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The classic dynamic programming approach is not applicable to the airline network revenue manage-
ment (RM) problem of a practical size due to the curse of dimensionality. Many heuristic methods,
including the most popular bid-price control approach, generate the approximate control decisions
based on various static formulations, which need to be re-solved to take into account the dynamic
features of the problem. By a simulation experiment, this study examines the re-solving issue of the bid-
price method and tests a new method, the parameterized function approach, in which no problem-
resolving is required. Based on the results, the parameterized function approach is found to be a
promising alternative. As for the bid-price control approach, a high re-solving frequency is needed for a
good result.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction in operations, due to the problem-resolving needed for correcting
Revenue Management (RM), also referred to as Yield Manage-
ment (YM), has become a common practice in the airline industry
ever since American Airlines successfully applied several RM
techniques to raise its revenue. Based on certain demand fore-
casting techniques and optimization models, RM has been found to
be very effective in generating extra revenue by dealing with the
diversified and uncertain demand, given a fixed capacity. It is very
difficult for any major airline nowadays to operate profitably
without RM, given that, according to most estimates, the revenue
gain from applying RM is about 4%e5%, which is comparable to
many airlines’ total profitability in a good year (Talluri and van
Ryzin, 2004). In addition, RM has been successfully extended to
some other industries. For example, a similar result of 1%e8% has
been reported for the improvement in profits in the hotel sector
(Jones, 2000). Nonetheless, how to realize the basic concept of RM,
i.e., selling the right product to the right customer at the right price,
remains a challenge.

Due to the current hub-and-spoke operation, the focus of RM
research has shifted from the traditional single-leg version to the
network version. The problem complexity and the associated
computational load make it impossible to derive the optimal con-
trol for a problem of practical size. The mainstream approaches,
such as bid price and virtual nesting, have some limitations such as
the inaccuracy, due to the suboptimal nature, and the interruption
g).
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the deficiencies of static models.
The key purpose of this study is to examine the impact of the

update frequency for one network RM approach, the most popular
bid-price control approach. The control performance in general
should be better when the bid prices are updated more frequently.
However, it is necessary to achieve a balance between the improved
performance and the negative effects (such as the interruption in
operations as well as the computational effort required for re-
solving the static problem). This study has performed a simula-
tion experiment to examine the re-solving issue of the bid-price
approach. In addition to the bases provided by the optimal con-
trol and the FCFS (first-come-first-served) policy, the results are
compared with a new method, the approach based on the param-
eterized function for revenue approximation (Huang and Liang,
2011), in which no problem-resolving is needed.

The remainder of this paper is organized as follows. The second
section provides the problem background and reviews the related
literature. The bid-price method, the method based on the
parameterized function for revenue approximation and the
framework of the simulation experiment are presented in the third
section. The numerical experiment is described in the fourth sec-
tion. Finally, the findings of this study are summarized and con-
clusions are drawn in the final section.
2. Background and literature review

Researchers have studied various kinds of seat inventory control
problems for airlines. Weatherford and Bodily (1992) provide a very
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general approach to categorize the nature of RM problems, and
McGill and van Ryzin (1999), Talluri and van Ryzin (2004) and
Chiang et al. (2007) serve as an excellent reference of the research
literature on RM. The literature review of this study focuses on the
RM problem within the network context.

In an airline network, a fare class of an origin-destination pair
(later referred to as an ODF) can utilize the seats of multiple legs,
and a seat on a leg is usually shared by multiple ODFs. The network
RM problem incorporating this network feature and the dynamic
characteristics of the demand can be formulated as the following
DP model (Talluri and van Ryzin, 2004).

VtðxÞ ¼ P0t Vt�1ðxÞ þ
XJ
j¼1

Pjtmax
�
Vt�1

�
x � Sj

�
þ Fj;Vt�1ðxÞ

�

(1)

where P0t ¼ 1�PJ
j¼1 P

j
t

� t: indices of decision periods (t ¼ 0 .. T, assuming t ¼ 0 is the
period of flight departure, and t ¼ T is the beginning of the
booking process.)

� j: indices of ODFs (j ¼ 1 .. J)
� Pt

j: probability of the booking request for ODF j in period t
� Fj: revenue of ODF j
� i: indices of legs (i ¼ 1 .. I)
� S: an incident matrix (I � J), representing the relationship be-
tween the ODFs and the legs. Its entry sij is equal to 1 if ODF j
uses leg i; otherwise, it is 0.

� Sj: the jth column vector of S, representing the legs used by ODF
j.

� xi: the number of available seats on leg i, and the vector x rep-
resents the available seats on all legs.

� Vt(x): expected revenue given the available seats on the legs x in
period t

The Bellman equation of the DP model (1) shows how to eval-
uate the expected revenue given the arrival information of the
demands in a recursive manner. With the boundary condition
V0(x) ¼ 0 at the end of the booking process (flight departure), the
objective is to maximize the expected revenue VT(C) given C seats
available on the legs (i.e., the system capacity) at the beginning of
the booking process.

The optimal control policy that results in the maximum ex-
pected revenue can be generated by (2) based on the two terms
inside the max function of (1). For each period t given the available
seats on the legs x, a booking request of ODF j should be accepted if
its revenue is larger than the expected revenue decrease due to
state change (i.e., the opportunity cost) in period (t-1). The
computational load to evaluate the expected revenue for (1) and
then to generate the optimal control policy based on (2) for the
entire state space is intractable for most practical problems. Thus,
an approximate algorithm with a manageable computational load
and acceptable solution quality is usually used.

Fj � Vt�1ðxÞ � Vt�1

�
x � Sj

�
(2)

The most popular approach for the network RM problem is
the bid-price control approach, as it is intuitive and easy to
implement (Escudero et al., 2013). A bid price is attached to each
leg, and a booking request for a fare class of an originedestina-
tion pair is accepted if its revenue is greater than the sum of the
bid prices of the used legs. The key issue of most bid-price based
algorithms is to find a suitable set of bid prices, which is sup-
posed to depend on the number of seats available on the legs and
the number of time periods left before departure. Williamson
(1992) set the bid prices as the dual prices of the leg capacity
constraints in a static linear programming (LP) model, in which
the demand patterns of the ODFs are replaced by the point es-
timations regarding the remaining periods as a whole. Thus,
frequent updates of bid prices during the booking process are
generally required. The other issue associated with Williamson
(1992) was that the stochastic feature of the demand was over-
looked in the deterministic LP model. Many researchers have
focused their efforts on the sophisticated algorithms used to
generate better bid prices to address the dynamic and/or sto-
chastic feature of the problem. For some recent works, please
refer to Adelman (2007), Topaloglu (2008), Akan and Ata (2009),
Ball and Queyranne (2009), Topaloglu (2009), Kunnumkal and
Topaloglu (2010), and Escudero et al. (2013). In particular, more
and more network RM models (e.g., Meissner and Strauss, 2012)
have taken into account the choice behavior of customers, which
is a feature not considered in this study.

Nonetheless, the classic bid-price method based on a static and
deterministic LP model, such as Williamson (1992), is still widely
used in practice (Chen and Homem-de-Mello, 2010), and re-solving
the problem to update the bid prices remains an important issue for
implementing the network RM control. In general, the performance
should be improved if the bid prices are updated more frequently,
as the actual situation of the demand and seat availability can be
taken into account in a timely manner. However, this intuitive
speculation needs to be examined and it would be better if it were
supported by some numerical analysis. Even more importantly, it is
necessary to find a balance between the improved control accuracy
and the negative effects.

Cooper (2002), the first to address the re-solving issue of the
bid-price control method, showed that re-solving does not neces-
sarily lead to a better result based on a very simple single-leg
example. From the aspect of the general control-algorithm
approach, Secomandi (2008) established sufficient conditions un-
der which re-solving does not worsen the performance of the
control policy. In addition, the counter-intuitive example in Cooper
(2002) was re-visited in a numerical experiment, in which eight
control policies were compared. Chen and Homem-de-Mello (2010)
dealt with the original multi-stage stochastic network RM problem
by means of an approach where they solved a sequence of two-
stage stochastic programming (SP) problems with simple
recourse. Their theoretical results show that solving more succes-
sive two-stage SP problems can never result in a reduction in ex-
pected revenue. In addition, they also proposed a heuristic method
to determine the re-solving schedule, in which the updates are not
evenly spaced within the booking horizon. Recently, Jasin and
Kumar (2012) derived an upper bound for the expected revenue
loss of various re-solving control policies, when compared with the
optimal control, and further designed two re-solving schedules
with bounded asymptotic revenue loss.

Huang and Liang (2011) have developed a new control method
for the network RM problem, in which the dynamic decision is
based on the parameterized functions, which approximate the
expected revenues for the entire state space in terms of seat
availability. As the parameters of the functions for all time periods
can be estimated in advance, no update is required for this
approach. Given this special advantage, this method is also tested in
the simulation experiment to serve as a basis for performance
evaluation, in addition to the optimal control and the FCFS (first-
come-first-served) policy. Meanwhile, beyond the purpose of
examining the bid-price control method in terms of the re-solving
frequency, this study also aims to evaluate the applicability of the
method based on parameterized functions in Huang and Liang
(2011) to the network RM problem.



Fig. 1. Generation of the Parameterized Functions by Sampling.
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3. Simulation framework

In order to examine the re-solving issue of the static bid-price
control approach, this study designed a simulation experiment.
The bid-price control is presented in the first sub-section, and the
approach based on the parameterized function is presented in the
second sub-section. Finally, the simulation procedures for these
two types of control methods are provided in the third sub-section.

3.1. Bid-price control

Suppose the bid price for leg i is denoted by mi(t,x), in general a
function of the time period and the state of the seat availability. As
inWilliamson (1992), a booking request for ODF j is accepted only if
its fare is higher than the sum of the associated bid prices, ac-
cording to (3).

Fj �
X
i¼ Sj

miðt; xÞ (3)

As for how the bid prices are determined, Williamson (1992)
developed a deterministic linear program model as (4) to (6), in
which the decision variable is the allocated tickets (sales) of the
ODFs. The objective (4) is to maximize the total revenue subject to
the capacities of the legs in (5) and the estimated mean demand of
the ODFs in (6). In particular, the focus of this LP model is not on the
solution (the allocation) or the objective (revenue). The key pur-
pose is to set the dual price of the capacity constraint (5) as the bid
price of the corresponding leg.

Maximize
X
j

Fjyj (4)

s:t
X
j

sijyj � xi ci˛I (5)

yj � E
�
Dj
�

cj˛J (6)

� yj: the sale (allocation) of ODF j
� Dj: demand of ODF j with E[Dj] as the mean value

As the average values of the ODF demand for the whole booking
horizon are used, the above LP model is likely to suffer from over-
looking both the stochastic and dynamic features of the problem. In
order to reflect the changes over time in terms of demand and seat
availability, re-resolving the LP model is required so as to generate
the newbid prices, which under an ideal situation can represent the
opportunity cost (or the value) of the leg seats. The key concern here
is how often the bid-prices should be updated. Is it always the case
that the more frequently they are updated, the better?

3.2. Parameterized function control

The expected revenue function Vt(x) in (1) contains some special
features due to the nature of RM problems. First, it is monotonically
increasing with respect to the number of leg seats x, as more seats
always generate more revenue. Second, the marginal benefit (rev-
enue contribution) of a seat on a leg is diminishing, and the ex-
pected revenue function should reach a fixed value if the available
seats on the legs are sufficient to accommodate all possible booking
requests. These features provide the basis to choose the parame-
terized function gt(x) defined in (7)e(8) to approximate the ex-
pected revenue function Vt(x) in (1), as proposed in Huang and
Liang (2011).
gtðxÞ ¼ At

 
1�

XI
bite

�aitxi

!
(7)
i¼1

At ¼
XJ
j¼1

 
Fj
Xt
s¼1

Pjs

!
(8)

� gt(x): parameterized function to approximate the expected
revenue given the available seats on the legs x in period t

The function is horizontally asymptotic to the parameter At,
which is computed by (8) to represent the maximum possible
revenue, given the possible booking requests from period t to the
end of the booking process, by assuming that there are an infinite
number of leg seats. As for the other two leg-specific parameters (ati

and bt
i), they are used to model the rising characteristic of the

approximate function with respect to the number of seats xi on the
leg. Their values can be determined by the DP-based procedure
specified by (9) and (10).

The procedure used to estimate the parameters of the approx-
imate function has a structure similar to the original DP formula-
tion of the network RM problem, which suffers from an enormous
amount of points in the state space. However, for the purpose of
curve fitting, not many data points are actually required. Thus, the
concept of sampling is introduced, and only a limited number of
points in the state space are evaluated to determine the parameters
of the functions for revenue approximation. The related computa-
tion can be represented by (9) and (10), and the whole procedure is
illustrated in Fig. 1.

Wt

�
xht
�

¼ P0t gt�1

�
xht
�
þ
XJ
j¼1

PjtRt
�
Fj; gt�1

�
xht
��

(9)

for h ¼ 1, ., H



Fig. 2. Network in the numerical experiment.

Rt
�
Fj; gt�1

�
xht
��

¼
8<
:

Fj þ gt�1

�
xht � Sj

�
if Fj � gt�1

�
xht
�
� gt�1

�
xht � Sj

�
gt�1

�
xht
�

otherwise
(10)

K. Huang, C.-Y. Lin / Journal of Air Transport Management 38 (2014) 36e42 39
� xth: one sampling point h in the state space in period t, and H is
the total number of sampling points.

� Wt(xth): expected revenue for the sampling point xth under the
control rule of gt-1(x)

� Rt(Fj, gt-1(x)): revenue function at period t evaluated on the basis
of gt-1(x) and under the control rule of gt-1(x)

Given the boundary condition g0(x) ¼ 0, for each time period t, a
limited number (H) of data points in the state space are randomly
sampled. For each sampling point, the expected revenue is evalu-
ated based on the parameterized function of the previous stage, gt-
1(x), as shown in (9) and (10). Once all of the sampling points are
evaluated, the parameterized function for the current stage, gt(x),
can be established by any curve fitting technique to determine the
values of the parameters of all legs (ati and bt

i, ci).
Once the recursive process of (9) and (10) is completed from

t ¼ 1 to T, the parameterized function for each time period gt(x) is
available. The control rule for all possible situations (the whole
state space) can then be determined by (11), which is similar to the
optimal control specified by (2). As the computation of (7) and (11)
is nominal for today’s computers, the accept/deny decision can be
made as soon as a booking request during the booking process is
received based on the pre-determined and stored parameters.
Thus, no problem-resolving and parameter update are required,
unless it is found that the initial demand assumption has changed.

Fj � gt�1ðxÞ � gt�1

�
x � Sj

�
(11)

3.3. Simulation procedure

The time-dependent probabilities associated with the booking
requests of the various ODFs, i.e., Ptj’s in (1), are in fact one kind of
data unavailable for most airlines from the practical point of view.
However, this study follows the approach in Klein (2007) as well as
Chen and Homem-de-Mello (2010) to generate the booking re-
quests based on the non-homogeneous Poisson (NHP) process.

The major steps of the simulation procedure for the bid price
control can be summarized as follows:

Step 1: Initialization. Generate the dynamic booking requests of
ODFs based on the non-homogeneous Poisson process. Set the
time index to be the beginning of the booking horizon, and set
the booking index to the first booking request.
Step 2: Bid Price Update. Solve the linear programming problem
(4)e(6), based on the average of the demand for the remaining
periods and the current seat availability, to derive the new bid
prices if an update at the current time period is required ac-
cording to the pre-specified update frequency (interval).
Step 3: Booking Control. Determine whether the booking request
is accepted based on the seat availability and the bid prices. If it
is accepted, reduce the number of the available seats of the
associated leg(s).
Step 4: Termination. If there is no available seat on all legs, or all
booking requests are handled, terminate the procedure. Other-
wise, move the booking index to the next booking request, set
the time index to the arrival time of the new booking request,
and go to Step 2.
As for the simulation procedure for the control based on the
parameterized function, the major steps are listed as follows. In
general, the major difference is that no update is needed during the
booking process, although some effort is needed in advance to
determine the values of the parameters so as to construct the
revenue approximation functions for all time periods.

Step 1: Parameter Estimation. Estimate the values of the pa-
rameters of the expected revenue functions for all periods based
on (7)e(10), given the pre-determined dynamic demands.
Step 2: Initialization. Generate the dynamic booking requests of
the ODFs based on the non-homogeneous Poisson process. Set
the time index to be the beginning of the booking horizon, and
set the booking index to the first booking request.
Step 3: Booking Control. Determine whether the booking request
is accepted based on the current seat availability and the
parameterized function of the current time period as in (11). If it
is accepted, reduce the number of available seats of the associ-
ated leg(s).
Step 4: Termination. If there is no available seat on all legs, or all
the booking requests are handled, terminate the procedure.
Otherwise, move the booking index to the next booking request,
set the time index to the arrival time of the new booking
request, and go to Step 3.
4. Numerical experiment

4.1. Design of test problems

The numerical experiment was based on a small network shown
in Fig. 2. The network and the demand arrival patterns are similar to
those in Klein (2007), but the fares, the capacities, and the booking
horizon have been modified. As only the one-way movement is
considered (from left to right), there are 5 OD pairs in the small
network. In addition, it is assumed that there are 4 fare classes,
which lead the number of ODFs to be 20. The associated fares are
provided in Table 1.

The capacities of the short-haul legs (A-Hub and B-Hub) are set
as 10, and that of the long-haul leg (Hug-C) is 20, so the optimal
control based on the DPmodel of (1) and (2) is solvable. The ratio of
the single-leg demand to the multi-leg demand is 4:6. Among the
fare classes, the shares of Y, M, B, and K (from the highest to the
lowest) are based on the ratios of 1, 2, 3, and 4, respectively.

As for the dynamic characteristics of the demand, the booking
requests of the four fares are generated based on the demand in-
tensities illustrated in Fig. 3 for all originedestination pairs. In



Table 1
Fare information of ODFs.

A/Hub B/Hub Hub/C A/Hub/C B/Hub/C

Y 400 400 2000 2040 2040
M 300 300 1500 1530 1530
B 200 200 1000 1020 1020
K 100 100 500 510 510
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particular, in order to apply the DPmodel used in the optimal policy
of (1) and the control based on the parameterized functions of (7)e
(11), the booking horizon (18 time units) is divided into 144 time
periods in a reverse fashion. That is, the period t ¼ 144 is the
beginning of the booking horizon, and the period t ¼ 1 is the one
right before departure. By adjusting the values of the parameters
representing the maximum arrival rates (lmax in Fig. 3), the overall
ratio of demand to supply is set at about 1.3. Thus, there is room for
RM to improve the expected revenue as the flight capacities are not
sufficient to serve all requests. In particular, since the high-fares
booking requests tend to arrive late, the revenue loss is likely to
be significant, if no RM measure is taken.

4.2. Simulation results

The generated booking requests based on the non-
homogeneous Poisson process serve as the input of the simula-
tion experiment. For the bid price control, the following five update
frequencies are used: 0, 1, 3, 17, and 35. In particular, the updates of
the bid prices are assumed to be evenly distributed within the
booking horizon. Given that the total number of periods is 144,
these update frequencies correspond to the update intervals of 144,
72, 36, 8, and 4 periods, respectively. Thus, for the example of 3
Fig. 3. Demand arrival patte
updates, the LP model of (4)e(6) is solved to derive the new bid
prices in the periods where t ¼ 108, 72, and 36.

In addition to the control based on the parameterized functions
presented in Sub-section 3.2, the optimal control based on the DP
model of (1) and the first-come-first-served (FCFS) policy are also
tested to serve as the basis for performance evaluation. The results
based on 30 simulation runs are shown in Tables 2 and 3.

From these results, it can be seen that the method based on the
parameterized function can achieve performance close to that
based on the optimal control policy. The gap is only 2.3%, which
implies that most of the RM benefit has been caught, given that the
gap between the optimal control and the FCFS policy (effectively
without any RM control) is 17.1%. This result provides some support
to the parameterized function method for serving as a promising
alternative approach for the network RM control, in particular if its
update-free advantage is further taken into account.

As for the bid-price control approach, it has been found that the
update mechanism is effective in raising the expected revenue.
However, the marginal return is diminishing with respect to
additional updates. For example, the revenue gap is reduced from
4.1% only to 3.6% when the number of updates within the 144 pe-
riods is increased from 3 to 17. This observation is consistent with
the finding in Jasin and Kumar (2012). In addition, there is a limit
regarding how much the update frequency can improve the ex-
pected revenue. Although 35 updates (i.e., an update for every
4 periods) have been made, the revenue loss with respect to the
optimal control can only be reduced to 3.2%, which is still more
than that of the parameterized function method.

The other interesting finding concerns the variation in revenue,
which is represented by the standard deviations in Table 2. In
particular, the ratios of the standard deviations with respect to the
optimal control for various policies are shown in Table 4. The
optimal control can achieve the highest expected revenue, but its
rns of the fare classes.



Table 2
Average revenue for various policies in the simulation.

Revenue FCFS Optimal DP Parameterized function Bid price (update frequency)

0 1 3 17 35

Mean 18,060 21,789 21,289 19,878 20,417 20,892 21,006 21,081
Standard deviation 2745 3611 2800 3249 3376 3602 3451 3291
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revenue variation is also the highest. When compared with the
series of the bid-price policies, the method based on the parame-
terized function results in a more stable performance, which is
supported by the small standard deviation of the revenue that is
close to the one based on the FCFS policy.
5. Conclusions

In view of the current popularity of the hub-and-spoke opera-
tions, the network version of the RM problem has become more
important. However, due to the problem’s complexity and the
associated computational load, it is impossible to derive the
optimal control for a problem of practical size based on the classic
DP approach. The focus of this study is thus to examine the re-
solving issue of the popular bid price method, in which the static
linear programming problem must be solved repeatedly so as to
take into account the dynamic features of the problem. This study
has performed a simulation experiment to examine the impact of
the re-solving frequency and has compared the results with the
control method based on the parameterized function, in which no
re-solving is involved.

Based on the results of the simulation experiment, it was found
that the performance of the method based on the parameterized
function is very good, given the results according to the optimal
control and FCFS policies as the basis for comparison. In particular,
if its update-free advantage is further taken into account, the
parameterized function method should be a promising alternative
approach for the network RM problem. As for the bid-price control
method, a high re-solving frequency is needed for a similar result;
otherwise, the revenue is significantly reduced. The other inter-
esting finding was that the method based on the parameterized
function can achieve a relatively stable performance in terms of
revenue variation.

One major extension of this study would be to perform a large-
scale simulation experiment based on the real network and data
from of the airlines. In particular, more demand profiles arising
from different market characteristics can be tested to derive a
better understanding of the various control methods. For a problem
of that scale, it is impossible to derive the optimal control based on
Table 3
Comparison with the optimal control for average revenue.

FCFS Parameterized
function

Bid price (update frequency)

0 1 3 17 35

Average as a
Percentage

�17.1% �2.3% �8.8% �6.3% �4.1% �3.6% �3.2%

Table 4
Comparison with the optimal control for revenue variation.

FCFS Parameterized
function

Bid price (update frequency)

0 1 3 17 35

Standard deviation
as a percentage

�24.0% �22.5% �10.0% �65% �0.2% �4.4% �8.9%
the DP model. However, the comparisons between the versions of
the bid-price control and the alternative approaches (such as the
control based on the parameterized functions) should be of great
interest to the practitioners.

For most RMmodels, it is assumed that the request probabilities
of the dynamic booking requests are available. However, this in-
formation is in reality unlikely to be available, or the level of detail
is below what is required by the control models. Thus, an adaptive
approach that makes the control decision based on the evolution of
the demand, instead of the pre-determined demand information,
should be more suitable for real-world applications. Therefore, the
other extension of this study is to develop an adaptive algorithm to
update the parameter estimation without the pre-determined de-
mand information.

The last extension is to incorporate the customer choice
behavior into the network RM control. In particular, it would be
even better if the interaction between the RM decision of airlines
and the choice behavior of customers can be taken into account.
Although some theoretical models have been developed, numerical
experiments with practical implications are needed to verify their
applicability to real-world problems. However, as the problem’s
complexity is further increased due to the introduction of choice
behavior, some simplifications must be made to handle the sto-
chastic and dynamic features of the problem. Re-solving the
simplified problem could remain a challenging issue when imple-
menting network RM control.
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