepper. The remaining five chambers
then become idle because jobs A, B, C and D now
occupy the dock area, and no more port is available for
job E to access.

Yet, such a capacity loss in chambers may be
alleviated if a different job sequence (B!C!D!A)
is applied. Suppose job B now contains eight wafers.
While the last wafer (eighth one) of job B finishes its
travel, we still have 34 unfinished wafers. Of these
unfinished wafers, 22 ones reside in the chamber area
and 12 ones stay in the ports. This implies that no
chamber will be idle while the port originally for job B
becomes free to accommodate job E. Thus, the

Job-based Wafer-based

11 10 9 8 7 6 5 4 3 2 1

12 13 14 15 16 17 18 19 20 21 22

Port 4

Port 3

Port 2

Port 1

Job-based Wafer-based

WIP

area

Dock area

Figure 1. Configuration of a simplified in-line stepper.

International Journal of Systems Science 385

D
ow

nl
oa

de
d

by
 [

N
at

io
na

l C
hi

ao
 T

un
g

U
ni

ve
rs

ity
]

 a
t 1

7:
45

 2
4

D
ec

em
be

r
20

14

capacity loss of an in-line stepper may be alleviated by
applying an appropriate job sequence.

The research problem is concerned with the sched-
uling of multiple in-line steppers in a low-yield scenario.
Such a scheduling problem involves two decisions:
(1) how to allocate jobs to each stepper and (2) how to
sequence the allocated jobs for each stepper. That is,
given N jobs to be scheduled for m in-line steppers. The
N jobs have to be categorised into m groups, and the
jobs of each group have to be sequenced. The perfor-
mance metric of the scheduling problem is defined as
C� ¼ maxfC1, . . . ,Cmg, where Ci is the makespan of ith
stepper. That is, C� is the makespan required to
complete the N jobs, and N=C� could be used to
denote the total throughput rate of the m steppers. In
the scheduling, we aim to maximise total throughput
rate (N=C�), which also implies the minimisation of C�.

3. Makespan evaluation for job sequences

Given a job sequence to be processed by the ith
stepper, this section describes how to compute Ci (the
makespan), adapted from Ruiz and Maroto (2006).
The makespan evaluation procedure adopts an emula-
tion-based approach. We virtually sent each wafer in
order (following the job sequence) into the in-line
stepper and look for an available chamber that can
finish the job at the earliest time. The completion time
of each wafer at each stage is progressively recorded,
which ultimately yield the makespan.

To undergo an operation at an aligner chamber, a
mask (an auxiliary device) is needed. A particular mask
denotes a particular operational recipe. Different jobs
may require different operational recipes. If so, we
need a setup time to change masks at the aligner
chamber; otherwise no setup is needed.

Notation

j index of job
k index of wafer
i index of stage
l index of chamber
a index of the aligner chamber which

requires setup
� total number of ports in the dock
n total number of jobs to be processed by

the in-line stepper
M total number of stages in the in-line

stepper
mi total number of chambers at stage i
piljk processing time required by chamber l at

stage i to process wafer k in job j
� a job sequence for the n jobs,

� ¼ ½�ð1Þ, . . .�ðnÞ�

wð�ð j ÞÞ the job in the jth position of sequence �
�ð j Þ total number of wafers in job j

tu transportation time for uploading a job

to the dock area
td transportation time for downloading a

job from the dock area
Si,l,�ð j Þ,k setup time required by chamber l in stage

i to process wafer k in job �ð j Þ

if i 6¼ a or k 6¼ 1, then Si,l,�ð j Þ,k ¼ 0,

otherwise, Si,l,�ð j Þ,k ¼ ��ð j Þ,�ð j�1Þ

��ð j Þ,�ð j�1Þ setup time required for the aligner

chamber to switch production from job

�ð j� 1Þ to job �ð j Þ; ��ð j Þ,�ð j�1Þ ¼ s0 if

�ð j� 1Þ and �ð j Þ use different masks,

and ��ð j Þ,�ð j�1Þ ¼ 0, otherwise
Ai,l,t the time epoch when chamber l in stage i

just turns to be available; that is, while

the chamber ði, l Þ is free at t, Ai,l,t is the

last wafer-completion-epoch before t;

while the chamber ði, l Þ is in operation

at t, Ai,l,t is the first wafer-completion-

time after t.
Ci,�ð j Þ,k the completion time of wafer k in job

�ð j Þ at stage i
Cð�Þ the makespan of job sequence �

The makespan evaluation procedure is governed by

the following equations:

Ci,�ð j Þ,k

¼ min
1�l�mi

maxfAi,l,t þ Si,l,�ð j Þ,k,Ci�1,�ð j Þ,kg þ pi,l,�ð j Þ,k
� �

,

where t ¼ Ci�1,�ð j Þ,k for 1 � i �M, ð1Þ

CMþ1,�ð j Þ,wð�ð j ÞÞ ¼ CM,�ð j Þ,wð�ð j ÞÞ þ td, ð2Þ

CMþ1,�ð j Þ,wð�ð j ÞÞ þ tu ¼ C0,�ð jþ�Þ,1 for 1 � j � n� �,

ð3Þ

Cð�Þ ¼ CMþ1,�ðnÞ,wð�ðnÞÞ: ð4Þ

Equation (1) expresses the completion time of a

particular wafer at each stage i. The term Ai,l,tþ

Si,l,�ð j Þ,k denotes the time epoch when chamber l at

stage i is ready for processing wafer k in job �ð j Þ, and
the term Ci�1,�ð j Þ,k denotes the time epoch when the

wafer is available to be processed at the chamber.
Equation (2) describes the completion time of job

�ð j Þ at stage Mþ 1 (i.e. the dock area). Equation (3)

expresses the job arrival/departure relationships for the

dock. The equation indicates that only when job �ð j Þ
in the dock has been moved away, can job �ð jþ �Þ in
the WIP buffer be transported to the dock (i.e. stage 0).

C.-W. Chiou and M.-C. Wu386

D
ow

nl
oa

de
d

by
 [

N
at

io
na

l C
hi

ao
 T

un
g

U
ni

ve
rs

ity
]

 a
t 1

7:
45

 2
4

D
ec

em
be

r
20

14

Equation (4) computes the makespan Cð�Þ, the com-
pletion time of the last wafer in the last job.

4. Chromosome representation and decoding

As stated in Section 1, the scheduling problem involves
two decisions: (1) allocation decision – how to allocate
jobs to each stepper and (2) sequencing decision – how
to sequence the allocated jobs for each stepper. That is,
given N jobs to be scheduled on m steppers, we first
need to categorise the N jobs into m groups, each of
which is processed by a particular stepper. Then, we
need to determine the job sequence for each stepper.

Let a particular sequence of the N jobs be called a
chromosome. In this research, we develop a chromo-
some-decoding scheme. By the decoding scheme, a
chromosome can be interpreted as a particular sched-
uling solution, which involves two decisions – one is
the allocation decision and the other is the sequencing
decision.

To introduce the chromosome-decoding scheme,
some notation is described below. Denote a chromo-
some by � ¼ ½�ð1Þ, . . .�ðNÞ�, where �ð j Þ, called a gene,
represents the job in the jth position of sequence �. For
job �ð j Þ, represent the number of wafers in the job by
w�ð j Þ and its processing time for a piece of wafer at the
aligner chamber (the bottleneck chamber) by p�ð j Þ.
Then, denote the total processing time at the aligner
chamber for job �ð j Þ by t�ð j Þ ¼ w�ð j Þ � p�ð j Þ. The
procedure for interpreting the job allocation decision
from a given chromosome is described below.

Procedure Job_Allocation

Step 1: Compute the threshold for forming a job
group

T ¼
PN

j¼1 t�ð j Þ; /*total processing time of the
N jobs*/
h ¼ T=m; /*processing time threshold for forming
a job group*/

Step 2: Form the job groups

k ¼ 1, /*index of job group or stepper*/
For i¼ 1 to N
Ti ¼

Pi
j¼1 t�ð j Þ; /*compute total load of the

first i jobs*/
If ðTi 4 k � hÞ then /*criterion for forming job
groups*/

CðkÞ ¼ i; /*form a new job group*/
k ¼ kþ 1; /*update the indexing of job
group*/

Endif
If ðk ¼ mÞ then

go to Step 3 /*check if job group formation
finished*/

Endif
Endfor

Step 3: Output job allocation results

Output CðkÞ, 1 � k � m� 1

Given the job allocation decision CðkÞ, the proce-
dure for determining the job sequence decision for
each stepper is relatively easy. The job sequence for
stepper k (1 � k � m) is �k ¼ ½�ðsÞ, . . .�ðeÞ�, where
s ¼ Cðk� 1Þ þ 1 and e ¼ CðkÞ, in which we denote
Cð0Þ ¼ 0 and CðmÞ ¼ �ðNÞ.

The chromosome-decoding scheme is illustrated by
a three-stepper example as shown in Figure 2. In the
figure, there are nine jobs to be scheduled on three
steppers. The total processing time is T¼ 1.6 h and the
threshold is h¼ 0.53 h. The set of jobs allocated to
stepper 1 and their job sequence are �1 ¼ fJ2, J5, J7g,
and those for the other two steppers are �2 ¼ fJ4, J1g
and �3 ¼ fJ6, J3, J9, J8g.

5. GA–Tabu algorithm

To solve the scheduling problem, we developed seven
meta-heuristic algorithms (GA, Tabu, GA–Tabu, SA,
MMAX, PACO and PSO). These algorithms adopt the
algorithmic architectures published in prior studies as
referenced below, but are distinguished in embedding
the novel chromosome decoding scheme we proposed.
Of these seven enhanced algorithms, the GA–Tabu
performs the best and is presented here.

5.1. Chromosome fitness

As stated in Section 4, given a chromosome � ¼
½�ð1Þ, . . .�ðNÞ�, we can use the chromosome decoding
scheme to extract its two decisions – jobs allocation
among steppers and job sequencing for each stepper.
Then, given a job sequence �k ¼ ½�ðsÞ, . . .�ðeÞ� for each
stepper k, 1 � k � m, we can compute its makespan Ck

by the procedure in Section 3. In turn, the scheduling
performance (also called fitness) of the chromosome
� ¼ ½�ð1Þ, . . .�ðNÞ� is C� ¼ maxfC1, . . . ,Cmg, which is
also denoted by C�ð�Þ hereafter.

5.2. Algorithmic procedures

The GA–Tabu algorithm is composed of three proce-
dures. The main one is called procedure GA–Tabu
which calls two sub-procedures GA(t) and
Tabu(�in,�out). There are two sets of chromosomes.
One is called the GA-pool P(t), which include N
chromosomes and iteratively evolve by procedure
GA(t). The other set is called Seed_Set, which involves

International Journal of Systems Science 387

D
ow

nl
oa

de
d

by
 [

N
at

io
na

l C
hi

ao
 T

un
g

U
ni

ve
rs

ity
]

 a
t 1

7:
45

 2
4

D
ec

em
be

r
20

14

only one chromosome (called seed) and iteratively
evolve by procedure GA–Tabu. The procedure GA(t) is
designed to evolve from P(t) to P(tþ 1) to possibly
include better chromosomes and identify its best four
ones. The procedure Tabu(�in,�out) is intended to
search the neighbourhood of a given chromosome �in
to find the best chromosome (�out) in the searched
neighbourhood. Notice that �in is selected either from
the GA-pool or from the Seed_Set.

In procedure GA(t), we use four types of crossover
operators and three types of mutation operators to
create new chromosomes. A crossover operator is
designed to create a new pair from an existing pair,
while a mutation operator is to create a new one from
an existing one. The four types of crossover operators
are: C1 (one point crossover) by Reeves (1995), LOX
(linear order crossover) by Croce, Tadei, and Volta
(1995), PMX (partially mapped crossover) by
Goldberg (1989) and NABEL operator by Bac and
Perov (1993). The three types of mutation operators
are Swap, Inverse and Insert (Wang and Zheng 2003;
Nearchou 2004).

In procedure Tabu(�in,�out), a pairwise interchange
of two genes (jobs) is called a tabu_move. For example,

given a n-gene chromosome �1 ¼ ½J2, J5, J1, J4, J3 . . .�.
By interchanging the two genes J3 and J5, we can
create a new chromosome �2 ¼ ½J2, J3, J1, J4, J5, . . .�.
The tabu_move for causing such an interchange can be
denoted by moveðJ5, J3Þ or moveðJ3, J5Þ. To facilitate
the following presentation of procedure Tabu(�in,�out),
we represent a tabu_move by moveð�in ! �Þ, which
denotes an interchange of two particular jobs that
transform �in into �.

Accordingly, the total number of tabu_moves for a
chromosome � ¼ ½�ð1Þ, . . .�ðnÞ� is nðn� 1Þ=2. Let the
set of all these tabu_moves be represented by
Move_Set. By applying each tabu_move in the
Move_Set to the chromosome �, we can create
nðn� 1Þ=2 new chromosomes. The set of these newly
created chromosomes are called the neighbourhood of
�, which is denoted by Neighbourð�Þ.

Notation

GA–Tabu the main procedure
�best the current best solution ever

found by procedure GA–Tabu
GA(t) a sub-procedure designed to evolve

P(t)

Chromosome representation

J2 J5 J7 J4 J1 J6 J3 J9 J8

Processing ti me in aligner chamber (min.)

J2 J5 J7 J4 J1 J6 J3 J9 J8

0.1 0.2 0.15 0.3 0.15 0.2 0.1 0.2 0.2

Calculating the accumulated processing time

Accumulated pr ocessing ti me in aligner chamber
(min.)

0.1 0.3 0.45 0.75 0.9 1.1 1.2 1.4 1.6

0.53 min.

Cutting point

J2 J5 J7 J6 J3 J9 J8

Decoding result

Job sequence
In machine 1

Job sequence
In machine 3

1.06 min.

Cutting point

Job sequence
In machine 2

J4 J1

(a)

(b)

(c)

Figure 2. GA–Tabu chromosome for three in-line steppers.

C.-W. Chiou and M.-C. Wu388

D
ow

nl
oa

de
d

by
 [

N
at

io
na

l C
hi

ao
 T

un
g

U
ni

ve
rs

ity
]

 a
t 1

7:
45

 2
4

D
ec

em
be

r
20

14

P(t) a set of N chromosomes, called the
GA-pool

�bestGA,t the best chromosome in P(t)

�2�bestGA,t the second best chromosome in
P(t)

�3�bestGA,t the third best chromosome in P(t)

�4�bestGA,t the fourth best chromosome in P(t)
Tabu (�in,�out) a procedure designed to search the

neighbourhood of �in, where �out is
the best chromosome found in the
searched region.

Tabu_list a limited set of tabu_moves, where
a tabu_move represents an inter-
change of two particular jobs.

Seed_Set a set of one chromosome, which
iteratively evolve by procedure
GA–Tabu

�seed the present chromosome (called
seed) in the Seed_Set

Procedure GA–Tabu

Initialisation: Randomly select a chromosome
as �best

For each iteration t ð0 � t � Tf Þ

Step 1: Call GA(t) to find �bestGA,tþ1, �
2�best
GA,tþ1, �

3�best
GA,tþ1,

�4�bestGA,tþ1 in P(tþ 1)

Step 2: If �bestGA,tþ1 is better than �best

. Update �best by �bestGA,tþ1 (i.e. �best �bestGA,tþ1)

. Call Tabu (�best,�out) to search the neighbour-
hood of �best for possibly improving �best (i.e.
update �bestby �out if �out is better)

Step 3: If �bestGA,tþ1 keeps worse than �best for exact k
(k5 45) iterations

. While k¼ 20 /* the age of �best is 20 itera-
tions*/
Call Tabu (�2�bestGA,tþ1,�out) for possibly improv-
ing �best

. While k¼ 30 /*the age of �best is 30 itera-
tions*/
Call Tabu (�3�bestGA,tþ1,�out) for possibly improv-
ing �best

. While k¼ 40 /* the age of �best is 40 itera-
tions*/
Call Tabu (�4�bestGA,tþ1,�out) for possibly
improving

Step 4: If �bestGA,tþ1 keeps worse than �best for
k¼ 40þ 5n (n¼ 1, 2 , . . .) iterations

/* If �best cannot be improved by P(tþ 1) for
over 40 iterations*/
/* Try to improve �best by using �seed, the
chromosome in Seed_Set*/

. Call Tabu (�seed,�out) for possibly improving

�best

. Update the chromosome in Seed_Set (i.e.

�seed �outÞ

Step 5: Put �best in P(tþ 1);

Next iteration until t4Tf

Procedure GA(t)

Step 1: If t¼ 0, randomly create N chromosomes to

form the initial GA-pool Pð0Þ.
If t 6¼ 0, input the GA-pool P(t).

Step 2: Use crossover and mutation operators to

create N(PcrþPmu) new chromosomes, where 0 � Pcr,

Pmu � 1. Place the new chromosomes in a set S.

Step 3: Use the resolute wheel screen method

(Michalewicz 1996) to select N chromosomes out of

the set S [PðtÞ. Place the selected N chromosomes in

the GA-pool P(tþ 1)

Step 4: Output the best four chromosomes in

P(tþ 1): �bestGA,tþ1, �
2�best
GA,tþ1, �

3�best
GA,tþ1, �

4�best
GA,tþ1.

Procedure Tabuðpin, poutÞ

Step 0: Initialisation �out ¼ �best

Step 1: Create a set of new chromosomes,

Neighbourð�inÞ

Step 2: Try to improve �out

. Identify the best q chromosome �1, . . . , :�q

from Neighbourð�inÞ
. If �1 is better than �best, then �out ¼ �

1;

Step 3: Update tabu_list /*Try to add a new

tabu_move to the tabu_list*/

For i¼ 1, q
If moveð�in ! �iÞ 2 tabu list, then go to Next i
If moveð�in ! �iÞ =2 tabu list,

Then

. Update the tenure of each tabu_move in

the tabu_list

/* Each tabu_move’s tenure starts at 1

and is added by 1 while a new

tabu_move is found*/

. Remove the tabu_move with longest

tenure from the tabu_list;
. Put moveð�in ! �iÞ in the tabu_list;
. If ð�in ¼ �

seedÞ, set �seed ¼ �i

. Go to Step 4

Next i

Step 4: Return

International Journal of Systems Science 389

D
ow

nl
oa

de
d

by
 [

N
at

io
na

l C
hi

ao
 T

un
g

U
ni

ve
rs

ity
]

 a
t 1

7:
45

 2
4

D
ec

em
be

r
20

14

6. Experiments and discussion

Numerical experiments and the uniqueness of this
research are to be discussed in this section. In
numerical experiments, we compare seven meta-heur-
istic algorithms in solving the multiple-steppers sched-
uling problem. These algorithms are chosen because
their algorithmic flows have been widely applied to
solving scheduling problem. Referring to some prior
studies, we adapted these algorithmic flows by embed-
ding the novel chromosome interpretation scheme.

These prior related studies include GA–Tabu by
Chiou and Wu (2009), SA by Osman and Potts (1989),
GA by Wu and Chiou (2010), Tabu search by Widmer
and Hertz (1989), PSO by Liao, Tseng and Luarn
(2007) and two ant colony algorithms (ACOs) by
Rajendran and Ziegler (2004) – respectively, called
MMAX and PACO.

Personal computers equipped with PENTIUM
Dual-Core 2.8 GHz CPU and 1Gb memory are used
to run the programs, coded in Visual Cþþ. The
parameters of the six meta-heuristic algorithms are
designed by referring to prior studies accordingly. In
the three algorithms (GA–Tabu, GA and Tabu), we
set N¼ 100, Pcr¼ 0.8, Pmu¼ 0.2, q¼ 7, K¼ 3000,
T¼ 100,000 (Widmer and Hertz 1989; Chiou and Wu
2009). In the SA, we set Temperature¼ 500 (Osman
and Potts 1989); and we set �¼ 0.75 (Rajendran and
Ziegler 2004) in the ACO where (1� �) is called the
evaporation rate. In the PSO, we set Vmax¼ 4,
Vmin¼�4, $¼ 0.8, c1¼ 2, c2¼ 2, T¼ 100 (Liao et al.
2007), where Vmax denotes the upper limit of the
velocity, Vmin denotes the lowest limit of the velocity,
c1 is the cognition learning factor, c2 is the social
learning factor and $ is the inertia weight.

6.1. Experiment design

In the experiments, the configuration and operation of
the in-line steppers are so defined. Each in-line stepper
has four ports, 14 stages and 21 chambers. Of the 14
stages, two stages model the interfaces among the WIP
buffer, the dock area and the stepper; and the other 12
stages model the interior chambers of the stepper
(Table 1). Note that one stage may include one or more
chambers. The operation time at each stage i of each
in-line stepper is a uniform distribution [ai, bi]. At each
stepper, a mask setup is always needed for the aligner
chamber while it turns to process a new job’s wafer,
and the mask change time is a constant (1.0min). The
process yields are modelled by truncated binomial
distributions, which denote that the job size is first
generated by a binomial distribution, and then those
jobs that carry no wafer are ‘truncated’ (removing
them from the fab).

We use (M,N,Y) to represent a test case, where M

represents the number of in-line steppers, N represents

the number of jobs and Y represents the average yield.

We design 100 test cases, in which M has two options

(with two or three steppers) and N has five options

ranging from 20 to 100 jobs and Y includes 10 options

ranging from 15% to 90%. In practice, the complexity

of a typical multiple-stepper scheduling problem is
M¼ 2 and N¼ 60.

In each test case, we run 15 replicates and the

average makespan of the 15 replicates is taken as the

performance measure of the tested algorithm. The

average makespan of each algorithm x is designated as

Cx. For example, CGA�Tabu represents the average

makespan of the GA–Tabu. Likewise, the average
CPU time used in each algorithm x is defined as tx; for

example, that used in the GA–Tabu is represented

by tGA�Tabu.
Pilot experiments indicate that the GA–Tabu

essentially outperforms the other six algorithms. To

compare the solution quality of the seven algorithms,

we define a performance gap as follows: �x ¼ ðCx�

CGA TabuÞ=CGA Tabu. A positive �x indicates that the

GA–Tabu outperforms the x algorithm, while a

negative �x denotes that the GA–Tabu is inferior to

the x algorithm.

6.2. Experiment results

Tables 2–11 show the experiment results of �x and tx.
The GA–Tabu outperforms the other six algorithms in

terms of �x. Of the 100 test cases, �x ranges from 0% to

22% but the average of �x is only 1.19%. The lower is

Y (average process yield), the higher is the average of

�x (Figure 3). While Y decreases to 15%, the average of

�x even reaches up to 8.06%. This is because the

number of small lots in a high-yield scenario is fewer
which in turn results in less capacity loss. Therefore,

the GA–Tabu outperforms the other algorithms sub-

stantially in low-yield scenarios and slightly in high-

yield scenarios.
Of the 100 test cases, the average of �x for each

algorithm is shown in Figure 4, which indicates that

the Tabu algorithm is the second best – the average of

�Tabu is only 0.16%. However, the value of �Tabu may
reach up to 5.31% in a low-yield scenario (Table 3).

The average of tx for each algorithm is shown in

Figure 5, which indicates that the Tabu algorithm is

computationally faster than the GA–Tabu. The max-

imum value of tGA�Tabu is 4379 s (about 1.2 h). In

practice, the scheduling decision is made on every

working shift (12 h); solving such a scheduling problem
1.5 h before the shift is acceptable to practitioners.

C.-W. Chiou and M.-C. Wu390

D
ow

nl
oa

de
d

by
 [

N
at

io
na

l C
hi

ao
 T

un
g

U
ni

ve
rs

ity
]

 a
t 1

7:
45

 2
4

D
ec

em
be

r
20

14

T
a
b
le

1
.
P
ro
ce
ss

ti
m
es

o
f
in
-l
in
e
st
ep
p
er

ch
a
m
b
er
s.

P
ro
ce
ss

se
q
u
en
ce

W
IP

b
u
ff
er
s
to

d
o
ck

a
re
a

D
o
ck

a
re
a
to

tr
a
ck

H
M
D
S

C
o
o
li
n
g

C
o
a
te
r

S
o
ft
-b
a
k
e

C
o
o
li
n
g

A
li
g
n
er

W
a
fe
r

ed
g
e

ex
p
o
su
re

P
E
B

C
o
o
li
n
g

D
ev
el
o
p

H
a
rd

b
a
k
e

H
ig
h

co
o
li
n
g

C
h
a
m
b
er

n
u
m
b
er

1
1

2
2

2
2

2
1

1
2

2
2

2
1

P
ro
ce
ss

ti
m
e
(m

in
)

2
.5

0
.1

1
.2

1
.2

1
.2

[1
.2
,2
.8
]

1
[0
.7
5
,1
.6
5
]

1
[1
.2
,2
.8
]

1
[1
.2
,2
.8
]

[1
.2
,2
.8
]

0
.5

International Journal of Systems Science 391

D
ow

nl
oa

de
d

by
 [

N
at

io
na

l C
hi

ao
 T

un
g

U
ni

ve
rs

ity
]

 a
t 1

7:
45

 2
4

D
ec

em
be

r
20

14

Table 2. Performance comparisons of algorithms in scenarios with (M,N)¼ (2, 20).

20

Jobs GA_Tabu Tabu GA PACO MMAX SA PSO

Yield
(%)

CGA_Tabu

(min)
tGA_Tabu

(s)
rTabu
(%)

tTabu
(s)

rGA
(%)

tGA
(min)

rPACO
(%)

tPACO
(sec)

rMMAX

(%)
tMMAX

(sec)
rSA
(%)

tSA
(sec)

rPSO
(%)

tPSO
(sec)

90 269.7 119 0.00 79.0 0.09 244 0.59 21 0.36 29 1.12 6 1.94 2
80 254.8 109 0.11 79.0 0.14 296 0.28 19 0.18 28 1.04 7 1.91 1
70 216.0 104 0.05 78.0 0.09 253 0.41 16 0.23 23 1.43 5 2.01 1
60 186.3 103 0.08 77.9 0.23 217 0.37 14 0.30 20 1.34 5 2.15 1
50 168.9 96 0.17 77.1 0.26 196 0.39 13 0.36 18 1.61 4 2.66 1
40 130.5 63 0.14 77.0 0.36 157 0.50 10 0.49 13 1.94 4 3.21 1
30 106.5 65 0.08 76.0 0.29 160 0.81 8 0.39 10 1.98 3 3.35 1
25 81.1 46 0.15 75.1 0.71 156 0.86 6 0.79 8 3.16 2 5.61 1
20 70.2 42 0.59 75.0 0.89 129 2.26 5 1.72 6 5.24 2 7.85 1
15 62.5 37 0.25 75.0 1.50 118 2.47 4 2.31 5 7.03 2 10.63 1

Table 4. Performance comparisons of algorithms in scenarios with (M,N)¼ (2, 60).

60

Jobs GA_Tabu Tabu GA PACO MMAX SA PSO

Yield
(%)

CGA_Tabu

(min)
tGA_Tabu

(s)
rTabu
(%)

tTabu
(s)

rGA
(%)

tGA
(min)

rPACO
(%)

tPACO
(sec)

rMMAX

(%)
tMMAX

(sec)
rSA
(%)

tSA
(sec)

rPSO
(%)

tPSO
(sec)

90 840.4 961 0.02 526.7 0.04 1670 0.05 618 0.14 876 0.80 25 1.17 17
80 738.7 838 0.01 510.6 0.02 1245 0.06 542 0.28 773 1.01 23 1.51 17
70 649.8 792 0.09 495.0 0.03 1549 0.13 475 0.16 679 1.01 22 1.45 16
60 585.9 694 0.01 483.5 0.07 1091 0.15 427 0.29 612 1.22 19 1.74 16
50 473.4 517 0.01 465.8 0.13 980 0.18 339 0.28 487 1.01 18 1.88 15
40 391.3 433 0.00 452.3 0.19 771 0.30 278 0.35 401 1.80 16 2.40 15
30 278.4 324 0.13 430.7 0.45 726 0.28 197 0.43 282 1.98 14 3.58 15
25 234.5 284 0.07 421.3 1.11 858 0.76 166 0.77 240 3.81 13 5.98 15
20 207.1 281 0.32 417.3 3.26 1384 2.18 149 2.06 216 7.78 11 9.50 14
15 170.3 212 1.66 410.5 9.02 1595 5.00 112 6.26 162 21.00 10 16.78 14

Table 3. Performance comparisons of algorithms in scenarios with (M,N)¼ (2, 40).

40

Jobs GA_Tabu Tabu GA PACO MMAX SA PSO

Yield
(%)

CGA_Tabu

(min)
tGA_Tabu

(s)
rTabu
(%)

tTabu
(s)

rGA
(%)

tGA
(min)

rPACO
(%)

tPACO
(sec)

rMMAX

(%)
tMMAX

(sec)
rSA
(%)

tSA
(sec)

rPSO
(%)

tPSO
(sec)

90 564.6 381 0.05 160.0 0.02 722 0.10 185 0.10 261 0.97 30 1.37 7
80 488.1 333 0.07 155.0 0.04 635 0.20 160 0.20 226 1.06 31 1.59 7
70 438.5 294 0.08 151.1 0.18 674 0.29 143 0.29 203 1.26 30 1.79 6
60 378.3 276 0.03 146.0 0.00 553 0.16 122 0.16 173 1.33 28 2.00 6
50 331.9 261 0.08 143.0 0.00 488 0.16 106 0.16 150 1.42 26 2.11 6
40 254.4 182 0.00 138.0 0.11 359 0.20 81 0.20 116 1.89 24 2.87 6
30 200.0 150 0.07 133.2 0.10 334 0.45 63 0.45 89 2.29 22 3.62 5
25 172.2 150 0.04 130.2 0.29 419 0.52 54 0.52 76 3.39 21 4.93 5
20 129.9 128 5.31 129.3 2.20 386 1.90 48 1.90 69 15.55 20 15.77 5
15 118.8 104 2.71 124.3 2.80 649 3.66 34 3.66 48 22.91 19 15.34 5

C.-W. Chiou and M.-C. Wu392

D
ow

nl
oa

de
d

by
 [

N
at

io
na

l C
hi

ao
 T

un
g

U
ni

ve
rs

ity
]

 a
t 1

7:
45

 2
4

D
ec

em
be

r
20

14

Table 5. Performance comparisons of algorithms in scenarios with (M,N)¼ (2, 80).

80

Jobs GA_Tabu Tabu GA PACO MMAX SA PSO

Yield
(%)

CGA_Tabu

(min)
tGA_Tabu

(s)
rTabu
(%)

tTabu
(s)

rGA
(%)

tGA
(min)

rPACO
(%)

tPACO
(sec)

rMMAX

(%)
tMMAX

(sec)
rSA
(%)

tSA
(sec)

rPSO
(%)

tPSO
(sec)

90 1123.3 1851 0.01 1209.9 0.03 2502 0.12 1474 0.13 2084 0.79 49 1.05 34
80 1004.2 1731 0.06 1174.1 0.09 2722 0.27 1309 0.37 1857 0.80 47 1.18 33
70 891.7 1659 0.00 1138.5 0.06 2053 0.16 1158 0.19 1648 0.86 43 1.30 33
60 760.3 1352 0.00 1098.2 0.06 1767 0.21 978 0.30 1393 1.58 39 1.47 32
50 654.7 1130 0.02 1074.0 0.05 1726 0.20 844 0.21 1205 1.26 36 1.75 32
40 515.0 864 0.05 1033.7 0.25 1109 0.35 660 0.43 954 2.66 32 2.16 31
30 412.5 708 0.00 998.1 0.22 1262 0.59 521 0.20 744 1.77 28 2.62 31
25 334.7 601 0.01 966.9 0.89 1315 1.12 426 0.55 610 4.69 26 4.11 30
20 292.4 529 0.07 954.1 2.69 1997 2.39 374 1.87 543 5.85 24 7.39 30
15 228.9 392 2.68 931.3 6.91 2126 7.80 253 4.02 366 8.77 21 16.64 30

Table 7. Performance comparisons of algorithms in scenarios with (M,N)¼ (3, 20).

20

Jobs GA_Tabu Tabu GA PACO MMAX SA PSO

Yield
(%)

CGA_Tabu

(min)
tGA_Tabu

(s)
rTabu
(%)

tTabu
(s)

rGA
(%)

tGA
(min)

rPACO
(%)

Yield
(%)

CGA_Tabu

(min)
tGA_Tabu

(s)
rTabu
(%)

tTabu
(s)

rGA
(%)

tGA
(min)

90 197.9 4379 0.11 6.0 0.09 5876 0.41 21 0.29 31 1.27 30 1.37 2
80 186.7 3970 0.19 5.0 0.13 4726 0.59 19 0.31 29 1.47 27 1.61 2
70 159.7 3484 0.14 4.0 0.22 4348 0.50 16 0.25 25 1.53 24 1.77 1
60 140.9 3375 0.12 4.0 0.39 4978 0.69 14 0.58 21 1.60 21 1.87 1
50 126.7 2450 0.11 3.0 0.57 3996 0.76 13 0.61 19 1.69 17 2.07 1
40 99.8 2046 0.10 2.0 0.44 4059 0.55 10 0.52 14 1.81 14 2.29 1
30 82.2 1540 0.06 2.0 0.55 2632 0.60 7 0.51 11 1.83 11 2.68 1
25 63.7 1377 0.13 1.0 0.81 3063 1.08 6 0.85 8 2.56 10 3.88 1
20 55.9 1135 0.39 1.0 0.89 2209 1.18 5 1.11 7 3.43 9 4.99 1
15 49.2 896 0.57 1.0 1.53 2238 1.99 4 1.53 6 5.10 7 8.51 1

Table 6. Performance comparisons of algorithms in scenarios with (M,N)¼ (2, 100).

100

Jobs GA_Tabu Tabu GA PACO MMAX SA PSO

Yield
(%)

CGA_Tabu

(min)
tGA_Tabu

(s)
rTabu
(%)

tTabu
(s)

rGA
(%)

tGA
(min)

rPACO
(%)

Yield
(%)

CGA_Tabu

(min)
tGA_Tabu

(s)
rTabu
(%)

tTabu
(s)

rGA
(%)

tGA
(min)

90 1398.8 3402 0.02 2328 0.06 4002 0.15 2851 0.16 4053 0.76 31 1.03 58
80 1256.4 3348 0.06 2261 0.09 3250 0.37 2546 0.37 3636 0.78 28 1.09 58
70 1120.1 2734 0.03 2193 0.03 3459 0.15 2253 0.18 3229 0.78 25 0.97 57
60 959.0 2294 0.04 2117 0.10 2389 0.25 1920 0.30 2769 1.04 22 1.38 57
50 785.2 1868 0.06 2041 0.08 2454 0.23 1568 0.26 2257 1.11 18 1.63 56
40 658.1 1711 0.03 1988 0.19 2183 0.28 1308 0.37 1886 1.44 16 2.14 55
30 501.4 1231 0.00 1900 0.45 1780 0.83 984 0.43 1405 2.76 12 2.69 55
25 451.2 1153 0.51 1870 0.66 1760 0.91 882 0.29 1258 2.60 11 2.20 55
20 364.2 961 0.47 1825 3.30 2952 3.03 728 2.96 1055 7.52 9 7.73 54
15 303.1 681 0.09 1783 5.75 3151 6.69 511 3.49 740 11.40 6 11.95 54

International Journal of Systems Science 393

D
ow

nl
oa

de
d

by
 [

N
at

io
na

l C
hi

ao
 T

un
g

U
ni

ve
rs

ity
]

 a
t 1

7:
45

 2
4

D
ec

em
be

r
20

14

Table 8. Performance comparisons of algorithms in scenarios with (M,N)¼ (3, 40).

40

Jobs GA_Tabu Tabu GA PACO MMAX SA PSO

Yield
(%)

CGA_Tabu

(min)
tGA_Tabu

(s)
rTabu
(%)

tTabu
(s)

rGA
(%)

tGA
(min)

rPACO
(%)

Yield
(%)

CGA_Tabu

(min)
tGA_Tabu

(s)
rTabu
(%)

tTabu
(s)

rGA
(%) tGA (min)

90 394.0 416 0.10 54.0 0.15 271 0.07 1176 0.13 178 1.38 12 1.59 7
80 342.1 369 0.07 47.0 0.11 234 0.13 1042 0.11 155 1.60 11 1.83 7
70 308.7 330 0.07 42.0 0.19 210 0.25 1021 0.31 139 1.78 10 1.99 6
60 266.0 287 0.14 36.0 0.35 180 0.19 843 0.28 119 1.80 9 2.31 6
50 234.2 266 0.08 31.0 0.28 156 0.24 879 0.18 104 1.77 8 2.53 6
40 181.1 208 0.07 24.0 0.45 121 0.47 624 0.37 81 2.45 6 3.14 6
30 143.2 175 0.23 19.0 0.53 94 0.52 728 0.38 63 2.92 5 3.92 5
25 124.0 150 0.27 16.0 0.52 80 0.67 670 0.70 54 3.98 4 5.27 5
20 94.5 170 3.43 12.0 2.82 61 0.66 720 2.67 41 12.11 4 15.36 5
15 85.4 118 0.75 10.0 2.47 50 2.02 567 3.27 34 10.90 3 15.91 5

Table 10. Performance comparisons of algorithms in scenarios with (M,N)¼ (3, 80).

80

Jobs GA_Tabu Tabu GA PACO MMAX SA PSO

Yield
(%)

CGA_Tabu

(min)
tGA_Tabu

(s)
rTabu
(%)

tTabu
(s)

rGA
(%)

tGA
(min)

rPACO
(%)

Yield
(%)

CGA_Tabu

(min)
tGA_Tabu

(s)
rTabu
(%)

tTabu
(s)

rGA
(%) tGA (min)

90 766.2 2404 0.07 431 0.31 3721 0.21 1429 0.39 2179 1.08 25 1.23 34
80 686.3 2174 0.00 387 0.46 2935 0.15 1278 0.45 1939 1.22 22 1.33 33
70 609.7 1884 0.02 344 0.46 2823 0.17 1133 0.40 1714 1.78 20 1.50 33
60 520.8 1587 0.03 292 0.34 2682 0.17 959 0.70 1449 1.52 17 1.71 32
50 450.7 1377 0.12 252 0.41 3010 0.22 831 0.44 1250 1.65 15 2.01 32
40 354.5 1153 0.05 199 0.76 2283 0.16 654 1.02 983 2.09 12 2.47 31
30 285.8 878 0.08 158 1.30 2269 0.44 521 1.34 779 2.39 10 3.04 31
25 232.6 722 0.04 130 3.16 1692 0.85 427 3.14 639 3.47 9 4.39 30
20 203.8 638 0.16 115 5.36 1485 1.77 376 7.13 562 5.94 8 7.43 30
15 159.3 462 0.07 78 10.29 1609 1.48 253 11.40 378 22.57 6 16.44 30

Table 9. Performance comparisons of algorithms in scenarios with (M,N)¼ (3, 60).

60

Jobs GA_Tabu Tabu GA PACO MMAX SA PSO

Yield
(%)

CGA_Tabu

(min)
tGA_Tabu

(s)
rTabu
(%)

tTabu
(s)

rGA
(%)

tGA
(min)

rPACO
(%)

Yield
(%)

CGA_Tabu

(min)
tGA_Tabu

(s)
rTabu
(%)

tTabu
(s)

rGA
(%) tGA (min)

90 577.5 1092 0.00 179 0.05 2724 0.07 597 0.00 915 1.23 20 1.38 17
80 509.6 975 0.02 159 0.09 2093 0.02 526 0.02 804 1.19 18 1.52 17
70 449.1 866 0.04 140 0.17 1587 0.15 463 0.11 705 1.46 16 1.68 16
60 405.6 774 0.00 127 0.13 1859 0.13 418 0.17 635 1.65 15 1.81 16
50 328.2 645 0.00 101 0.31 1278 0.14 333 0.08 504 1.78 12 2.25 16
40 272.4 522 0.04 84 0.48 1428 0.24 276 0.22 416 2.84 11 2.70 15
30 196.6 384 0.13 59 0.91 986 0.38 197 0.16 295 2.94 9 3.80 15
25 165.1 330 0.18 50 1.91 1366 0.64 166 0.47 249 5.08 8 5.94 15
20 146.8 315 0.63 45 4.20 1511 2.08 148 1.78 222 7.75 7 9.63 14
15 116.9 326 4.68 33 4.00 1081 4.35 107 4.20 161 17.53 6 19.41 14

C.-W. Chiou and M.-C. Wu394

D
ow

nl
oa

de
d

by
 [

N
at

io
na

l C
hi

ao
 T

un
g

U
ni

ve
rs

ity
]

 a
t 1

7:
45

 2
4

D
ec

em
be

r
20

14

6.3. Research uniqueness

The uniqueness of this research, in comparison to the
prior studies on the single-stepper scheduling problem,
is explained from the following three perspectives: (1)
the scheduling context, (2) the chromosome-decoding
and (3) the chromosome solution quality of meta-
heuristic algorithms.

The scheduling context of multiple steppers is more
complicated than that of single stepper. Namely, the
scheduling context of multiple steppers involves two
types of decisions: (1) stepper allocation: how to
allocate jobs to each stepper and (2) job sequencing:
how to sequence the allocated jobs for each stepper. In
contrast, the scheduling context of single stepper

involves only one type of decision – how to sequence

all the jobs for the stepper.
Such an increased complexity in the scheduling

contexts leads to a chromosome-decoding issue. As

stated, a chromosome originally represents a sequence

of all the jobs. Such a chromosome can be directly

interpreted as a scheduling solution for the single-

stepper context. However, to interpret such a

chromosome as a scheduling solution for the multi-

ple-steppers context, we need to develop a decoding

scheme – for decoding a chromosome into two types

of decisions (stepper allocation and job sequencing).

In summary, for a given chromosome, even though its

appearance is exactly the same in the two scheduling

Table 11. Performance comparisons of algorithms in scenarios with (M,N)¼ (3, 100).

100

Jobs GA_Tabu Tabu GA PACO MMAX SA PSO

Yield
(%)

CGA_Tabu

(min)
tGA_Tabu

(s)
rTabu
(%)

tTabu
(s)

rGA
(%)

tGA
(min)

rPACO
(%)

Yield
(%)

CGA_Tabu

(min)
tGA_Tabu

(s)
rTabu
(%)

tTabu
(s)

rGA
(%)

tGA
(min)

90 950.5 4379 0.04 839 0.06 5876 0.39 2780 0.28 4236 0.96 30 1.14 59
80 853.9 3970 0.05 757 0.16 4726 0.63 2493 0.34 3788 1.48 27 1.24 58
70 760.4 3484 0.00 674 0.21 4348 0.47 2214 0.23 3349 1.35 24 1.36 57
60 653.2 3375 0.04 580 0.38 4978 0.69 1896 0.57 2865 1.78 21 1.56 57
50 535.1 2450 0.00 475 0.63 3996 0.82 1549 0.67 2336 1.56 17 1.89 56
40 451.1 2046 0.10 397 1.12 4059 1.23 1296 1.21 1953 2.42 14 2.35 56
30 345.0 1540 0.07 300 1.57 2632 1.62 981 1.54 1478 2.11 11 2.93 55
25 306.8 1377 0.33 270 2.32 3063 2.60 882 2.35 1329 4.46 10 3.68 55
20 252.8 1135 0.08 224 5.30 2209 5.61 730 5.54 1097 5.96 9 7.24 54
15 205.7 896 0.16 168 7.81 2238 8.29 533 8.24 803 16.05 7 14.02 54

8.06%

4.46%

2.01%

0.45% 0.55% 0.56% 0.68%
0.73%

1.03%
1.28%

0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

6.0%

7.0%

8.0%

9.0%

90% 80% 70% 60% 50% 40% 30% 25% 20% 15%

Yield

rx

Figure 3. Average of �x at various yields.

International Journal of Systems Science 395

D
ow

nl
oa

de
d

by
 [

N
at

io
na

l C
hi

ao
 T

un
g

U
ni

ve
rs

ity
]

 a
t 1

7:
45

 2
4

D
ec

em
be

r
20

14

contexts, its two implied scheduling decisions are far
different.

In this research, several meta-heuristic algorithms
are examined in the multiple-steppers context. These
algorithms, in terms of algorithmic flow, are essentially
the same as those prior ones addressed in the single-
stepper context – except the inclusion of the chromo-
some-decoding mechanism. Noticeably, such an inclu-
sion leads to far different semantics in interpreting a
chromosome. This lead to that the best-solution chro-
mosome in the single-stepper context is most likely not
the best one while it is in the multiple-steppers context.

We therefore have to examine the effectiveness of these
meta-heuristic algorithms in the multiple-stepper
context.

7. Concluding remarks

In-line steppers are the bottleneck of a semiconductor
wafer fab. This study examines a problem for the
scheduling of N jobs on M in-line steppers in a low-
yield scenario. Such a scheduling problem involves two
decisions: how to allocate jobs to each stepper, and

22
17

811

628

1831

460

863

0

200

400

600

800

1000

1200

1400

1600

1800

2000

GA-Tabu Tabu GA PACO MMAX SA PSO

Algorithm

C
om

pu
ta

ti
on

 ti
m

es
 (

se
c.

)

Figure 5. Computation times comparison for the type of algorithms.

rx

2.80%

2.33%

0.65%0.60%0.60%

0.16%

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

Tabu GA PACO MMAX SA PSO

Algorithms

Figure 4. Average of �x at various algorithms.

C.-W. Chiou and M.-C. Wu396

D
ow

nl
oa

de
d

by
 [

N
at

io
na

l C
hi

ao
 T

un
g

U
ni

ve
rs

ity
]

 a
t 1

7:
45

 2
4

D
ec

em
be

r
20

14

how to sequence jobs for each stepper. The longest

makespan of the M in-line steppers is taken as the

performance measure.
A scheduling solution (called a chromosome) is

represented by a sequence of N jobs. We develop a

novel chromosome-decoding scheme to interpret a

chromosome into its two associated scheduling deci-

sions – job allocation and job sequencing. Such a

decoding result can be used to compute the perfor-

mance (also called fitness) of the chromosome.
Based on the chromosome representation and

decoding schemes, seven meta-heuristic algorithms

adapted from prior studies are developed. These

seven algorithms include GA, Tabu, GA–Tabu, SA,

M-MMAX, PACO and PSO. Numerical experiments

indicate that the GA–Tabu outperforms the other six

algorithms in terms of solution quality; and this merit

is particularly impressive in low-yield scenarios. In

practice, such a scheduling decision is made on every

working shift (12 h). The computation time of the GA–

Tabu, ranging from a few minutes to less than 1.5 h, is

acceptable to practitioners.
One extension of this research is examining the

optimal design of port number. The larger the port

number, the higher are the tool expenditure and the

tool operation costs; yet the capacity loss of steppers is

less. Therefore, stepper vendors may need to customise

the port design based on the process yields of their

customers.

Acknowledgements

This research is financially sponsored by National Science
Council, Taiwan, under a research contract NSC 99-2221-E-
009-110-MY3.

Notes on contributors

Chie-Wun Chiou received his PhD degree in Industrial
Engineering and Management from National Chiao-Tung
University, Taiwan. He has been working in the semicon-
ductor industry for over 15 years and possesses several US
patents in the semiconductor field. His research interests
include capacity planning and production management.

Muh-Cherng Wu received his PhD degree in Industrial
Engineering from Purdue University in 1988. He is a
Professor in the Department of Industrial Engineering and
Management, National Chiao-Tung University, Taiwan. His
research interests include supply chain management, produc-
tion management, in particular in the modelling and analysis
of semiconductor manufacturing systems.

References

Bac, F.Q., and Perov, V.L. (1993), ‘New Evolutionary

Genetic Algorithms for NP-complete Combinatorial

Optimization Problems’, Biological Cybernetics, 69,

229–234.
Chen, T. (2009), ‘A Fuzzy-neural Knowledge-based System

for Job Completion Time Prediction and Internal Due

Date Assignment in a Wafer Fabrication Plant’,

International Journal of Systems Science, 40, 889–902.

Chern, C.C., and Liu, Y.L. (2003), ‘Family-based Scheduling

Rules of a Sequence-dependent Wafer Fabrication

System’, IEEE Transactions on Semiconductor

Manufacturing, 16, 15–25.

Chiou, C.W., and Wu, M.C. (2009), ‘GA–Tabu Algorithm

for Scheduling In-line Steppers in Low-yield Scenarios’,

Expert Systems with Applications, 36, 11925–11933.
Croce, F.D., Tadei, R., and Volta, G. (1995), ‘A Genetic

Algorithm for the Job Shop Problem’, Computation

Operation Research, 22, 15–24.
Dabbas, R.M., and Fowler, J.W. (2003), ‘A New Scheduling

Approach Using Combined Dispatching Criteria in Wafer

Fabs’, IEEE Transactions on Semiconductor

Manufacturing, 16, 501–510.
Duwayri, Z., Mollaghasemi, M., Nazzal, D., and Rabadi, G.

(2006), ‘Scheduling Setup Changes at Bottleneck

Workstations in Semiconductor Manufacturing’,

Production Planning and Control, 17, 717–727.
Goldberg, D.E. (1989), Genetic Algorithms in Search,

Optimization and Machine Learning, Boston, MA:

Addison-Wesley.
Holland, J.H. (1975), Adaptation in Neural and Artificial

Systems, Ann Arbor, MI: University of Michigan Press.

Liao, C.J., Tseng, C.T., and Luarn, P. (2007), ‘A Discrete

Version of Particle Swarm Optimization for Flowshop

Scheduling Problems’, Computers and Operations Research,

34, 3099–3111.

Michalewicz, Z. (1996), Genetic AlgorithmsþData

Structures¼Evolution Programs (3rd ed.), Berlin,

Heidelberg, New York: Springer.

Morrison, J.R., and Martin, D.P. (2007), ‘Performance

Evaluation of Photolithography Cluster Tools’, OR

Spectrum, 33, 375–389.
Nearchou, A.C. (2004), ‘The Effect of Various Operators on

the Genetic Search for Large Scheduling Problems’,

International Journal of Production Economics, 88, 191–203.
Osman, .H. I, and Potts, C.N. (1989), ‘Simulated Annealing

for Permutation Flow-shop Scheduling’, OMEGA, The

International Journal of Management Science, 17, 551–557.
Pinedo, M. (2008), Scheduling: Theory, Algorithms, and

Systems (3rd ed.), New York, NY: Springer.
Quirk, M. (2001), Semiconductor Manufacturing Technology,

New York, NY: Prentice-Hall.
Rajendran, C., and Ziegler, H. (2004), ‘Ant-colony

Algorithms for Permutation Flowshop Scheduling to

Minimize Makespan/Total Flowtime of Jobs’, European

Journal of Operational Research, 155, 426–438.

International Journal of Systems Science 397

D
ow

nl
oa

de
d

by
 [

N
at

io
na

l C
hi

ao
 T

un
g

U
ni

ve
rs

ity
]

 a
t 1

7:
45

 2
4

D
ec

em
be

r
20

14

Reeves, C.R. (1995), ‘A Genetic Algorithm for Flowshop
Sequencing’, Computation Operational Research, 22, 5–13.

Ruiz, R., and Maroto, C. (2006), ‘A Genetic Algorithm for
Hybrid Flowshops with Sequence Dependent Setup Times
and Machine Eligibility’, European Journal of Operational
Research, 169, 781–800.

Sha, D.Y., Hsu, S.Y., Che, Z.H., and Chen, C.H. (2006), ‘A
Dispatching Rule for Photolithography Scheduling with an
On-line Rework Strategy’, Computers and Industrial

Engineering, 50, 233–247.
Wang, L., and Zheng, D.Z. (2003), ‘An Effective Hybrid
Heuristic for Flowshop Scheduling’, International Journal

of Advanced Manufacturing Technology, 21, 38–44.
Widmer, M., and Hertz, A. (1989), ‘A New Heuristic Method
for the Flow Shop Sequencing Problem’, European Journal
of Operational Research, 41, 186–193.

Wu, M.C., and Chang, W.J. (2007), ‘A Short-term Capacity
TradingMethod for Semiconductor Fabs with Partnership’,
Expert Systems with Applications, 33, 476–483.

Wu, M.C., and Chang, W.J. (2008), ‘A Multiple Criteria
Decision for Trading Capacity between Two

Semiconductor Fabs’, Expert Systems with Applications,
35, 938–945.

Wu, M.C., and Chiou, C.W. (2010), ‘Scheduling
Semiconductor In-line Steppers in New Product/Process
Introduction Scenarios’, International Journal of
Production Research, 48, 1835–1852.

Wu, M.C., Chiou, S.J., and Chen, C.F. (2008), ‘Dispatching
for Make-to-order Wafer Fabs with Machine-dedication
and Mask Set-up Characteristics’, International Journal of

Production Research, 46, 3993–4009.
Wu, M.C., Huang, Y.L., Chang, Y.C., and Yang, K.F.
(2006), ‘Dispatching in Semiconductor Fabs with Machine-

dedication Features’, International Journal of Advanced
Manufacturing Technology, 28, 978–984.

Wu, M.C., Jiang, J.H., and Chang, W.J. (2008), ‘Scheduling
a Hybrid MTO/MTS Semiconductor Fab with Machine-

dedication Features’, International Journal Production
Economics, 112, 416–426.

Yang, W.H. (1999), ‘Survey of Scheduling Research

Involving Setup Times’, International Journal of Systems
Science, 30, 143–155.

C.-W. Chiou and M.-C. Wu398

D
ow

nl
oa

de
d

by
 [

N
at

io
na

l C
hi

ao
 T

un
g

U
ni

ve
rs

ity
]

 a
t 1

7:
45

 2
4

D
ec

em
be

r
20

14

