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Free vibration of a thin spherical shell filled with a compressible fluid is investigated. The 
interactions at the interface between the elastic structure and the compressible fluid are taken 
into account. The objective of this study is to develop a hybrid .numerical technique for the free 
vibration analysis of sound-structure interaction problems. The boundary element method is 
employed for modeling the acoustic disturbances in the cavity, while the finite element method 
is used for modeling the structural dynamics of the shell. The formulations are then combined 
into a coupled numerical scheme for the total pressure-displacement field. Natural frequencies 
and mode shapes are calculated by using the singular value decomposition algorithm. Physical 
insights into the resonance phenomena associated with sound-structure interactions are derived 
.from the comparison between the results of the thin spherical shell, with and without the fluid 
loading effect. 

PACS numbers: 43.40.Ey 

INTRODUCTION 

For an elastic structure filled with a compressible fluid, 
interactions exist between the acoustic field of the fluid and 

the vibration field of the structure. In most cases, the dy- 
namic response of a structure in contact with a fluid can be 
determined as if the structure were vibrating in vacuo be- 
cause the radiation loading exerted by the fluid is generally 
small enough to have a negligible effect on the structural 
vibrations. Radiation loading significantly ....... '- - mooroes the mo- 

tion of a structure only under exceptional circumstances, 
e.g., when a volume of air is confined in a small enclosure, 
when the structure is relatively light, or when an elastic 
structure is submerged in a heavy fluid. On these occasions, 
the elastic structure and the acoustical field cannot be 

treated as uncoupled systems and must be solved simulta- 
neously. 

There has been ongoing research on the subject of 
sound-structure interactions. To name a few, the sound- 
structure interaction problem was explored by Faran in 
1951 who used the method of separation of variables to 
derive closed form solutions for acoustic fields scattered by 
elastic solid cylinders and spheres. • Then, Junger used an 
analytical approach to solve acoustic fields scattered by 
thin elastic shells. 2 Instead of analytical approaches, Chen 
and Schweikert applied numerical methods to analyze 
fluid-structure interactions for arbitrarily shaped bodies 
submerged in an infinite medium. 3 In 1977, Zienkiewicz, 
Kelly, and Bettess proposed a finite element method 
(FEM)-based formulation for coupled systems. 4 Then, 
Wilton solved an exterior fluid-structure interaction prob- 
lem by coupling the boundary element method (BEM) 
and the FEM. • More recently, an analysis was presented 
by Wu for analyzing radiation and scattering problems as- 
sociated with submerged elastic axisymmetric bodies. 6 

The aforementioned research efforts all fall into the 

category of exterior problems when the structures are sub- 
merged in fluids. This does not preclude the importance of 
interior sound-structure interaction problems, where the 
structures may contain fluids in their interiors. There are 
many situations in which the interior problems of sound- 
structure interactions may be of importance, such as ram- 
jet engines, nuclear reactors, and pressure vessels. Al- 
though the literature concerning the interior problems of 
sound-structure interactions is not as ample as that of the 
exterior counterpart, similar numerical techniques can still 
be applied to calculate the total response of a containing 
elastic structure. Of particular interest in this study is the 
development of a hybrid numerical method for the free 
vibration analysis of structures filled with compressible flu- 
ids. While the numerical technique is developed in a rather 
general form, a thin spherical shell container is chosen in 
the simulation to verify the algorithm not only because it 
interacts more strongly with the contained fluid compared 
with the thick shell, but also because its analytical solution 
is more tractable than the other odd-shaped structures. 
Nevertheless, the numerical simulation is conducted with- 
out taking the advantages of symmetry. The method de- 
veloped thus can be applied to problems of arbitrary ge- 
ometries where analytical solutions are in general not 
available. 

The objective of this research is twofold: first, to dem- 
onstrate the implementation of the coupled FEM-BEM 
technique; and, second, to explore the sound-structure in- 
teraction behavior via an extensive numerical simulation. 

The free vibration analysis has three steps. First, the acous- 
tic field enclosed by a rigid spherical boundary is analyzed 
by BEM. Next, the free vibration of a thin spherical shell in 
vacuo is analyzed by FEM. Finally, the free vibration of 
the containing thin spherical shell subjected to loading ef- 
fects is analyzed by the coupled BEM-FEM technique. An 
algorithm based on singular value decomposition (SVD) is 
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FIG. 1. Schematic diagram for an interior boundary value problem of the 
acoustic field in an enclosure. 
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developed for efficiently searching for the natural frequen- 
cies and mode shapes of the coupled system. Physical in- 
sights are derived from the results of the spherical shell 
with and without the fluid loading. 

I. ANALYSIS OF THE ACOUSTICAL SYSTEM 

From the theory of linear acoustics, a monochromatic 
sound field in an inviscid and compressible fluid is de- 
scribed by the Helmholtz equation 7 

(V2 + k2)p(x)=0, ( 1 ) 

where k=co/c is the wave number (co and c are, respec- 
tively, the angular frequency and the speed of sound). The 
radius of the spherical enclosure is a. The interior acoustic 
field has the general solution 

p(x,n,m ) = [Anm cos(m•b) 

-3- Bnm sin(mr) ]P•n (cos O)jn(kr), (2) 

where A nm and Bnm are arbitrary constants to be deter- 
mined by boundary conditions, P•n is the associated Le- 
gendre polynomial (rn<n), and Jn is the spherical Bessel 
function of the first kind of order n. 

Alternatively, the solution of the interior boundary 
value problem of the acoustic field of Fig. 1 can be ex- 
pressed as the Kirchhoff-Helmholtz integral 

a(xp)p(xp) = G(xp,Xq) •nqp(Xq) 

a ) --p(Xq) •q G(Xp,Xq) dS, (3) 
where 

1, x•,• V, 
a(x•,)= fl(xp)/4rr, x•,•S 

0, x• V' 

[q•(xp) is the solid angle at the point xp], 8 
G(xp,Xq)=exp(ikr)/4•r is the free-space Green's func- 
tion, the position vectors xp and Xq denote the field point 
and the source point, respectively, the distance 
r=lxp--Xq[, and the directional directive O/Onqmnq. V 

FIG. 2. The thin spherical shell and spherical coordinates. 

with n e being the outward normal to the surface S. 
With the field point taken to the boundary S, Eq. (3) 

becomes a boundary integral equation, which can further 
be discretized into a matrix form 9 

AP--BPn=0, (4) 

where P is the acoustic pressure vector and Pn is the acous- 
tic pressure gradient vector. Here, Eq. (4) constitutes the 
main equation for the acoustical subsystem. For some sub- 
tle points involved in the numerical implementation, such 
as fictitious frequencies, nonsmooth boundaries, and singu- 
lar elements, one may consult the related literature (e.g., 
Ref. 9). 

II. ANALYSIS OF THE STRUCTURAL SYSTEM 

A. Analytical solution of the thin spherical shell in 
vacuo 

Consider a thin spherical shell of thickness h and ra- 
dius r m (h •rm), as shown in Fig. 2, with the material 
properties: the mass density Ps, the Young's modulus E, 
and Poisson's ratio v. From the Love-Kirchhoff 

theory lø-12 of thin shells, the simplified shell equations for 
monochromatic motions based on axisymmetry are 

Luuu + Luww+ fl2u = 0, (5) 

Lwuu + Lwww + l•2w = --q( 1 -- v 2) r2m/Eh, (6) 
2 2 

where the nondimensional frequency 1•2=co r2m/C•, 
% = [E/( 1 -- v 2) pj 1/2 is the phase velocity of compressible 
waves, q is the normal stress acting on the middle surface, 
and the differential operators Luu, Luw, Lwu, and Lww are 
defined as 

Luu=(l_+_y2)((l_r12)1/2 d2 ) •2 (1-T]2)1/2-+-(1-¾) , (7) 

tuw=(1--V:•) 1/:• [72(1--v) -- (1 +v)l•-•+y 2 • V , 
(8) 
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d •2 1/2 Lwu =-- [y2(1--•)--(l+•)]•(1-- ) 

-3- •2V• •-• ( 1 -- T]2) 1/2 , (9) 
2--2(1+v), (10) 

with 

•-- 12•m, V•--sin 0 •0 sin 0 •sin 2 0 O• •' 
(11) 

: d d 
v•=• (•-•:) d•' 

The free vibration of the spherical shell can be analyzed in 
terms of P.(•), the Legendre polynomial of the first kind 
of order n: 

u(•/)= • Un(1--•12) 1/2dPn(*l) .=0 d•/ ' (12) 

w(•l)- • W.P.(•I). (13) 
n=0 

Hence, the expansion coefficients U. and W. must satisfy 
the relations 

[f•2-- (1 + y2) (¾+,• n-- 1)JUn 

- [•(v+z•- •) + ( • +v) ] w•=o, (•4) 

A.[f(v+A.- 1)+(1 +v)JUn 

-- [•2--2( 1 +v)--•Xn(v+X n-- 1 )] Wn=O, (15) 

where A. n (n + 1 ). The determinant of the coe•cients 
must vanish for nontrivial solutions of the unknowns Un 
and W.. This leads to the frequency equation 

•4-[ 1 + 3v+A.+d(A. 1)(•. 1 +v) ]•2 

- (•. 2) (1-•) + d(•.- 2) [ (•. 1)2-•] =0. 
(16) 

Each mode associated with an index n > 0 corresponds to 
two distinct branches of resonant frequencies. However, 
for n=0 corresponding to what is called the breathing 
mode, only one real frequency exists. On the other hand, 
for nonaxisymmetric torsional modes, another frequency 
equation reads 

n2-n2•=o, (•7) 
where •. = [• ( n + 2 ) ( n - 1 ) ( 1 + • ) ( 1 - v ) ]•/2. 

B. The numerical method (FEM) 

Standard FEM formulation of an elastic structure 

yields the matrix equation for harmonic motions, 13 

(K+koC--w2M)U=R, (18) 

where K, C, and M are, respectively, the stiffness matrix, 
damping matrix, and mass matrix; R is the external force 
vector; and U is the displacement vector. The matrices K, 

FIG. 3. The six-node and eight-node degenerate shell elements. 

C, M, and R are assembled from the matrix for the element 
e as 13 

K= ZK (e)-- •e fIA •tE•dV' (19, e e) 

C = Z c(e)--- •e f [l.L•tl• dV, (20, e V (e) 

M-- •e M(e)= •e L ps•tX• dV, e) 
(21) 

and 

R= Z R(e) 
e 

•tb dV+ •,Itq dS+ Z Fi, = Z e) (e) e i=1 

(22) 

in which B is the strain-displacement matrix, E is the 
stress-strain matrix, N is the shape function matrix, b is the 
body force vector, q is the traction vector, F i is the con- 
centrated force vector, and Ps and p are the mass density 
and damping factor of the structure, respectively. 

In principle, a three-dimensional elasticity problem 
can be modeled by solid elements that are, unfortunately, 
not suited for the thin shell considered here because of its 

exceedingly large aspect ratios. TM In fact, spherical shell 
elements happen to be among the structural elements the 
most difficult clements to &sign in implementing FEM 
codes. Special types of six- and eight-node degenerate 
curved shell elements in Fig. 3 are thereby employed for 
the analysis of the thin spherical shell. The details can be 
found in Refs. 15 and 16. 
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III. FREE VIBRATION ANALYSIS OF THE COUPLED 
SYSTEM 

A. Analytical solution of the coupled system 

A modal matching method is used for obtaining the 
analytical solution of the coupled fluid-shell system. Con- 
sider the forced vibration of the thin spherical shell sub- 
jected to a harmonic excitation pressure q=f(r/)exp(kot), 
which can be expanded in terms of the Legendre polyno- 
mials Pn (r/) as 

f(r/)= • fnPn(•7). (23) 
n=0 

Substituting Eq. (23) into the equations of motion (5) and 
(6) gives 

[112--( 1 q- y2) (vq-Xn-- 1)]Un 

-- [72(v+•n -- 1) + ( 1 +v) ] Wn=0, (24) 

An [72(vq-An - 1 )+ ( 1 +v)] Un 

--[112--2( 1 +v)--y2•n(v+• n-- 1) ] Wn 

= [ (1--v2)•/Eh ]f n . (25) 
For the sound-structure interaction problem, the excita- 
tion pressure q should be replaced by the negative of inter- 
face acoustic pressure --Pi: 

irozWl=, (26) 
n=0 

where zn = ip•jn (kri)/j • (kri) denotes the interface acous- 
tic modal impedance. Direct comparison of Eqs. (23) and 
(26) reveals that fn = pjcwjn(kri)/j}(kri)Wn. Thus the 
frequency equation turns out to be 

( l p•c jn(kr') )114 w p• j;(kri) 

-( 
1 p•c Jn(kri) ) + (1 +y2) (gn_ 1 +v) 112 
co psh j;(kri) 

-- (gn--2) ( 1--v 2) +y2(gn-- 2) [ (gn-- 1)2--v 2 ] =0. 
(27) 

The natural frequencies 11 of the coupled sound-structure 
system can be solved by iteration methods in conjunction 
with the solutions of the shell in vacuo as the initial 

guesses. 

B. The interface conditions 

In order to couple the matrix equations of the acous- 
tical and structural subsystems, the compatibility at the 
interface must be considered. First, the surface velocity of 
the structure and the particle velocity of the fluid at the 
interface along the normal direction must be equal. Sec- 
ond, the normal stress of the elastic structure must equal 

the acoustic pressure at the interface. The compatibility of 
velocity and stress in tangential directions at the interface 
is not imposed because the fluid is assumed to be inviscid. 

If the interaction force is treated as the excitation to 

the structure, Eq. (18) can be modified into 

( K q- icoC--co2M) U = Rex t -i- Rint, (28) 

where Rex t denotes the externally applied force vector and 
Rin t denotes an equivalent acoustic force vector acting on 
the surface of the structure. 

The major step of coupling the acoustical and struc- 
tural subsystems in Eqs. (4) and (28) is accomplished 
through the use of two coupling matrices L and T (Refs. 5 
and 17): 

Rin t = LP ( 29 ) 

and 

Pn = -- ipffoTU. (30) 

The former represents the acoustic pressure and the latter 
represents the pressure gradient (or, equivalently, the par- 
ticle velocity) obtained from the Euler's equation along the 
normal direction at the interface. 

C. The coupled system matrices 

As mentioned previously, when the interaction be- 
tween the fluid and the structure is not negligible, the dy- 
namic characteristics of the coupled system must be solved 
simultaneously. Various approaches can be utilized to form 
the coupled system equations. One may either substitute 
the acoustical system equations into the structural system 
equations (termed the structural variable approach), sub- 
stitute the structural system equations into the acoustical 
system equations (termed the acoustical variable ap- 
proach), or assemble both subsystem equations into a com- 
plete set of system equations (termed the mixed variable 
approach). In this study, the structural variable approach 
is adopted because it is less computationally expensive than 
the others. From Eqs. (4), (29), and (30), the interaction 
force vector can be written as 

Rin t = -- ipffoLA- 1BTU. 
Then, substituting Eq. (31 ) into (28) leads to 

(31) 

(K+iooC--co2M+ipffoLA-•BT)U=Rext. (32) 
In Eq. (31), let ipffoLA-iBT=icoRa--co2Rm (R a and R m 
are the added damping and mass matrices, respectively, 
which may alter the frequency response of the coupled 
systemS). A coupled system equation in terms of structural 
displacements is then obtained: 

[K +ko(C+ Rd) --co2(M + Rm) ]U=Rext. (33) 

For undamped free vibrations, the matrix equation of the 
coupled system obtained from the structural variable ap- 
proach can be written as 

[K-co2(Mq-Rm) ]U=0. (34) 

This is the main equation intended for the analysis of the 
coupled sound-structure system. It should be noted that 
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FIG. 4. The mesh types used in BEM and FEM for the free vibration 
analysis of the thin spherical shell. (a) Mesh type A (32 elements and 66 
nodes)' (b) mesh type B (72 elements and 146 nodes)' (c) mesh type C 
(96 elements and 194 nodes). 

Eq. (34) is a nonstandard eigenvalue problem since the 
added mass matrix a m is a function of frequency 

D. The numerical scheme of searching for natural 
frequencies and mode shapes 

Searching for natural frequencies and mode shapes of 
the coupled sound-structure system amounts to solving the 
eigenvalue problem represented by Eq. (34). Frequencies 
that render the system matrix singular correspond to the 
eigenvalues and the nontrivial solutions correspond to the 
eigenvectors. This eigenvalue problem of the coupled sys- 
tem differs from that of the structure in vacuo in that the 

latter is a standard eigenvalue problem Ax=,;tx, but the 
former is not. For such a nonstandard eigenvalue problem, 
the eigenvalues are embedded in the coefficient matrices, 
which obviously poses difficulties for ordinary numerical 
eigenvalue solvers. It is thus desirable to develop a numer- 
ical scheme for the eigenvalue analysis of the sound- 
structure interaction problem. To this end, two approaches 
termed the method of determinant search and the method 
of singular value decomposition (SVD) are employed. 

Let •(to)=[K--w2(M+Rm)] ß In the method of de- 
terminant search, one seeks to determine the eigenvalues 
by incrementally varying the angular frequency to such 
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that the matrix D(to) becomes singular. This amounts to 
finding the angular frequency toe, e= 1,2,..., such that the 
determinant of D(to) vanishes. In practical implementa- 
tion, one can locate only the local minima of the determi- 
nant of D(to) for the eigenvalues because it is virtually 
impossible for D(to) to become numerically singular. 

On the other hand, the method of SYD involves 
searching for the frequencies at which the minimum sin- 
gular value of the coefficient matrix reaches local minima. 
From linear algebra, the following decomposition of the 
matrix fi exists: 18 

(35) 

Here h denotes the Hermitian transpose, U and V are both 
NX N unitary matrices and are composed of N orthogonal 
column vectors ui and vi, and ß is a diagonal matrix: 

!tri•0, i--j, tri's are singular values, 
•ij= {0, otherwise. 

If the matrix D is almost singular, then the last one or 
more singular values must be nearly zero. In order to ex- 
tract the eigenvalues toe, the angular frequency to is incre- 
mentally varied with the step size Ato. Each D(to) corre- 
sponding to different to is processed by the SVD algorithm 
and the minimal singular value tr n is compared with those 
obtained from the other iterations. If the minimal singular 
value tr n of the matrix D(to) reaches a local minimum with 
respect to the angular frequency to, then this angular fre- 
quency to is accepted as a desired eigenvalue (although the 
minimal singular value tr n may not be numerically zero). 
Once a possible interval of eigenvalues has been located, 
optimization schemes such as the Golden section search 19 
can then be used to efficiently calculate more accurate ei- 
genvalues. Parallel to searching for eigenvalues, the eigen- 
vectors (or mode shapes) are obtained without additional 
effort. This is accomplished by a simple observation: 
Whenever a singular value % vanishes, the fight singular 
vector vi of D can be regarded as a legitimate eigenvector. 
This feature of SVD for finding linearly independent eigen- 
vectors is particularly attractive when there are repeated 
eigenvalues (which are frequently encountered in problems 
of high degree of symmetry). 

TABLE I. Nondimensional natural frequencies I1--tOrm/C p of the thin 
spherical shell. (E--1.9X10 TM Pa, ¾--0.3, ps--7700 kg/m3; case 1: 
h/rm=O.002; case 2: h/rm-O.01' case 3: h/rm=O. 1; case 4: h/rm=0.2.) 

Mode 

order 

Case n Exact Mesh A Mesh B Mesh C 

1 1 0.0000 0.0000 0.0000 0.0000 

1 2 0.7009 0.7103 0.7041 0.7026 

1 3 0.8300 0.8904 0.8473 0.8395 

2 1 0.0000 0.0000 0.0000 0.0000 

2 2 0.7010 0.7104 0.7038 0.7028 

2 3 0.8304 0.8912 0.8419 0.8403 

2 4 0.8820 ...... 0.9145 

3 1 0.0000 0.0000 0.0000 0.0000 

3 2 0.7079 0.7190 0.7153 0.7101 

3 3 0.8731 0.9460 0.9195 0.8855 

3 4 1.0137 ...... 1.0592 

4 1 0.0000 0.0000 0.0000 0.0000 

4 2 0.7281 0.7393 0.7312 0.7292 

4 3 0.9895 1.0526 0.9982 0.9846 

4 2 1.1676 1.1930 1.1795 1.1766 

4 4 1.3307 '" 1.3585 1.3089 

0.002, 0.01, 0.1, and 0.2. In considering numerical accu- 
racy as well as efficiency, numerical integration is carried 
out by using 2 X 2 Gauss points in the middle surface (an 
increased number of Gauss points, say, 3 X 3, may result in 
an overstiff system, which is called the shell locking 
phenomenonl3). Table I summarizes the analytical solu- 
tions and the numerical results of the natural frequencies 
for the several lowest modes. It is evident that the error of 

the numerical results is reduced as the number of elements 

is increased. In addition, case 4 shows the natural frequen- 
cies of some torsional modes which can only be obtained 
by sufficiently fine meshes (i.e., meshes B and C). 

The mode shapes of the first natural mode (with mul- 
tiplicity 5) of the spherical shell with the thickness to ra- 
dius ratio 0.01 calculated by using SVD (based on the 
mesh type A) are shown in Fig. 5. It is observed from these 
figures that the spherical shell is deformed into a spheroi- 
dal shell. These calculated mode shapes will be compared 
with those of the containing thin spherical shell in the 
discussion of the coupled sound-structure system. 

IV. NUMERICAL INVESTIGATIONS 

A numerical simulation is undertaken to verify the 
developed BEM-FEM technique. The dynamic character- 
istics between the thin spherical shells (with and without 
the fluid loading) are compared. Quadratic triangular ele- 
ments are used to construct the mesh on the interface for 

both the BEM and FEM. The mesh configurations of the 
BEM and FEM used in the simulation are shown in Fig. 4. 
The mesh types A, B, and C consist of 32, 72, and 96 
elements and 66, 146, and 194 nodes, respectively. 

A. The spherical shell in vacuo 

The free vibration of the thin spherical shell is ana- 
lyzed by the FEM. The effects of the thickness to radius 
ratio and type of mesh on the results are investigated in the 
simulation. The thickness to radius ratios selected are 

B. The spherical shell filled with a compressible fluid 

In this section, a free vibration analysis is presented to 
explore the contributing factors that affect the interactions 
between the structure and the fluid. 

First, the effect of thickness to radius ratio is investi- 
gated. Consider a spherical shell made of steel and filled 
with water. The material properties and physical dimen- 
sions are rm--1.0 m, E= 1.9X 10 TM Pa, v=0.3, ps=7700.0 
kg/m 3, p f--1000.0 kg/m 3, and c= 1460.0 m/s. Three 
kinds of thickness to radius ratios, h/rm=O.002, 0.01, and 
0.2, are chosen for the numerical simulation. The results of 
the minimum singular values are plotted against the non- 
dimensional natural frequency/1 =torm/% in Fig. 6 for the 
case of thickness to radius ratio 0.01. The natural frequen- 
cies of the first two natural modes of the shell, with and 
without the fluid loading, obtained independently from the 
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FIG. 5. The three-view diagrams of the normalized mode shapes corre- 
sponding to the first natural frequency of the spherical thin shell in vacuo 
(h/rm=O.01, E= 1.9X l0 ll Pa, v--0.3, ps--7700 kg/m3). (a) •--0.7072; 
(b) 1•--0.7105; (c) 1•--0.7111; (d) 1•--0.7111; (e) 1•--0.7121. 
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2.0E+6 

• 1.5E+6 
'• I.OE+6 

i I 
ß 

O.OE+O , , , , 
0.0 0.1 0.•2 0.3 0.4 0.5 

nondimensional frequency 

TABLE II. Nondimensional natural frequencies •--OJrm/C.p of the thin 
containing spherical shell filled with water. (E=l.9X10 ll Pa, v=0.3, 
ps=7700 kg?m 3, pf--1000 kg/m 3, c= 1460 m/s; case 1:h/rm=O.002; 
case 2:h?rm=O.01; case 3: h?rm=0.2.) 

Mode Spherical shell Coupled system 
Mesh order 

Case type n exact numerical exact numerical 

1 A 2 0.701 0.710 0.141 0.146 

1 A 3 0.830 0.890 0.186 0.204 

1 B 2 0.701 0.704 0.141 0.142 

1 B 3 0.830 0.848 0.186 0.192 

2 A 2 0.701 0.710 0.286 0.293 

2 A 3 0.830 0.891 0.373 0.419 

2 B 2 0.701 0.704 0.286 0.288 

2 B 3 0.830 0.847 0.373 0.389 

3 A 2 0.728 0.739 0.623 0.635 

3 A 3 0.990 1.053 0.868 0.916 

3 B 2 0.728 0.731 0.623 0.628 

3 B 3 0.990 0.998 0.868 0.883 

• 6.0E+5 

'• 4.0E+5 

i 2.0E+5 

O.OE+O , • , , , • , • , 
0.0 O.l 0.:2- 0.3 0.4 0.5 

nondimensional frequency 

(b) 

FIG. 6. Minimum singular values plotted against the nondimensional 
frequency f• of the containing spherical thin shell (h/rm=O.01, 
E-- 1.9X 10 • Pa, v--0.3, ps--7700 kg/m 3, pf= 1000 kg/m 3, c= 1460 
m/s). (a) Mesh type A; (b) mesh type B. 

analytical and numerical methods are compared in Table 
II. From the results, it is observed that the natural frequen- 
cies of the coupled system are lower than those of the 
structure in vacuo. Significant decrease of natural frequen- 
cies occurs for very thin shell structures that interact 
strongly with the contained fluids. This can be attributed to 
the added mass effect resulting from the radiation reac- 
tance of the interior acoustic field. 

The multiplicity of an eigenvalue of the coupled sys- 
tem can be determined by the number of singular values 
which are closer to zero in comparison with the others. In 
some cases, repeated eigenvalues spill over within a small 
interval of wave numbers. Great care has to be taken in 

determining the multiplicity of eigenvalues which may be 
the sum of the multiplicities of several proximate local 
minima within a small interval located by SVD. Suffi- 
ciently small step size of wave number is generally required 
for finding a complete set of multiple eigenvalues. For ex- 

ample, the singular values in the neighborhood of the first 
natural frequency (approximately 0.29) of the containing 
shell with the thickness to radius ratio 0.01, calculated by 
using the mesh type A, are shown in Fig. 7. It can be seen 
from the number of singular value dips, the multiplicity of 
this natural frequency is 14- 1 4- 2 4- 1 = 5. The mode shapes 
of the same case are shown in Fig. 8. Comparison of the 
mode shapes in Fig. 5 with those in Fig. 8 shows great 
resemblance of the shell responses, with and without the 
fluid loading. 

In addition to thickness to radius ratio, the effect of the 
material properties also plays an important role in the 
sound-structure interaction problems. In the following 
simulation cases, the thickness to radius ratio is maintained 
constant for comparing the interaction effects due to dif- 
ferent kinds of fluids. Consider a containing spherical shell 
having the following material properties: rm=l.0 m, 
h/rm=O.01, E=7.0X 10 •ø Pa, v=0.33, ps=2710.0 kg/m 3. 
In order to evaluate interactions in a more quantitative 
manner, a coupling index 2ø G ( = pfc2S/(rn) V, where (rn) 
is the average structural mass per unit area, S is the surface 
area, and V is the volume) is calculated for each case. Five 
kinds of fluids corresponding to five different orders of 
coupling (see Table III) are chosen for the simulation. 
Among these five cases, the first three cases are for air of 
low temperature and low pressure, high temperature and 
low pressure, and high temperature and high pressure sit- 
uations, respectively. The fluids of the last two cases are for 
pure water and mercury. The first two natural modes of the 
coupled systems are calculated for each case, by using the 
BEM-FEM algorithm. The analytical and numerical solu- 
tions of the natural frequencies of the shells with and with- 
out the fluid loading are compared in Table IV. As re- 
flected by the coupling index, it is found that the 
interaction between the shell and the fluid of very low 
density and sound speed is almost negligible. On the other 
hand, for air of high temperature and high pressure in case 
3, significant changes of natural frequencies occur. This 
suggests that preventive measures must be taken against 
the damages caused by strong sound-structure interactions 
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FIG. 7. Singular values of the containing thin spherical shell, corresponding to the first natural frequency. The y coordinate is plotted in the log scale. 
(a) •=0.2916; (b) •=0.2930; (½) •=0.2938; (d) •=0.2941. (h/r,•=O.01, E= 1.9X l0 ll Pa, ¾=0.3, p,=7700 kg/m 3, pœ--1000 kg/m 3, c--1460 
m/s.) 

for thin-walled structures containing high temperature and 
high pressure gases, such as ramjet engines, pressure ves- 
sels, and nuclear reactors. 

In summary, the structure and fluid can be approxi- 
mately treated as uncoupled systems for the situations of 
weak interactions. The natural frequencies of the fluid- 
loaded structure resemble the original structure in vacuo. 
On the other hand, the natural frequencies of the fluid- 
loaded structure are generally different from those of the 
original structure in vacuo for the situations of strong in- 
teractions. The shift of natural frequencies depends entirely 
on the degree of interactions, as reflected by the coupling 
index. 

V. CONCLUSIONS 

A hybrid numerical technique based on BEM and 
FEM has been developed to extract the natural frequencies 
and mode shapes of coupled fluid-structure systems. While 
use of this technique is not limited to simple geometries, 

the free vibrations of elastic thin spherical shells containing 
compressible fluids are investigated in a simulation because 
of the availability of analytical solutions. The physical in- 
sights derived from the simulation results can be summa- 
rized as follows. 

For situations of strong interactions (e.g., a thin spher- 
ical shell containing a liquid or a gas of high temperature 
and high pressure), the dynamic characteristics of the cou- 
pled fluid-structure system can be significantly different 
from the original subsystems because of the fluid loading, 
while for situations of weak interactions, the coupled sys- 
tem can approximately be regarded as uncoupled systems. 
From the comparison of the natural frequencies of the shell 
with and without the fluid loading, it can be observed that 
the more strongly the structure interacts with the fluid, the 
larger the shifts of natural frequencies. For instance, the 
thickness to radius ratio is an important parameter in con- 
sidering sound-structure interactions. Strong interactions 
may arise when a very thin shell is filled with a heavy fluid. 
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FIG. 8. The mode shapes of the first natural frequency of the containing 
thin spherical shell. (a) II--0.2916; (b) II--0.2930; (c) II--0.2938; (d) 
I1----0.2938; (e) I1----0.2941. (h/rm----O.01 , E--1.9><10 • Pa, ¾--0.3, 
ps=7700 kg/m 3, pœ• 1000 kg/m 3, c---- 1460 m/s.) 
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TABLE III. Material properties and coupling indices 
G=(pjc2/{m))S/V for cases 1-5. (h/rm=O.01, E=7.0X10 lø Pa, 
v=0.33, ps--2710 kg/m3.) 

Case p f c G 

1 1.21 346 5.4 X 10 3 
2 1.21 520 1.2X 104 
3 32.31 520 3.2 X 105 
4 998 1480 8.1X 107 
5 13 600 1450 1.1X 10 9 

Unlike the natural frequencies, the mode shapes of the 
structure do not seem to be markedly changed inasmuch as 
the sound-structure interaction is concerned. The mode 

shapes of the fluid-loaded structure remain rather similar 
to those of the structure in vacuo with only slight differ- 
ences in the response amplitudes and torsional angles. 

The method of SVD proves to be useful in searching 
for natural frequencies of the coupled system, although it 
appears somewhat computationally expensive. More effi- 
cient algorithms may be sought to deal with this nonstand- 
ard type of eigenvalue problems. 

The numerical results illustrated in this paper are lim- 
ited to only a few of the lower-order natural frequencies, 
not only because the computation requires enormous CPU 
time, which is beyond the computer resources available, 
but also because the FEM codes for the thin spherical shell 
developed in this study do not seem robust enough for 
extracting higher-order modes. In any event, one ought to 
recognize the fact that these types of numerical methods 

TABLE IV. Nondimensional natural frequencies f•=COrm/C p of the thin 
containing spherical shell filled with different media. (h/rm=O.01, 
E=7.0X 10 •ø Pa, v=0.33, ps=2710.0 kg/m3; case 1:pf=l.21 kg?m 3, 
c=346 m/s; case 2: p f--1.21 kg/m 3, c--520 m/s; case 3:pf=32.31 
kg/m 3, c=520 m/s; case 4:pf=998 kg/m 3, c=1480 m/s; case 5: 
pf--13 600 kg/m 3, c-1450 m/s.) 

Case 

Mode Spherical shell Coupled system 
order 

n exact numerical exact numerical 

1 2 0.689 0.687 0.694 0.696 

1 3 0.818 0.863 0.820 0.867 

2 2 0.689 0.687 0.682 0.696 

2 3 0.818 0.863 0.809 0.847 

3 2 0.689 0.687 0.639 0.646 

3 3 0.818 0.863 0.759 0.782 

4 2 0.689 0.687 0.181 0.186 

4 3 0.818 0.863 0.239 0.258 

5 2 0.689 0.687 0.0514 0.0529 

5 3 0.818 0.863 0.0683 0.0753 

are suited for only low-frequency analyses because of the 
limitation of resolution, e.g., the discretization spacing 
should not be greater than one half of the wavelength, as a 
rule of thumb. If high-frequency applications are of inter- 
est, one should resort to alternative approaches, such as the 
statistical energy analysis (SEA).21 

Quantitative approaches for interpreting resonance 
phenomena of coupled sound-structure systems with ref- 
erence to the degree of interaction remain to be explored 
through numerical as well as experimental investigations in 
the future. 
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