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Abstract—This paper proposes a new fuzzy neural network
(FNN) capable of parameter self-adapting and structure self-con-
structing to acquire a small number of fuzzy rules for inter-
preting the embedded knowledge of a system from the given
training data set. The proposed FNN is inherently a modified
Takagi-Sugeno-Kang (TSK)-type fuzzy-rule-based model with
neural network’s learning ability. There are no rules initiated
at the beginning and they are created and adapted through an
on-line learning processing that performs simultaneous structure
and parameter identification. In the structure identification of the
precondition part, the input space is partitioned in a flexible way
according to the newly proposed on-line independent component
analysis (ICA) mixture model. The input space is thus represented
by linear combinations of independent, non-Gaussian densities.
The first input training pattern is assigned to the first rule initially
by the on-line ICA mixture model. Afterwards, some additional
significant terms (input variables) selected by the on-line ICA
mixture model will be added to the consequent part (forming a
liner equation of input variables) incrementally or create a new
rule in the learning processing. The combined precondition and
consequent structure identification scheme can make the network
grow dynamically and efficiently. In the parameter identification,
the consequent parameters are tuned by the backpropagation rule
and the precondition parameters are turned by the on-line ICA
mixture model. Both the structure and parameter identifications
are done simultaneously to form a fast learning scheme. The
derived on-line ICA mixture model also provide a natural linear
transformation for each input variable to enhance the knowledge
representation ability of the proposed FNN and reduce the re-
quired rules and achieve higher accuracy efficiently. In order to
demonstrate the performance of the proposed FNN, several exper-
iments covering the areas of system identification, classification,
and image segmentation are carried out. Our experiments show
that the proposed FNN can achieve significant improvements
in the convergence speed and prediction accuracy with simpler
network structure.

Index Terms—Backpropagation rule, Gaussian mixture model,
non-Gaussian mixture model, principal component analysis,
Takagi-Sugeno-Kang (TSK) fuzzy rules.
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I. INTRODUCTION

I N RECENT years, the fuzzy neural network (FNN) has
found widely in industrial, commercial, and image pro-

cessing applications that require the analysis of uncertain
and imprecise information due to its nice merge of the fuzzy
inference system (FIS) and neural network (NN), which are
complementary technologies in the design of adaptive intelli-
gent systems. FIS is a popular computing framework based on
the concept of fuzzy set theory, fuzzy if-then rules, and fuzzy
reasoning. With crisp inputs and outputs, FIS implements a
nonlinear mapping from its input space to output space by a
number of if-then rules. To build a FIS, we have to specify
the fuzzy sets, fuzzy operators and the knowledge (rule) base.
The selection of fuzzy if-then rules often relies on a substantial
amount of heuristic observation to express proper strategy’s
knowledge. However, it is difficult for human experts to ex-
amine all the input-output data from a complex system to find
a number of proper rules for the FIS.

Artificial neural network (ANN) learns from scratch by ad-
justing the interconnections between layers. A valuable property
of ANN is that of generalization, whereby a trained network is
able to provide a correct matching in the form of output data
for a set of previously unseen input data. For constructing an
ANN, the user needs to specify the architecture and learning al-
gorithm. Learning mechanism of ANN does not rely on human
expertise. Due to the homogenous structure of ANN, it is dif-
ficult to extract structured knowledge from either the weights
or the configuration of the ANN. For many practical problems,
a priori knowledge is usually obtained from human experts and
it is more appropriate to express the knowledge as a set of fuzzy
if-then rules. However, it is not easy to encode prior knowledge
into an ANN.

To cope with the respective difficulties generated by ANN and
FIS, integrating them into a functional system, i.e., FNN, has
attracted the growing interest of researchers due to the growing
need of adaptive intelligent systems to meet the real world re-
quirements. The key advantage of the FNN approach over tra-
ditional ones lies on that the former doesn’t require a mathe-
matical description of the system while modeling. Moreover, in
contrast to pure ANN or FIS methods, the FNN possesses both
of their advantages; it brings the low-level learning and com-
putational power of ANN into FIS and provides the high-level
human-like thinking and reasoning of FIS into ANN [1]–[5].
The FNN solves the problems successfully which are encoun-
tered in many areas such as control, communications, pattern
recognition, etc. [6]–[9].

One important task in the structure identification of a FNN
is the partition of the input–output space, which influences the
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Fig. 1. Fuzzy partitions of two-dimensional input space. (a) Grid-type
partitioning. (b) If-then rules based on grid-type partitioning. (c) Clustering-type
partitioning. (d) If-then rules based on clustering-type partitioning.

number of generated fuzzy rules. Efficient partition of input-
output data may result in faster convergence and better perfor-
mance for FNN. The most direct way is to partition the input
space into grid types and each grid represents a fuzzy if-then rule
[see Fig. 1(a)]. It is called grid-based partitioning. The major
problem of such kind of partition is that the number of fuzzy
rules increases exponentially if the number of input variables or
that of partition increases. This is the so-called problem of curse
of dimensionality. To cope with this problem, a clustering-based
partition is employed which does reduce the number of gen-
erated rules [10]–[13]. The cluster-based algorithm provides a
more flexible way for space partition to avoid drastic increase
of fuzzy rules and thus generates the corresponding rule base
with appropriate number of rules. For example, by observing
the projected membership functions in Fig. 1(c), although the
number of membership functions in Fig. 1(d) is more than that
in Fig. 1(b), there are only five rules in Fig. 1(d); however, there
are nine rules in Fig. 1(b). By observing the projected mem-
bership functions in Fig. 1(c), we find that some membership
functions projected from different clusters have high similarity
degrees. These highly similar membership functions should be
combined to reduce the number of membership functions.

There are several methods for input space partitioning, which
are to cluster the input training vectors in the input space, such
as Kohonen learning rule, hyperbox method, product-space par-
titioning, fuzzy c-mean method, EM algorithm, etc. [15]–[18].
These methods are based on Gaussian membership functions. In
general, the observed data can be categorized into several mu-
tually exclusive classes [20], and the data in each class can be
modeled as multivariate Gaussian, called the Gaussian mixture
model (GMM). GMMs are widely used throughout the fields of
machine learning and statistics. Despite their popularity, GMMs
suffer from several serious drawbacks [14]. One major draw-

back is that if the dimension of the problem space increases,
the size of each covariance matrix, , becomes prohibitively
large. This problem has been solved by Tipping and Bishop
[21] who replaced each Gaussian with a probabilistic principal
component analysis (PCA) model. This allowed the dimension-
ality of each covariance to be effectively reduced while main-
taining the richness of the model class. However, some recent
research approaches try to reduce the information redundancy
by capturing the statistical structure in observed data that is be-
yond second-order information. Independent component anal-
ysis (ICA) is a technique that exploits higher order statistical
structure of the data. This method has recently gained atten-
tion due to its successful applications to signal processing prob-
lems including speech enhancement, discrete signal processing,
image processing, etc. The goal of ICA is to linearly transform
the data such that the transformed variables are as statistically
independent from each other as possible [22]–[26]. This means
that the value of any one of the components gives no informa-
tion on the values of the other components. Basically, it finds
directions in the input space which lead to independent com-
ponents instead of just uncorrelated ones, as PCA does, so it
reduces not only the number of rules but also the number of
membership functions under a prespecified accuracy require-
ment dynamically.

Another drawback of GMMs is that it is based on Gaussian
functions. In some situation, it could not be separated from each
other. It is generalized by assuming the data in each class are
generated by a linear combination of independent non-Gaussian
sources [12], [14], [19], [27]. This model is called the ICA mix-
ture model. This allows modeling of classes with non-Gaussian
structure; e.g., platykurtic or leptokurtic probability density
functions are used for learning and the gradient ascent method
is used to maximize the log-likelihood function. In previous ap-
plications, this approach showed improved performance in data
classification problems [28] and in learning efficient codes for
representing different types of images [12], [19]. The advantage
of this model is that it provides greater flexibility in modeling
structure and in finding more features compared with GMMs
or standard ICA algorithms. Although the ICA mixture model
has many advantages in data clustering, the proper number of
clusters should be given beforehand. Once the cluster number
is determined, we have to stick to it until independent axes are
obtained. In reality, the correct or proper number of clusters is
usually unknown, and improper assignment of cluster number
will affect the representation of learned independent axes a
lot. Moreover, the existing ICA mixture model scheme is only
suitable for off-line instead of on-line operation. Hence, to
adopt this scheme, a large amount of representative data should
be collected in advance, and the learning of ICA mixture model
usually spends a lot of time through trial and errors.

To attack the aforementioned problems, in this paper we
derive an on-line ICA mixture model to provide better and
on-line partitioning of the input-output space for FNN, and
propose a novel FNN model called ICA-mixture-model-based
self-constructing FNN. This FNN can grow its structure and
tune its parameters on the fly efficiently based on the derived
on-line ICA mixture model. Several experiments covering the
areas of system identification, classification, and image seg-
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mentation have been carried out based on the proposed FNN.
These experiments show that the proposed FNN can achieve
significant improvements in convergence speed and prediction
accuracy.

II. PROPOSED ON-LINE ICA MIXTURE MODEL

The ICA mixture model is an unsupervised classification al-
gorithm derived by modeling observed data as a mixture of sev-
eral mutually exclusive classes that are described by linear com-
binations of independent, non-Gaussian densities [27]. It is used
for learning a complete set of basis functions and these basis
functions can be learned simultaneously.

Assume that the data are drawn
independently and are to be clustered into the total number of
classes, , where is assumed to be known in advance, is
the total number of data vectors, and each data vector is

-dimensional. The component densities are non-Gaussian and
the data within each class are presented by

(1)

where is a scalar matrix, is the bias vector for class
, and is called the source vector, i.e., the coefficients for each

basis function, where and are the dimensions of the input
vector and the source vector , respectively. For simplicity,
we consider the case where the number of sources is equal to
the number of linear combinations. According to the values of

, and , there are ways for presenting . However,
we assume mutually exclusive classes and maximum-likelihood
estimation results in one model that fits the data the best [16].

The likelihood of data is given by the joint density as

(2)

where the mixture density is

(3)

where denotes the class . The goal of ICA mixture
model algorithm is to determine the parameters for each class,

, by using the maximum log-likelihood method.
Therefore, the rule to update the basis function for each
class can be written as

(4)

where the log-likelihood of the data for each class is

(5)

and the probability for each class given the data vector is

(6)

The updating rule for the basis terms is

(7)

where is the data index .
Furthermore, for the automatic switching between

super-Gaussian and sub-Gaussian models, a switching ma-
trix shown in (9) can be used; i.e., source distributions are
more peaked or less peaked than the Gaussian

(8)

where is dimensions of the source, is the th dimen-
sion of the source in the th class, and is an indicator
which allows for automatic switching between super-Gaussian
and sub-Gaussian models

(9)

The above ICA mixture model is good for clustering, but it
requires that a correct or proper cluster number should be given
in advance for a set of training data, which is usually unknown in
reality. To make the choice of proper cluster number automatic
and to let the ICA mixture model useful for on-line clustering,
an on-line ICA mixture model is first derived in this section.
In this model, there is no cluster initially. When the first data
vector is fed into it, the first cluster is generated. Then for the
following incoming data vector (pattern), the on-line ICA mix-
ture model will determine if this pattern belongs to the first (or
existing) cluster or another new cluster should be generated to
accommodate this new pattern. To make this decision, we let the
log-likelihood value calculated in (5) to represent the degree to
which the newly incoming pattern belongs to the th cluster,
i.e., . Then we define

(10)

where the superscript is the index for the maximum log-
likelihood value among all log-likelihood values and is the
total number of clusters at time . If , the cor-
responding new incoming pattern is added to the existed cluster
with index and the parameters of this cluster are updated
properly, where is a given threshold value. In this case, no
new cluster is generated. If , a new cluster will
be generated to accommodate this new pattern. The threshold
value is obtained empirically and it is a negative value.
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In the rest of this section, we shall derive the details of the
updating rules for the proposed on-line ICA mixture model. As-
sume the number of clusters at time is . Then, the mixture
probability at time is

(11)

Therefore, the posterior probability is

(12)

where is the prior probability at the preceding time
step, which can be obtained by former calculation result of the
th cluster. Hence, at this moment can be calculated by

the following:

(13)

Using the above results, we can obtain the following updating
rules for the parameters of each cluster, including basis matrix

, mean , and the criterion of data distribution
( , and ) that determine if the
distribution of data is super-Gaussian or sub-Gaussian with the
previous calculation results. They are defined as follows:

(14)

By substituting the term, , into (14),
we can rewrite (14) as follows:

(15)

Let be defined as the function of criterion which al-
lows for automatic switching between super-Gaussian and sub-
Gaussian models and then (9) can be further derived as

(16)

Fig. 2. Structure of the proposed on-line ICA-mixture-model-based FNN.

where

(17)

Finally, the independent axes representing the axis of
the th cluster can be obtained by the following updating rule:

(18)

III. STRUCTURE OF THE ON-LINE ICA
MIXTURE-MODEL-BASED FNN

In this section, a novel self-constructing FNN is developed
based on the on-line ICA mixture model derived in the last sec-
tion. The structure of the proposed FNN is shown in Fig. 2. This
five-layered network realizes a FIS of the following form:

Rule : is and and is

is (19)

where the current input data vector is is
the number of dimension, is a fuzzy set, is the center of
a symmetric membership function on , and is a consequent
parameter. It is noted that unlike the traditional TSK model
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where all the input variables are used in the output linear equa-
tion, only the significant ones are used in the proposed FNN;
i.e., some ’s in the above fuzzy rules are zero.

The FNN consists of nodes, each of which has some finite
“fan-in” of connections represented by weight values from
other nodes and “fan-out” of connections to other nodes. As-
sociated with the fan-in of a node is an integration function ,
which serves to combine information, activation, or evidence
from other nodes. This function provides the net input for this
node

(20)

where are inputs to this node and
are the associated link weights. The

superscript in (20) indicates the layer number. This notation
will also be used in the following equations. A second action
of each node is to output an activation value as a function of its
node input

(21)

where denotes the activation function. We shall next de-
scribe the functions of the nodes in each of the five layers of the
proposed FNN.

Layer 1: No computation is done in this layer. Each node in
this layer, which corresponds to one input variable, only trans-
mits input values to the next layer directly. That is,

(22)

From the above equation, the link weight in layer one is
unity.

Layer 2: Each node in this layer corresponds to one lin-
guistic value (“small”, “large”, etc.) of one of the input vari-
ables in Layer 1. In other words, the membership value which
specifies the degree to which an input value belongs a fuzzy set
is calculated in Layer 2. In contrast to the types of member-
ship functions used normally, such as triangular, trapezoidal, or
Gaussian functions, the membership functions are determined
by the on-line ICA mixture model in the proposed FNN.

In this layer, the output from Layer 1 is projected into the
independent axes obtained by the on-line ICA mixture model
(as shown in Fig. 3) such that

(23)

where and are the basis matrix and
mean vector, respectively, determined by the on-line ICA mix-
ture model, , and is the number of clus-
ters at time . That is, if the input data are classified into
clusters, the number of learned fuzzy rules will be .

With the choice of non-Gaussian membership function, the
operation performed in this layer is

(24)

Fig. 3. Input space transformation by the on-line ICA mixture model in the
structure learning of the proposed FNN. (a) The regions covered by the original
axes. (b) The regions covered by the independent axes obtained by the on-line
ICA mixture model.

where

for super-Gaussian

for sub-Gaussian

(25)

where is the transformed value of the th term of the th
input variable . The transformation can be regarded as a linear
combination of the original variables. With the transformation
of input coordinates, the rule format in (19) should be modified
as

Rule : is and

is and

is

is

(26)

where the th element of is the trans-
formation matrix for rule , and are the newly gen-
erated input variables and it is called the sources in ICA. The
linguistic implication is now implicated by the new vari-
able , which is a linear combination of the original variables.
After transformation, the region that the membership functions
cover is shown in Fig. 3(b). It is observed that the membership
functions cover distribution of transformed data well, and thus a
single fuzzy rule can associate this region with its proper output
region (consequent).

Layer 3: A node in this layer represents one fuzzy rule and
performs precondition matching of a rule. Here, we use the fol-
lowing AND operation for each Layer-2 node

(27)
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The link weight in Layer 3 is unity. The output of a
Layer-3 node represents the firing strength of the corresponding
fuzzy rule.

Layer 4: This layer is called the consequent layer. Two types
of nodes are used in this layer and they are denoted as blank
and shaded circles in Fig. 2, respectively. The node denoted by
a blank circle (blank node) is the essential node representing a
fuzzy set (described by a membership function) of the output
variable. Different nodes in Layer 3 may be connected to the
same blank node in Layer 4, meaning that the same consequent
fuzzy set is specified for different rules. As to the shaded node,
each node in Layer 3 has its own corresponding shaded node
in Layer 4. One of the inputs to a shaded node is the output
delivered from Layer 3 and the other inputs (terms) are the input
variables from Layer 1. Combining these two types of nodes in
Layer 4, we obtain the whole function performed by this layer
as

(28)

where is the center of output membership function
and is the corresponding parameter.

Layer 5: Each node in this layer corresponds to one output
variable. The node integrates all the actions recommended by
Layer 4 and acts as a defuzzifier with

(29)

IV. LEARNING RULES OF THE ON-LINE ICA
MIXTURE-MODEL-BASED FNN

Two types of learning, structure and parameter learning,
are used concurrently for constructing the proposed on-line
ICA-mixture-model-based FNN. The structure learning in-
cludes both the precondition and consequent structure iden-
tification of a fuzzy if-then rule. Here precondition structure
identification corresponds to the input-space partitioning and
can be formulated as a combinational optimization problem
with two objectives: to reduce the number of rules generated
and to reduce the number of fuzzy sets on the universe of
discourse of each input variable. As to the consequent structure
identification, the main task is to decide when to generate a new
membership function for the output variable and which signifi-
cant terms (input variables) should be added to the consequent
part (a linear equation) when necessary. In our system, we use
the on-line ICA mixture model to realize the precondition and
consequent structure identification of the proposed FNN.

For the parameter learning based on unsupervised and super-
vised learning algorithms, the parameters of the linear equa-
tions in the consequent parts are adjusted by the backpropa-
gation rule to minimize a given cost function. The parameters
in the precondition part are adjusted by the on-line ICA mix-
ture model. The FNN can be used for normal operation at any
time during the learning process without repeated training on the
input-output patterns when on-line operation is required. There

Fig. 4. Flowchart of the learning algorithm for the proposed FNN.

are no rules (i.e., no nodes in the network except the input-output
nodes) in this network initially. They are created dynamically as
learning proceeds upon receiving on-line incoming training data
by performing the following learning processes simultaneously
as shown in Fig. 4. In this figure, learning processes (1) and (2)
belong to the structure learning phase and process (3) belongs
to the parameter learning phase. In the rest of this section, the
details of these learning processes are described in details.

A. Structure Learning by the On-Line ICA Mixture Model
Algorithm

The way the input space is partitioned determines the number
of rules extracted from training data as well as the number of
fuzzy sets on the universal of discourse of each input variable.
For each incoming pattern, the firing strength of a rule (i.e., the
output of each layer2-node of the proposed FNN) can be inter-
preted as the degree that the incoming pattern belongs to the
corresponding cluster. In other words, we can use the log-like-
lihood value calculated in (5) to represent the degree to which
the newly incoming pattern belongs to the th cluster, i.e.,

. Then, according to the on-line ICA
mixture model [see (10)] derived in Section II, we can deter-
mine if a new cluster (i.e., new rule) should be generated (i.e.,
grow the network). This process is applied to both the input
space and output space partitioning (clustering) simultaneously
but individually. The detailed algorithms, called input space par-
titioning and output space partitioning, are given below.

Algorithm of Input Space Partitioning
IF is the first incoming pattern THEN do
PART 1. Generate a new rule with center , set the
parameters

, and , where
.

ELSE for each newly incoming pattern , do
PART 2. Find ,
IF ,
do the parameters updating steps of the on-line ICA mixture
model derived in
Section II.
ELSE

,
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generate a new fuzzy rule with and set
the parameters of
the new rule (cluster) as in PART 1.

Algorithm of Output Space Partitioning
IF there is no output cluster
do PART 1 in Input Space Partitioning Algorithm, with
replaced by
ELSE
do Find ,
IF ,
connect input cluster to the existing output cluster

,
ELSE
generate a new output cluster as the ELSE part of PART 2 of
the Input Space
Partitioning Algorithm, and connect input cluster to
this new output
cluster.

In the above algorithms, the threshold determines
how many rules (clusters) will be generated in the input (output)
space, where and should be negative since they are
taken in natural log. For a larger value of , more rules will be
generated. The generation of a new input cluster corresponds
to the generation of a new fuzzy rule, with its precondition
part constructed by the input space partitioning algorithm in the
above. At the same time, the above output space partitioning al-
gorithm will decide the consequent part of the generated rule.
The algorithm is based on the fact that different preconditions
of different rules may be mapped to the same consequent fuzzy
set. Since only the center of each output membership function
is used for defuzzification, the consequent part of each rule
may simply be regarded as a singleton. Compared to the gen-
eral fuzzy rule-based models with singleton output where each
rule has its own individual singleton value, fewer parameters are
needed in the consequent part of the proposed FNN, especially
for the case with a large number of rules.

B. Parameter Learning by the On-Line ICA Mixture Model
and Backpropagation Algorithms

After the network structure is adjusted according to the
current training pattern, the network then enters the parameter
identification phase to adjust the parameters of the network
optimally based on the same training pattern. Notice that
the following parameter learning is performed on the whole
network after structure learning, no matter whether the nodes
(links) are newly added or are existent originally. The idea of
backpropagation is used for this supervised learning. Consid-
ering the single-output case for clarity, our goal is to minimize
the error function

(30)

where is the desired output and is the current output.
For each training data set, starting at the input nodes, a forward
pass is used to compute the activity levels of all the nodes in the
network to obtain the current output . Then, starting at the
output nodes, a backward pass is used to compute
for all the hidden nodes. Assuming that is the adjustable
parameter in a node (e.g., in the FNN), then the general
updating rule used is

(31)

where is the learning rate and

(32)

To show the updating rules, we shall show the computations
of and update the parameter . First, we start the
derivation from the output nodes. The error signal , which
needs to be computed and propagated, is derived by

(33)

The updating rule for is

(34)

(35)

Hence, the parameter is updated by

(36)

(37)

For the parameters and in Layer 2 of the proposed
FNN, their updating rules can be determined by the proposed
on-line ICA mixture model based on statistical independence
under the constraint of minimizing the error function in (30).
The on-line ICA mixture model with constraint is formulated
as follows:

(38)

The problem of (38) is expressed as a constrained optimization
problem which can be solved through the use of an augmented
Lagrangian function. Hence, (18) can be rewritten as

(39)
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Fig. 5. Input training patterns of the target dynamic system. (b) The training procedure is performed for 1000 time steps. (c) Error function. (d) Simulation results
of the FNN after 50 000 time steps. The dotted line denotes the output of the FNN and the solid line denotes the actual output.

where is the learning rate for maximizing the log likelihood,
is the Lagrangian parameter, and

...
. . .

. . .
...

. . .
. . .

(40)

For each element of the above matrix, we compute

(41)

(42)

Substituting (42) into (41), we get the final updating rule for .
Similar approach can derive the updating rule of .

V. EXPERIMENTS

To verify the performance of the proposed FNN, several ex-
periments are presented in this section. The experiments cov-
ering the areas of system identification, classification, and image
segmentation are carried out and show that the proposed FNN
can achieve significant improvements in the convergence speed
and prediction accuracy.

A. Identification of Dynamic Systems

In this experiment, the proposed FNN is used to identify a
dynamic system:

(43)

Since both the unknown plant and the FNN are driven by
the same input, it adjusts itself with the goal of causing the
output of the identification model to match that of the unknown
plant. Upon convergence, their input-output relationship should
match.

Example 1: The plant to be identified is guided by the differ-
ence equation

(44)

The output of the plant depends nonlinearly on both its past
values and inputs, but the effects of the input and output values
are additive. In applying the FNN to this identification problem,
the used learning parameters are , and

, where and are the threshold parameters
used in the input and output clustering processes, respectively.
The training patterns are generated with .
Fig. 5(a) illustrates the distribution of the training patterns. The
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Fig. 6. (a) Prediction results of the FNN after training. The dotted line denotes the output of the FNN and the solid line denotes the actual output. (b) Prediction
errors for testing.

TABLE I
INFLUENCE OF THE PARAMETERS F AND � ON THE PERFORMANCE OF THE

PROPOSED FNN AND THE RESULTING (rms ERROR, NUMBER OF RULES)

training is performed for 1000 time steps [see Fig. 5(b)]. After
training, three input and three output clusters are generated.
Fig. 5(d) shows the outputs of the plant and the identification
model after 50 000 time steps. In this figure, the outputs of the
FNN are presented as the dotted curve while the plant outputs
are presented as the solid curve. Since perfect identification re-
sult is achieved with our network, no additional terms need to
be added to the consequent part.

In the above simulation, the parameters and need
to be selected in advance. To give a clear understanding of the
influence of these parameters on the structure and performance,
different values of them are tested. For convenience, and

are assigned to the same value. The generated network
structure and corresponding root mean square (rms) errors and
the number of rules are listed in Table I. From Table I, we can
see that in certain ranges of the parameters, the rms error has no
much change. According to our experiment, a higher value of

will increase the number of rules, but it is not necessarily
reducing the rms error.

Example 2—Mackey–Glass Chaotic Time Series Prediction:
We apply the proposed FNN to the Mackey–Glass time series
prediction problem, which has been used in many studies in

the FNN or NN communities. The Mackey–Glass time-delay
differential equation is defined by

(45)

where and in our experiment. When
and , we have a nonperiodic and nonconvergent time

series as shown in Fig. 6(a). Now we want to build an FNN that
can predict from the past values of this time series
including, , and . Therefore,
the input data format is
and the output is . From to , we collect
1000 data pairs. The first 500 data pairs are used for training
while the others are used for testing. In applying the proposed
FNN to this prediction problem, the used learning parameters
are , and . Fig. 6(a) shows
the testing results of the FNN after training. The dotted line
denotes the out of the FNN and the solid line denotes the actual
output. The prediction errors by the proposed FNN are shown
in Fig. 6(b). The average prediction error over 30 runs proposed
FNN was 0.032, which was smaller than the prediction error
(0.034) of the cooperative neural network ensembles presented
in [29].

B. Experiments on Data Classification

In this section, four well-known benchmark data sets in
classification—the iris data set, the Wisconsin breast cancer
data set, the wine classification data set and Australian data
set are used to evaluate the performance of the proposed FNN.
These data sets are available from the University of California,
Irvine, via an anonymous ftp site: ftp.ics.uci.edu/pub/ma-
chine-learning-databases [30].
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Fig. 7. The resultant membership functions of the proposed FNN with respect to Iris data. (a) The input vectors in x domain. (a) The independent vectors in s
domain and the membership functions of rule 1. (c) The independent vectors in s domain and the membership functions of rule 2.

Example 1—Iris Data: The Fisher–Anderson iris data con-
sist of four input measurements, sepal length (sl), sepal width
(sw), petal length (pl), and petal width (pw), on 150 specimens
of iris plant. Three species of iris are involved, Iris Sestosa,
Iris Versiolor, and Iris Virginica, and each species contains 50
instances. To evaluate the effectiveness of the proposed FNN,
25 instances from each species were randomly selected as the
training set and the remaining instances were used as the testing
set. To perform classification, the output of our system was
used with the following classification rule:

Iris
Sestosa if
Versiolor if
Virginica if

(46)

We set the threshold and learning rate is
for the clustering algorithm. After learning, three clus-

ters were revealed, so our structure consisted of three fuzzy rules
and there are three fuzzy term sets for each input variable. Next,
the parameter learning algorithm proceeds to fine tune the net-
work to achieve a better performance. Fig. 7 shows the resul-
tant memberships for illustration. We only plot two of the three
classes Iris data and two of the four dimensions for simplicity.
Fig. 7(a) shows the input vectors that defined in the space.
Figs. 7(b) and (c) present the independent space obtained by the
on-line ICA-mixture-model. and denote the member-
ship functions of Rule 1. and denote the membership
functions of Rule 2. According to Fig. 7(b), we can find that
the membership functions of Rule 1 can match Class “x” well

after the transformation through ICA; in the meantime, Class
“o” is pushed away from the membership functions of Rule 1,
which makes the fire strength of Class “o” to Rule 1 be almost
zero. Similarly, according to Fig. 7(c), the membership func-
tions of Rule 2 can match Class “o” well after the transformation
through ICA; in the meantime, Class “x” is pushed away from
the membership functions of Rule 2. Consequently, we can find
that the membership functions among these rules are not over-
lapped with each other.

We can also use this simplified example (two classes and two
dimensions) as shown in Fig. 7 to discuss the semantics of the
obtained fuzzy rules in the proposed model. These two resultant
rules in the independent space can be represented as (47), shown
at the bottom of the next page. After the transformation of
(the inverse of transformation matrix), according to Fig. 7(a),
the fuzzy rules shown in (47) can be modified and presented in
the input space with linguistic implications as (48), shown
at the bottom of the next page. It is observed that the major
difference between (47) and (48) is the space of the input vectors
in precondition of fuzzy rules, but their consequent of the fuzzy
rules are the same. The firing strength of fuzzy rules in (48)
can be represented by the firing strength of fuzzy rules in (47),
because the transformation is one-to-one mapping.

Table II shows the comparison of the proposed FNN with
different iterations and Table III shows the contrast of the pro-
posed FNN with different threshold values for iris classifi-
cation and the results are the average of ten different training
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TABLE II
PERFORMANCE OF THE PROPOSED FNN WITH DIFFERENT ITERATIONS ON

THE IRIS DATA CLASSIFICATION PROBLEM

TABLE III
PERFORMANCE COMPARISONS OF THE PROPOSED FNN WITH DIFFERENT

THRESHOLD VALUES F ON THE IRIS DATA CLASSIFICATION PROBLEM

TABLE IV
PERFORMANCE COMPARISONS OF VARIOUS CLASSIFIERS ON

THE IRIS DATA CLASSIFICATION PROBLEM

and testing sets. In this example, the iteration is defined as 100.
A higher value of results in a larger rule number. It means
the number of rules is increased or decreased depending on the
parameter . Because the iris data consist of three-cluster pat-
terns, the average testing classification rate of the FNN with
three fuzzy rules is the highest. Table IV shows the comparison
of the classification results of our FNN and other fuzzy classi-
fiers on iris data.

Example 2—Wisconsin Breast Cancer Diagnostic Data: The
Wisconsin Breast Cancer Diagnostic data set contains 699 pat-
terns distributed into two output classes, “benign” and “malig-
nant.” Each pattern consists of nine input features: clump thick-
ness, uniformity of cell size, uniformity of cell shape, marginal
adhesion, single epithelial cell size, bare nuclei, bland chro-
matin, normal nucleoli, and mitoses. In this data set, 458 pat-
terns are in the Benign class and the other 241 patterns are in the
Malignant class. Since there are 16 patterns containing missed
values, we used 683 patterns to evaluate the performance of the
proposed FNN. To compare the performance with other classi-
fiers, half of the 683 patterns were used as training set and the
remaining patterns were used as the testing set. The data set was
normalized to the range [0, 1]. We classified the output of the
structure using the following classification rule:

Breast Cancer
Bengin if
Malignamt if

(49)

TABLE V
PERFORMANCE OF THE PROPOSED FNN WITH DIFFERENT ITERATIONS ON THE

WISCONSIN BREAST CANCER DATA CLASSIFICATION PROBLEM

TABLE VI
PERFORMANCE COMPARISONS OF THE PROPOSED FNN WITH

DIFFERENT THRESHOLD VALUES F ON THE WISCONSIN

BREAST CANCER DATA CLASSIFICATION PROBLEM

TABLE VII
PERFORMANCE COMPARISONS OF VARIOUS CLASSIFIERS ON THE

WISCONSIN BREAST CANCER DATA CLASSIFICATION PROBLEM

We set the threshold and learning rate
for training. Two clusters were revealed in the final

learning process. The learned structure consisted of 2 fuzzy
rules and 2 fuzzy terms when the iteration is set for 10 for each
input feature. In the same situation, when we set the iteration to
be 100, the learned structure will be change into 4 fuzzy rules
and 4 fuzzy terms for each input feature. We repeated the exper-
iment on 10 different training sets (see Table V). In Table V, we
can find that when the iteration number increases, the number of
rules will increase. The situation may occur in updating the inde-
pendent axes, . With the different transformation of input co-
ordinates, the number of rules may be changed. Table VI shows
the comparison of the proposed FNN with different thresholds

for the breast cancer data classification. Table VII shows
the comparison between the learned structure models and other
fuzzy, neural-network, and neuro-fuzzy classifiers on the same
target problem. It shows that the recognition rate of our pro-
posed FNN outperforms the listed classifiers.

Example 3—Wine Classification Data: The wine classi-
fication data set contains 178 wines that are brewed in the
same region of Italy but derived from three different culti-
vars. Each pattern consists of 13 continuous features: alcohol,
malic acid, ash, alkalinity of ash, magnesium, total phenols,
flavonoids, nonflavonoid phenols, proanthocyanins, color

''
''

(47)

''
'' is

(48)
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TABLE VIII
PERFORMANCE COMPARISONS OF VARIOUS CLASSIFIERS ON THE

WINE DATA CLASSIFICATION PROBLEM

intensity, hue, OD280/OD315 of diluted wines and proline.
Corcoran et al. [41] applied a real-coded genetic-based method
to learn 60 nonfuzzy if-then rules from 178 patterns and used
a population of 1500 individuals for 300 generations with full
replacement. Ishibuchi et al. [40] proposed an integer-coded
GA and grid-partitioning to design a fuzzy classifier with 60
fuzzy rules from the 178 patterns. They used a population of
100 individuals and applied for 1000 generations with full
replacement. Setnes et al. [39] applied a real-coded GA and
c-means clustering algorithm on all the available 178 patterns to
design a TSK model as a classifier. Nine features were selected
during their proposed simplification and optimization process.
In [35], the MCA clustering algorithm was proposed to solve
this problem. With our scheme, three clusters were revealed
in the final learning process. After applying the parameter
learning process for five epochs, the classification error was
reduced to zero. The comparison between our classifier and the
above-mentioned fuzzy classifiers are shown in Table VIII.

Example 4—Australian Credit Approval Data: This dataset
contains 690 patterns distributed into two output classes. Each
pattern consists of 14 (6 Continuous and 8 Categorical) input
features. All attribute names and values have been changed to
meaningless symbols to protect confidentiality of the data. This
dataset is interesting because there is a good mix of attributes:
continuous, nominal with small numbers of values, and nom-
inal with larger numbers of values. There were originally a few
missing values, but these have all been replaced by the overall
median. We classified the output of the structure using the fol-
lowing classification rule:

Australian (50)

We set the threshold and learning rate
for training. After structure learning, our structure

consisted of two fuzzy rules. The results with the tenfold cross
validation is showed in Table IX. According to the experimental
results, the proposed FNN with only two fuzzy rules can reach
higher accuracy than other methods.

Since the tenfold cross-validation testing model would pro-
duce more reliable results, the testing results of the proposed
FNN on the Iris, Wine, Wisconsin and Australian datasets with
the testing model of tenfold cross validation is presented in
Table X. These experimental results show that, given a reason-
able number of seed clusters, the proposed FNN is capable of
automatically identifying the true cluster configuration. Hence,
the proposed recursive on-line ICA mixture model can further
reduce the number of required rules and achieve better system
performance.

TABLE IX
PERFORMANCE COMPARISONS OF VARIOUS CLASSIFIERS ON THE

AUSTRALIAN DATA CLASSIFICATION PROBLEM WITH THE

TESTING MODEL OF 10-FOLD CROSS-VALIDATION

TABLE X
TESTING RESULTS OF THE PROPOSED FNN ON THE IRIS, WINE,

WISCONSIN AND AUSTRALIAN DATASETS WITH THE

TESTING MODEL OF TENFOLD CROSS VALIDATION

Fig. 8. Texture segmentation. (a) Texture of four different materials:
(top-left) herringbone weave, (top-right) woolen cloth, (bottom-left) denim,
(bottom-right) raffia. (b) The labels found by the proposed FNN are shown
in different grey levels. The misclassified patches of size 10� 10 pixels are
shown from the square region of the texture.

C. Unsupervised Image Classification and Segmentation

In this section, we applied our FNN to learn multiple classes
in a single image. The learned classes are mutually exclusive
and the whole image is divided into small image patches for
classification. Three experiments were performed to illustrate
how the algorithm can identify textures in an image. In the first
experiment, four texture images were taken and merged into
one image. Fig. 8(a) shows the textures of four different ma-
terials: (top-left) herringbone weave, (top-right) woolen cloth,
(bottom-left) denim, (bottom-right) raffia. Each of the texture
image size is 200 200 pixels. Four classes of training patterns
were adopted by randomly sampling 10 10 pixel patches from
each texture image; i.e., no label information was taken into ac-
count. We classify the output using the following classification
rule:

Class

herringbone weave if
woollen cloth if
denim if
raffia if

(51)

The automatic classification results of the image as shown in
Fig. 8(b) was done by dividing the image into adjacent nonover-



LIN et al.: ON-LINE SELF-CONSTRUCTING FUZZY NEURAL NETWORK 219

Fig. 9. Example of text extraction: The 5� 5 pixel image patches were randomly sampled from the image and used as training patterns to the proposed FNN.
(a) Original image. (b) Text image patches. (c) Picture image patches. (d) Background image patches.

lapping 10 10 pixel patches. The misclassified patches are
shown with different grey levels from the square region of the
texture.

In the second experiment, we used a text image of scanned
newspaper articles. The training data set consisted of 5 5 pixel
patches selected randomly from the images of two
difference types. Each type is random selected with 50 patches.
We classify the output using the following classification rule:

Class
Text if
Background if

(52)

Fig. 9(a) shows the original text image and Fig. 9(b) shows the
classification result of the FNN. The 5 5 pixel patches are
shown in Fig. 9(c) and (d), respectively. In Fig. 9(b), the text
region is denoted by white color while the background region
by black color. Obviously, the text region and the background
region are successfully separated into two classes using the pro-
posed on-line ICA-mixture-model-based FNN.

The final experiment shows the segmentation of a text/picture
mixture image of scanned newspaper articles. This image con-
tains text and a picture, and the goal is to separate text, picture,
and background regions in the image apart. The training data
set consists of 10 10 pixel patches selected randomly from
the text, picture, and the background regions. In the training set,
each class includes 50 image patches. The output is classified
by the following classification rule:

Class
Text if
Picture if
Background if

(53)

Fig. 10(a) shows the scanned image. Fig. 10(b)–(d) illustrate
examples of the image patches including text, picture, and
background regions. Before learning, the prior values of the
image patches were normalized to the range [0, 1]. Fig. 11
shows the classification result of the proposed FNN for this
scanned image using image patches of 10 10 pixel size.
When the iteration number is set to 100, the error is reduced
to 0.0023. When the iteration number is increased to 500, the
error rate almost reaches zero. Finally, the segmentation result
of the whole scanned image is shown in Fig. 11(b).

Fig. 10. Example of the scanned page. The 10� 10 pixel images were
randomly sampled from the images as training patterns to the proposed
FNN. (a) Original image. (b) Text image patches. (c) Picture image patches.
(d) Background image patches.

VI. CONCLUSION

In this paper, a novel FNN was proposed based on a newly de-
rived on-line ICA mixture model. It is a general connectionist
model of a fuzzy logic system, which can find its optimal struc-
ture and parameters automatically. Both the structure and pa-
rameter identifications are done simultaneously during on-line
learning, so it can be used for normal operation at any time as
learning proceeds without any assignment of fuzzy rules in ad-
vance. For structure learning, the proposed on-line ICA mix-
ture model algorithm was able to identify the optimal number
of clusters (i.e., rules) and simultaneously estimate the centers
and variances of the clusters for constructing the FNN structure
in a single pass without a priori knowledge of the distribution
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Fig. 11. Segmentation of an image scanned from a magazine: (a) Original
image. (b) The segmentation result of the whole scanned image.

of the training data set. A novel network construction method
for solving the dilemma between the number of rules and the
number of consequent terms is developed. The number of gener-
ated rules and membership functions is small even for modeling
a sophisticated system. As a summary, the proposed FNN can
always find itself an economic network size, and the learning
speed as well as the modeling ability is all appreciated. Several
experiments covering the areas of system identification, clas-
sification, and image segmentation were carried out to demon-
strate the performance of the proposed FNN. These experiments
showed that the proposed FNN can achieve significant improve-
ments in the convergence speed and prediction accuracy.

REFERENCES

[1] B. Kosko, Neural Networks and Fuzzy Systems. Englewood Cliffs, NJ:
Prentice-Hall, 1992.

[2] C. T. Lin, Neural Fuzzy Control Systems with Structure and Parameter
Learning. New York: World Scientific, 1994.

[3] C. T. Lin and C. S. G. Lee, Neural Fuzzy Systems: A Neural-Fuzzy
Synergism to Intelligent Systems. Englewood Cliffs, NJ: Prentice-Hell,
1996.

[4] R. Jang, C. T. Sun, and E. Mizutani, Neuro-Fuzzy and Soft Computing: A
Computational Approach to Learning and Machine Intelligence. En-
glewood Cliffs, NJ: Prentice-Hall, 1997.

[5] D. Nauck, F. Klawonn, and R. Kruse, Foundations of Neuro-Fuzzy Sys-
tems. New York: Wiley, 1997.

[6] S. Horikawa, T. Furuhashi, and Y. Uchikawa, “On fuzzy modeling using
fuzzy neural networks with the backpropagation algorithm,” IEEE
Trans. Neural Netw., vol. 3, pp. 801–806, Sep. 1992.

[7] K. Tanaka, M. Sano, and H. Watanabe, “Modeling and control of carbon
monoxide concentration using a neuro-fuzzy technique,” IEEE Trans.
Fuzzy Syst., vol. 3, pp. 271–279, Aug. 1995.

[8] Y. Lin and G. A. Cunningham, “A new approach to fuzzy-neural system
modeling,” IEEE Trans. Fuzzy Syst., vol. 3, pp. 190–197, May 1995.

[9] M. Sugeno and T. Yasukawa, “A fuzzy-logic-based approach to qualita-
tive modeling,” IEEE Trans. Fuzzy Syst., vol. 1, pp. 7–31, Feb. 1993.

[10] L. Wang and R. Langari, “Building sugeno-type models using fuzzy
discretization and orthogonal parameter estimation techniques,” IEEE
Trans. Fuzzy Syst., vol. 3, pp. 454–458, Nov. 1995.

[11] E. H. Ruspini, “Recent development in fuzzy clustering,” Fuzzy Set and
Possibility Theory, pp. 113–147, 1982.

[12] T. W. Lee, M. S. Lewicki, and T. J. Sejnowski, “Unsupervised classi-
fication with nongaussian mixture models using ICA,” Adv. Neural Inf.
Process. Syst., vol. 11, pp. 508–514, 1999.

[13] C. F. Juang and C. T. Lin, “An on-line self constructing neural fuzzy
inference network and its applications,” IEEE Trans. Fuzzy Syst., vol. 6,
no. 1, pp. 12–32, Feb. 1998.

[14] T. W. Lee, M. Girolami, and T. J. Sejnowski, “Independent component
analysis using an extended infomax algorithm for mixed sub-gaussian
and super-gaussian sources,” Neural Comput., vol. 11, no. 2, pp.
417–441, 1999.

[15] J. C. Bezdek, J. Keller, R. Krisnapuram, and N. R. Pal, Fuzzy Models and
Algorithms for Pattern Recognition and Image Processing. Boston,
MA: Kluwer, 1999.

[16] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification, 2nd
ed. New York: Wiley, 2001.

[17] F. Höppner, F. Klawonn, R. Kruse, and T. Runkler, Fuzzy Cluster Anal-
ysis. New York: Wiley, 1999.

[18] G. J. McLachlan and T. Krishnan, The EM Algorithms and Exten-
sions. New York: Wiley, 1997.

[19] T.-W. Lee and M. S. Lewicki, “Image processing methods using ICA
mixture models,” in Independent Component Analysis: Principles and
Practice, S. Roberts and R. Everson, Eds. New York: Cambridge Univ.
Press, 2001.

[20] R. Duda and P. Hart, Pattern Classification and Scene Analysis. New
York: Wiley, 1973.

[21] M. E. Tipping and C. M. Bishop, “Mixtures of probabilistic principal
component analyzers,” Neural Computation, vol. 11, no. 2, pp. 443–482,
1999.

[22] M. S. Lewicki and T. J. Sejnowski, “Learning overcomplete representa-
tions,” Neural Computation, vol. 12, no. 2, pp. 337–365, 2000.

[23] D. MacKay, Maximum Likelihood and Covariant Algorithms for Inde-
pendent Component Analysis, Draft 3.7, 1996.

[24] U.-M. Bae and T.-W. Lee, “Blind signal separation in teleconferencing
using the ICA mixture model,” Electron. Lett., vol. 36, no. 7, pp.
680–382, 2000.

[25] J. F. Cardoso, “High-order contrasts for independent component anal-
ysis,” Neural Comput., vol. 11, pp. 157–192, 1999.

[26] R. O. Duda and P. E. Hart, Pattern Classification and Scene Anal-
ysis. New York: Wiley, 1973.

[27] T. W. Lee, M. S. Lewicki, and T. J. Sejnowski, “ICA mixture models
for unsupervised classification of non-Gaussian classes and automatic
context switching in blind signal separation,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 22, no. 10, Oct. 2000.

[28] T. W. Lee, M. S. Lewicki, and T. J. Sejnowski, “ICA mixture models for
unsupervised and automatic context switching,” in Proc. Int. Workshop
ICA, 1999, pp. 209–214.

[29] Md. M. Islam, X. Yao, and K. Murase, “A constructive algorithm for
training cooperative neural network ensembles,” IEEE Trans. Neural
Netw., vol. 14, no. 4, Jul. 2003.

[30] C. L. Blake and C. J. Merz. (1998) UCI Repository of Machine Learning
Databases [Online]. Available: http://www.ics.uci.edu/~mlearn/ML-
Repository.html

[31] P. K. Simpson, “Fuzzy min-max neural networks—Part I: Classifica-
tion,” IEEE Trans. Neural Netw., vol. 3, pp. 776–786, Sep. 1992.

[32] H. M. Lee, “A neural network classifier with disjunctive fuzzy informa-
tion,” Neural Netw., vol. 11, no. 6, pp. 1113–1125, 1998.

[33] H. M. Lee, C. M. Chen, J. M. Chen, and Y. L. Jou, “An efficient fuzzy
classifier with feature selection based on fuzzy entropy,” IEEE Trans.
Syst., Man, Cybern. B, vol. 31, pp. 426–432, Jun. 2001.

[34] T. P. Wu and S. M. Chen, “A new method for constructing membership
functions and fuzzy rules from training examples,” IEEE Trans. on Syst.
Man, Cybern. B, Cybern., vol. 29, pp. 25–40, Feb. 1999.

[35] J. S. Wang and C. S. George Lee, “Self-adaptive neuro-fuzzy inference
systems for classification applications,” IEEE Trans. Fuzzy Syst., vol.
10, no. 6, Dec. 2002.

[36] B. C. Lovel and A. P. Bradley, “The multiscale classifier,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 18, no. 2, pp. 124–137, Feb. 1996.

[37] D. Nauck and R. Kruse, “A neuro-fuzzy method to learn fuzzy classi-
fication rules from data,” Fuzzy Sets Syst., vol. 89, no. 3, pp. 277–288,
1997.

[38] R. Setiono and H. Liu, “Neural-network feature selector,” IEEE Trans.
Neural Netw., vol. 8, no. 3, pp. 654–662, Jun. 1997.

[39] M. Setnes and H. Roubos, “GA-fuzzy modeling and classification: Com-
plexity and performance,” IEEE Trans. Fuzzy Syst., vol. 8, no. 5, pp.
509–522, Oct. 2000.



LIN et al.: ON-LINE SELF-CONSTRUCTING FUZZY NEURAL NETWORK 221

[40] H. Ishibuchi, T. Nakashima, and T. Murata, “Performance evaluation
of fuzzy classifier systems for multidimensional pattern classification
problems,” IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 29, pp.
601–618, Oct. 1999.

[41] A. L. Corcoran and S. Sen, “Using real-valued genetic algorithms to
evolve rule sets for classification,” in Proc. 1st IEEE Conf. Evolutionary
Computation, Orlando, FL, Jun. 1994, pp. 120–124.

[42] P. Brazdil and J. Gama, LIACC, Univ. of Porto Rua Campo Alegre 823
4150 Porto, Portugal.

Chin-Teng Lin (S’88–M’91–SM’99–F’04) received
the B.S. degree in control engineering from the
National Chiao-Tung University (NCTU), Hsinchu,
Taiwan, R.O.C., in 1986, and the M.S.E.E. and
Ph.D. degrees in electrical engineering from Purdue
University, West Lafayette, IN, in 1989 and 1992,
respectively.

Since August 1992, he has been with the College
of Electrical Engineering and Computer Science, Na-
tional Chiao-Tung University, where he is currently
the Associate Dean of the college and a professor of

Electrical and Control Engineering Department. He has also served as the Di-
rector of Brain Research Center, NCTU Branch, University System of Taiwan
since September 2003. He served as the Director of the Research and Devel-
opment Office of the National Chiao-Tung University from 1998 to 2000, and
the Chairman of the Electrical and Control Engineering Department from 2000
to 2003. His current research interests are neural networks, fuzzy systems, cel-
lular neural networks (CNN), fuzzy neural networks (FNN), neural engineering,
algorithms and VLSI design for pattern recognition, intelligent control, and mul-
timedia (including image/video and speech/audio) signal processing, and intelli-
gent transportation system (ITS). He is the book co-author of Neural Fuzzy Sys-
tems—A Neuro-Fuzzy Synergism to Intelligent Systems (Prentice Hall), and the
author of Neural Fuzzy Control Systems with Structure and Parameter Learning
(New York: World Scientific, 1994). He has also published over 80 journal pa-
pers in the areas of neural networks, fuzzy systems, multimedia hardware/soft-
ware, and soft computing, including 60 IEEE journal papers.

Dr. Lin is a member of Tau Beta Pi, Eta Kappa Nu, and Phi Kappa Phi hon-
orary societies. He is also a member of the IEEE Circuit and Systems Society
(CASS), the IEEE Neural Network Society, the IEEE Computer Society, the
IEEE Robotics and Automation Society, and the IEEE System, Man, and Cy-
bernetics Society. Dr. Lin is the Distinguished Lecturer representing the NSATC
of IEEE CASS from 2003 to 2005. He has been very active in the IEEE Inter-
national Symposium on Circuits and Systems (ISCAS) by serving as the Or-
ganizing Committee member, as the International Liaison of ISCAS 2005 in
Japan, and the Organizing Committee member as the Special Session Co-Chair
of ISCAS 2006 in Greece. He has been the Executive Council member (Super-
visor) of the Chinese Automation Association since 1998. He was the Executive
Council member of the Chinese Fuzzy System Association Taiwan (CFSAT),
from 1994 to 2001. Dr. Lin is the Society President of CFSAT since 2002.
He has won the Outstanding Research Award granted by the National Science
Council (NSC), Taiwan, since 1997 to present, the Outstanding Electrical En-
gineering Professor Award granted by the Chinese Institute of Electrical Engi-
neering (CIEE) in 1997, the Outstanding Engineering Professor Award granted
by the Chinese Institute of Engineering (CIE) in 2000, and the 2002 Taiwan
Outstanding Information-Technology Expert Award. He was also elected to be
one of the 38th Ten Outstanding Rising Stars in Taiwan, R.O.C., (2000). He cur-
rently serves as an Associate Editor of the IEEE TRANSACTIONS ON CIRCUITS

AND SYSTEMS: I—REGULAR PAPERS, IEEE TRANSACTIONS ON CIRCUITS AND

SYSTEMS: II—EXPRESS BRIEFS, International Journal of Speech Technology,
and the Journal of Automatica.

Wen-Chang Cheng received the B.S. degree in
electronics engineering from National Cheng-Kung
University, Tainan, Taiwan, R.O.C., the M.S.
degree in electronics engineering from National
Chung-Cheng University, Chiayi, Taiwan, R.O.C., in
1997 and 1999, respectively. He is currently working
toward the Ph.D. degree in electrical and control
engineering at National Chiao-Tung University,
Hsinchu, Taiwan, R.O.C.

He is also a Lecturer in information management at
Hsiuping Institute of Technology, Taichung, Taiwan,

R.O.C. His current research interests include neuro-fuzzy systems, neural net-
works, image processing, machine learning, and artificial intelligence.

Sheng-Fu Liang was born in Tainan, Taiwan,
R.O.C., in 1971. He received the B.S. and M.S.
degrees in control engineering from the National
Chiao-Tung University (NCTU), Taiwan, R.O.C., in
1994 and 1996, respectively. He received the Ph.D.
degree in electrical and control engineering from
NCTU in 2000.

Currently, he is a Research Assistant Professor
in Electrical and Control Engineering, NCTU.
Dr. Liang has also served as the Chief Executive of
Brain Research Center, NCTU Branch, University

System of Taiwan since September 2003. His current research interests are
neural networks, fuzzy neural networks (FNN), brain-computer interface
(BCI), and multimedia signal processing.


	toc
	An On-Line ICA-Mixture-Model-Based Self-Constructing Fuzzy Neura
	Chin-Teng Lin, Fellow, IEEE, Wen-Chang Cheng, and Sheng-Fu Liang
	I. I NTRODUCTION

	Fig.€1. Fuzzy partitions of two-dimensional input space. (a) Gri
	II. P ROPOSED O N -L INE ICA M IXTURE M ODEL

	Fig.€2. Structure of the proposed on-line ICA-mixture-model-base
	III. S TRUCTURE OF THE O N -L INE ICA M IXTURE -M ODEL -B ASED F
	Layer 1: No computation is done in this layer. Each node in this
	Layer 2: Each node in this layer corresponds to one linguistic v


	Fig.€3. Input space transformation by the on-line ICA mixture mo
	Layer 3: A node in this layer represents one fuzzy rule and perf
	Layer 4: This layer is called the consequent layer. Two types of
	Layer 5: Each node in this layer corresponds to one output varia
	IV. L EARNING R ULES OF THE O N -L INE ICA M IXTURE -M ODEL -B A

	Fig.€4. Flowchart of the learning algorithm for the proposed FNN
	A. Structure Learning by the On-Line ICA Mixture Model Algorithm
	B. Parameter Learning by the On-Line ICA Mixture Model and Backp

	Fig.€5. Input training patterns of the target dynamic system. (b
	V. E XPERIMENTS
	A. Identification of Dynamic Systems
	Example 1: The plant to be identified is guided by the differenc



	Fig.€6. (a) Prediction results of the FNN after training. The do
	TABLE I I NFLUENCE OF THE P ARAMETERS $F_{\rm in}$ AND $\eta$ ON
	Example 2 Mackey Glass Chaotic Time Series Prediction: We apply 
	B. Experiments on Data Classification

	Fig.€7. The resultant membership functions of the proposed FNN w
	Example 1 Iris Data: The Fisher Anderson iris data consist of fo

	TABLE II P ERFORMANCE OF THE P ROPOSED FNN W ITH D IFFERENT I TE
	TABLE III P ERFORMANCE C OMPARISONS OF THE P ROPOSED FNN W ITH D
	TABLE IV P ERFORMANCE C OMPARISONS OF V ARIOUS C LASSIFIERS ON T
	Example 2 Wisconsin Breast Cancer Diagnostic Data: The Wisconsin

	TABLE V P ERFORMANCE OF THE P ROPOSED FNN W ITH D IFFERENT I TER
	TABLE VI P ERFORMANCE C OMPARISONS OF THE P ROPOSED FNN W ITH D 
	TABLE VII P ERFORMANCE C OMPARISONS OF V ARIOUS C LASSIFIERS ON 
	Example 3 Wine Classification Data: The wine classification data

	TABLE VIII P ERFORMANCE C OMPARISONS OF V ARIOUS C LASSIFIERS ON
	Example 4 Australian Credit Approval Data: This dataset contains

	TABLE IX P ERFORMANCE C OMPARISONS OF V ARIOUS C LASSIFIERS ON T
	TABLE X T ESTING R ESULTS OF THE P ROPOSED FNN ON THE I RIS, W I
	Fig.€8. Texture segmentation. (a) Texture of four different mate
	C. Unsupervised Image Classification and Segmentation

	Fig.€9. Example of text extraction: The 5 $\, \times \,$ 5 pixel
	Fig.€10. Example of the scanned page. The 10 $\, \times \,$ 10 p
	VI. C ONCLUSION

	Fig.€11. Segmentation of an image scanned from a magazine: (a) O
	B. Kosko, Neural Networks and Fuzzy Systems . Englewood Cliffs, 
	C. T. Lin, Neural Fuzzy Control Systems with Structure and Param
	C. T. Lin and C. S. G. Lee, Neural Fuzzy Systems: A Neural-Fuzzy
	R. Jang, C. T. Sun, and E. Mizutani, Neuro-Fuzzy and Soft Comput
	D. Nauck, F. Klawonn, and R. Kruse, Foundations of Neuro-Fuzzy S
	S. Horikawa, T. Furuhashi, and Y. Uchikawa, On fuzzy modeling us
	K. Tanaka, M. Sano, and H. Watanabe, Modeling and control of car
	Y. Lin and G. A. Cunningham, A new approach to fuzzy-neural syst
	M. Sugeno and T. Yasukawa, A fuzzy-logic-based approach to quali
	L. Wang and R. Langari, Building sugeno-type models using fuzzy 
	E. H. Ruspini, Recent development in fuzzy clustering, Fuzzy Set
	T. W. Lee, M. S. Lewicki, and T. J. Sejnowski, Unsupervised clas
	C. F. Juang and C. T. Lin, An on-line self constructing neural f
	T. W. Lee, M. Girolami, and T. J. Sejnowski, Independent compone
	J. C. Bezdek, J. Keller, R. Krisnapuram, and N. R. Pal, Fuzzy Mo
	R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification,
	F. Höppner, F. Klawonn, R. Kruse, and T. Runkler, Fuzzy Cluster 
	G. J. McLachlan and T. Krishnan, The EM Algorithms and Extension
	T.-W. Lee and M. S. Lewicki, Image processing methods using ICA 
	R. Duda and P. Hart, Pattern Classification and Scene Analysis .
	M. E. Tipping and C. M. Bishop, Mixtures of probabilistic princi
	M. S. Lewicki and T. J. Sejnowski, Learning overcomplete represe
	D. MacKay, Maximum Likelihood and Covariant Algorithms for Indep
	U.-M. Bae and T.-W. Lee, Blind signal separation in teleconferen
	J. F. Cardoso, High-order contrasts for independent component an
	R. O. Duda and P. E. Hart, Pattern Classification and Scene Anal
	T. W. Lee, M. S. Lewicki, and T. J. Sejnowski, ICA mixture model
	T. W. Lee, M. S. Lewicki, and T. J. Sejnowski, ICA mixture model
	Md. M. Islam, X. Yao, and K. Murase, A constructive algorithm fo
	C. L. Blake and C. J. Merz . (1998) UCI Repository of Machine Le
	P. K. Simpson, Fuzzy min-max neural networks Part I: Classificat
	H. M. Lee, A neural network classifier with disjunctive fuzzy in
	H. M. Lee, C. M. Chen, J. M. Chen, and Y. L. Jou, An efficient f
	T. P. Wu and S. M. Chen, A new method for constructing membershi
	J. S. Wang and C. S. George Lee, Self-adaptive neuro-fuzzy infer
	B. C. Lovel and A. P. Bradley, The multiscale classifier, IEEE T
	D. Nauck and R. Kruse, A neuro-fuzzy method to learn fuzzy class
	R. Setiono and H. Liu, Neural-network feature selector, IEEE Tra
	M. Setnes and H. Roubos, GA-fuzzy modeling and classification: C
	H. Ishibuchi, T. Nakashima, and T. Murata, Performance evaluatio
	A. L. Corcoran and S. Sen, Using real-valued genetic algorithms 
	P. Brazdil and J. Gama, LIACC, Univ. of Porto Rua Campo Alegre 8



