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An effective software design tool is proposed for solving active noise control problems associated 
with constraints in which the complex strength and location of the secondary source of an active 
noise control system in an enclosed space are simultaneously optimized. The boundary element 
method is adopted to evaluate the sound field in enclosures. Furthermore, the boundary used 
could be of pressure, velocity, or impedance; in addition, the primary source may be at an 
arbitrary position. An optimizer based on sequential quadratic programming is selected for its 
accuracy, efficiency, and reliability. Bounds for design variables and proper constraints on the 
sound field and secondary source can be specified as required. The powerfulness of the proposed 
tool is demonstrated by optimizing an active control system for an enclosure. For a rectangular 
cavity, the optimal location of the secondary source is confirmed by observed simulations as 
always forming a dipole with the primary source situated at off-resonance excitations and 
subsequently approaching a mirror image position of the primary source at resonance 
excitations. The optimal location of the controller is found to change with varied upper bounds 
of the strength of the secondary source. These findings show a discrepancy from those reported 
in previous researches based on an unconstrained formulation. Sensitivity analysis at the 
optimum is also included to provide information of practical concern for implementing 
optimized active noise control systems. 

PACS numbers: 43.50.Ki, 43.50.Jh, 43.55.Ka 

INTRODUCTION 

In enclosed spaces, although excellent noise control 
performance is attainable by passive means, such as using 
sound-absorbing materials, the cost becomes high and per- 
formance is significantly degraded when the acoustic wave- 
lengths of the noise source are comparable in size with the 
dimensions of the enclosure, especially below Schroeder 
frequency. • Active noise control (ANC), on the other 
hand, is most effective in noise reduction in the relatively 
low-frequency range. Physically, ANC is the canceling of a 
sound wave by adding a phase-inversed sound wave. Meth- 
ods of active noise attenuation primarily fall into two 
categoriesmreduction of the noise level in a specified re- 
gion or direction 2 and reduction of total noise power. 3 The 
history of and recent advances in ANC are reviewed in the 
excellent survey papers of Warnaka, 4 Leitch and Tokhi, 5 
and Stevens and Ahuja. 6 

Previous studies of optimization of ANC TM in an en- 
closed space or exterior free space have formulated an un- 
constrained problem, where the optimal solutions can be 
analytically derived from either optimality or Kuhn- 
Tucker conditions. • However, economic factors also re- 
quire consideration for practical application in the design 
of ANC systems in enclosures--in addition to engineering 
requirements, e.g., input voltage and space allowance for 
installation of a secondary source. Therefore, the problem 
of designing ANC systems in cavities via a constrained 

optimization model may be worthwhile. 12 Similar work on 
actuator placement with constraints by Clark and Fuller 13 
is a suitable example for active structural acoustic control 
(ASAC). Once the constraints are introduced, the strategy 
and scheme for solving the constrained optimization prob- 
lem may be relatively different from those techniques ap- 
plied toward solving the unconstrained problem. 

Modal summation, the finite element method (FEM), 
and the boundary element method (BEM) have been em- 
ployed in simulating the sound field for enclosed spaces 
and all these methods are satisfactory predictors. The 
BEM can handle various kinds of boundary properties 
more easily than other methods, in addition to having ad- 
vantages over the FEM in acoustic applications. TM Hence, 
in the present study the BEM is utilized in this study for 
evaluating the sound field in enclosures. 

A design tool that integrates the numerical acoustical 
analysis of BEM with an optimizer based on sequential 
quadratic programming (SQP) is proposed in this paper 
for optimizing the design of ANC systems in enclosed 
spaces. The complex strength (magnitude and phase) of 
the secondary source has normally been obtained in previ- 
ous studies via the fixed position. In the present study, 
however, both the complex strength and location of the 
secondary source are simultaneously considered in the op- 
timization formulation, which is apparently a more realis- 
tic approach to the design of ANC systems in enclosures. 
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FIG. 1. Domain of acoustic system for interior Helmholtz wave equation. 

The SQP is employed in this study for coping with a single- 
objective constrained optimization problem via a large 
number of design variables as a result of its robustness and 

15-18 
fast convergence. 

The boundary element formulation of the Helmholtz 
equation is first discussed in this study so as to predict the 
sound field in enclosures. A constrained optimization 
model is next formulated. Achieving the characteristics of 
standing waves in enclosures requires choosing the total 
acoustic potential energy as the general objective function, 
like most noise control applications. Locations and 
strengths of secondary sources are taken as design vari- 
ables in this study in• light of practical considerations. 
Bounds on these variables and proper constraints are spec- 
ified in forming a feasible design region. The usefulness and 
power of the proposed tool are demonstrated by numerical 
results on ANC optimization in a three-dimensional box 
cavity. A design sensitivity analysis at the optimum is fi- 
nally discussed. This analysis provides the engineer with a 
measure of what effect such variations of an optimized 
ANC system designs would have on the design objective 
after the optimization is complete. 

I. BOUNDARY ELEMENT FORMULATION IN 
ACOUSTICS 

The acoustic system in this study consists of a domain 
D enclosed by a boundary B, as illustrated in Fig. 1. Vec- 
tor d is the position of any point d within the domain; 
vector b is the boundary points b; and the location of the 
primary source P of complex strength •bp and secondary 
source S of complex strength •bs within the domain are 
denoted by vectors d e and ds, respectively. The indirect 
BEM derived by Chen and Schweikert 19 and improved by 
Kipp 2ø is applied in this paper to formulate the acoustical 
field in an interior space. The method is a numerical ap- 
proximation of Huygen's principle. The boundary is as- 
sumed here to be able to be replaced by a fictitious source 
distribution that reproduces an identical sound field in the 
domain. A general form of acoustic pressure (p) and par- 

ticle velocity (u) for boundary and interior points, respec- 
tively, can be written via the concept of indirect BEM as 

+ fo •s(d)p*(d,•)dD, ( 1 ) 
u(•) =c0a(b) • f a a(b)u*(b,•)dB 

+ fo (2) 
where a(b) represents the fictitious source density function 
at the boundary points, ca is an integration constant 2• that 
copes with the integral singularities, and • is a dummy 
variable representing boundary or interior points. The fun- 
damental pressure solution p* is the free space Green's 
function 

p*( b,ff ) = ( 1/ I b-ff l )e -jlo-gl, (3) 
which satisfies 

(v2 + k2)p, (o,g) = ( 4 ) 
where k is the wave number and 6 is the Dirac delta func- 

tion. The fundamental velocity solution u* can be related 
to p* by Euler's equation, p au/at = -Vp, 22 where p is the 
density of the medium. 

The indirect BEM is numerically implemented by ap- 
plying a linear rectangular incompatible element to dis- 
cretize the boundary. The domain integral for a point 
sound source can be treated as a Dirac function multiplied 
by the source strength. Thus the integral exists only at the 
source point. Equations (1) and (2) are rewritten as 

p(bi)= • a(bj)p*(bj,bi)dBj 
J=• 

Hs 

+ + (dsm,O), (5) 
l=1 m=l 

u(bi)--coa(bi) + • a(bj)u*(bj,bi)dBj 
j=l 

Hs 

+ + smU* (dsm,O), 6) 
l=1 m=l 

where n e, ne, and ns are the number of elements, primary 
sources, and secondary sources, respectively; Bj is the jth 
boundary element; and b i represents the ith node. 

Boundary conditions in terms of impedance may also 
be modeled via this method. For a locally reacting bound- 
ary, the specific acoustic impedance at b i is given by 22 

z(b•) =p(b•)/u(b•). (7) 

A system of ne equations for the ne unknown a's is 
obtained by writing Eqs. (5), (6), and/or (7) for each 
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element according to the given boundary conditions. Thus 
the ge. neral matrix form for the equations of the system can 
be compactly written as 

A•r-•- P•bo-•- S•bs-- a, (8) 

where a contains the values of the boundary conditions, 
and A, P, and S can be derived from Eqs. (5), (6), or (7) 
according to the given boundary conditions. Once the fic- 
titious source a is solved, Eqs. (5) and (6) are again uti- 
lized in finding the acoustic pressure and particle velocity 
of domain points to be interested, in which the variable of 
boundary points bi is replaced by domain points di. 

II. CONSTRAINED OPTIMIZATION MODEL 

The general mathematical model for the nonlinear 
single-objective constrained optimization problem consid- 
ered here is of the following form. 

Find a set of design variables x-(x•,x2,...,Xn) that 
minimizes an objective function 

f(x), (9) 

subject to the constraints 

hi(x) =0, i= 1,2,...,neql, (10) 

gj (x) < 0, j = 1,2,...,niq l, ( 11 ) 

where neq I and niq ! are the number of equality and inequal- 
ity constraints, respectively, and the explicit bounds on 
design variables are 

Xil<Xi<Xiu , i= 1,2 .... ,n. (12) 

Both the objective function f(x) and the constraints hi(x ) 
and gj (x) are assumed to be continuous differentiable. The 
design variables x are the quantities to be varied for gen- 
erating an optimal design. The constraints represented by 
Eqs. (10) and ( 11 ) define the feasible design space in con- 
junction with the design variable bounds specified by Eq. 
(12). Three elements are included in a well-defined math- 
ematical statement of optimization•design variables, the 
objective function, and design constraints. The primary 
purpose of this study lies in forming a constrained optimi- 
zation problem that optimizes the complex strength and 
location of the secondary source for the design of ANC 
systems in enclosures. Additionally, the acoustic behavior 
of secondary sources via appropriate constraints is also 
investigated. 

A. Optimization strategy and formulation 

As noted in the Introduction, in previous work the 
complex strength (for example, input voltage and phase) 
of the secondary source was optimized under a fixed posi- 
tion. In this present study, however, both location ds and 
complex strength •b s of the secondary source are chosen as 
design variables because of practical considerations. Loca- 
tion ds is represented here by coordinates of x, y, and z, and 
complex strength •bs is replaced by magnitude •b and phase 
0. If the primary source is known and controlled by the 
secondary source, the acoustic pressure at field points of 
the enclosure at a given frequency can then be written as 

pi=pi(x,y,z, qb,O), i = 1,2,...,nfp; ( 13 ) 

where nfp is the number of field points to be evaluated. 
Two strategies--local and global control--can be ap- 

plied where necessary. Local control implies that only a 
few field points of the cavity are utilized in reducing the 
noise level, e.g., in an automobile cabin the region near the 
driver's and passengers' heads is of major concern. Global 
control, on the other hand, is characterized by an attenu- 
ation of the noise level throughout the cavity. Each of these 
strategies employs an acoustic secondary source, which, for 
practical purposes, would typically be loudspeakers. The 
primary source of sound is assumed to have a harmonic 
waveform and can be positioned anywhere in the cavity; in 
addition, the secondary source can be driven at the same 
frequency. The position and strength of the secondary 
source are varied for minimizing the objective function, 
which is implemented in this paper by the total acoustic 
potential energy of the control volume. The objective func- 
tion for various control strategies can always be formulated 
as 

1 • Ip(x,y,z, ck,o)]2 dV, (14) •--4-• v 
where c and V represent the speed of sound and the control 
volume, respectively. The • can notably be measured only 
by ideal distributed sensors, which may not be practical for 
application purposes. In practice, a reasonable number of 
acoustic pickups (e.g., microphones) are uniformly distrib- 
uwd throughout the cavity to collect the response utilized 
in fo•ulating the discrete form of the objective function. 
As can be seen from Eq. (15), this fo• becomes ve• 
•arly proportional to the continuous form of Eq. (14) 
and is used in the numerical simulation. The control vol- 

ume V can notably be taken out of the summation only if 
the error sensors are uniformly dist•buted throughout the 
cavity. Otherwise, the contribution of each sensor must be 
weighted' 

•--4P c2 i= • ' 
All engineering systems are designed to perfore 

within a given set of constraints, which includes limitations 
on resources, material failure, response of the system, and 
member sizes. Two ,types of constraints are introduced in 
this paper•design bounds and inequality constraints. Pos- 
sible choices for each type of constraint are described be- 
low. 

1. Bounds on design variables 

The bounds are 

Xi•Xi•Xu, i=l,2,...,ns, (16) 

Yl<Yi<Yu, i= 1,2,...,ns, (17) 

zl<zi<Zu , i= 1,2 .... ,ns, (18) 

qbi<qbi<qbu, i= 1,2,...,ns, (19) 

O•,<O•<Ou, i= 1,2,...,ns, (20) 
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where the subscripts I and u indicate the lower and upper 
bound of the design variables, respectively. 

2. Inequality constraints 

The secondary source clearly has the possibility of ap- 
proaching the position of the primary source, that is, if no 
constraint is imposed on the relative location of the pri- 
mary and secondary sources. This should be avoided in 
light of practical concerns. Also, for multiple control 
sources the spaces between the control sources must be 
reserved for convenient installation. Constraints of Eqs. 
(21 ) and (22), which express the permissible spaces for 
installing the ANC system, are therefore required from an 
engineering prospective: 

i= 1,2,...,np and j= 1,2 .... ,ns, 
(21) 

i= 1,2,...,ns_ 1 and 

j=i+l,i+2,...,ns, (22) 

where 6ps and 6ss are the allowable distances between the 
primary and secondary sources, and between the secondary 
sources, respectively. Moreover, if the user wishes to main- 
tain the specified sound pressure level (SPL) at particular 
locations; e.g., to conform to mandatory regulations, the 
following equation can be considered: 

SPL at (xj,yj,zj)--Lp<O, j= 1,2,...,nspl; (23) 

where Lp and nsp 1 are the specified SPL and number of 
assigned locations, respectively. 

In summary, the design optimization model presented 
here finds the location (x,y,z) and complex strength (•b,0) 
of the secondary source to minimize the objective function, 
the total acoustic potential energy of Eq. (15), subject to 
the constraints of Eqs. (16)-(23). 

B. Optimization scheme and algorithm 

Multiple minima are basically presented in the feasible 
domain of the preceding optimization problem along with 
a number of numerical nonlinear programming (NLP) 
methods capable of solving it. The sequential quadratic 
programming (SQP) is, however, selected in this study 
because of its convergence and robustness. •5-18 The SQP 
algorithm is importantly a generalized gradient-descent op- 
timization method, and subsequently converges to a local 
rather than global optimum. TM A conceptual flow chart of 
the SQP algorithm is depicted in Fig. 2, which reflects the 
characteristics of the direct iterative optimization method 
(i.e., definition of a subproblem). This optimization 
method solves the subproblem to give the direction of de- 
sign improvement, and a step size along the search direc- 
tion. The steps of the algorithm are summarized as follows. 

Step 1. Initial state: Set k=0. Estimate initial values of 
design variables as x ©. Select an appropriate initial value 
for the penalty parameter R =R 0 > 0, and two small num- 
bers that define the permissible constraint violation el and 
convergence parameter e2, respectively. 

Design Update 

x(k+0= x00+ c•kAx 00 
k=k+l 

Initialization 

setk=0 

Hessian H(% Identity I 
guess an initial x (o) 

Search Direction (Ax 00) 

solve QP subproblem 

Step Size 

line search 

updated by BFGS formula I 

FIG. 2. Conceptual flow chart of the SQP algorithm. 

Step 2. Search direction: The direction Ax (k) of the 
iterative formula x (k+ l) =x(•) +a•Ax(•) is determined by 
solving a quadratic programming (QP) subproblem, de- 
fined as finding an n vector of Ax (•) to minimize 
{Vf(x(k)),Ax(•)}+0.5(Ax(•),HAx(•)), subject to the 
constraints hi(x (•)) + {Vhi(x(k)),Ax(•)} = 0, gj(x (•)) 
q-(•7gj(x (k) ),Ax(k))•<0, and Xil<X (k) where i-•- Ax(k) <Xiu, 
(A, B) = A rB. H is a positive definite approximation of the 
Hessian matrix, which is composed of the second partial 
derivatives of the Lagrangian function with respect to each 
of the design variables. The Lagrangian function is formed 
here in terms of the objective function and constraints, and 
is defined as L(x,/•)=f(x) -+-•ihi(x) q-•jgj(x). 

Step 3. Convergence criteria: If the maximum con- 
straint violation V(x ©) is less than a given accuracy (say, 
El), and the convergence parameter I 
is less than a given small number (say, E2), exit iteration. 
The V(x) is defined as max{O, I h (x) I ,-.., 
Ihn'(x) I,Ign'+a(x)I,...,Ih•(x)I}, where n' = neq l and 
N = neq l q- niq l. 

Step 4. Penalty parameter: Calculate r=•; I,1, where 
the Lagrange multipliers/•i are obtained from the solution 
of the previous QP subproblem, and check the condition of 
R•>• r. If it is violated, let Rk= 2r. Otherwise, let R•= Rk_ 1. 
The penalty parameter R is chosen by the compromise 
between the constraint correction and the algorithm effi- 
ciency. The procedure applied here functions quite effec- 
tively. 

Step 5. Step size: To find a• of the iterative formula 
x(•+l)=x (•) +akAx ©. A line search is used and the step 
size a• is chosen as 0.5 J, with J as the smallest positive 
integer to satisfy the descent condition of 

descent function cp(x)=f(x)+RV(x) and 0</•< 1. The 
descent function is introduced because of its simplicity and 
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• Optimization Inpu•l'• 
...... . ,, 

•,• •.//•d',., ,•• ................. •,•:•..•,:,.,•, .. 

•'•••' ..... • User-su,, lind •nct•ons • •' ..... 
•c• •'•..•-,•..•,• .... • ........ • . ß 
•.' % :•.,,?f • .(,• ' SO•LD 

• Read input •ta • ' • , ' • "• •" 
• •,• CUSERMF • • O•E• 

• _. . • • • •un• Element .... 
. ,, • .. •.• 

Output file 

FIG. 3. Architectural framework of the proposed design tool, where 
CUSœRXXs are user-supplied functions. CUSœRMF and CUSœRMG 
compute the value of objective and constraint functions, respectively. 
CUSERCF and CUSERCG calculate the gradient of objective and con- 
straint functions, respectively. CUSœROU can provide additional data for 
verification. 

success in solving a large number of engineering design 
problems. •7 Additionally, this function also has the prop- 
erty that its minimum value is the same as that of the 
original objective function. 

Step 6. Hessian update: A number of procedures can 
be applied towards updating the Hessian matrix H. The 
BFGS (Broyden-Fletcher-Goldfard-Shanno) form- 
ula, 23'24 considered as a better strategy, •8 is selected in this 
paper for guaranteeing a positive definite updated Hessian. 
If k=0, let H © be an identity matrix I. 

Step Z New iteration: Set k=k+ 1, update the design 
as XCk+•)=XCk)+akAXCk), and go to Step 2. 

A certain number of numerical experiences are re- 
quired in implementing the scheme in terms of robustness 
and efficiency, despite the fact that the SQP algorithm is 
apparently well defined. Refer to the research of Tseng and 
Arora •7 for details. All the elements of the constrained 
optimization model defined in this paper are incorporated 
into an architectural framework for the proposed design 
tool, as exhibited in Fig. 3. The communication between 
the BEM acoustical analysis and the SQP optimization 
during the solution procedure is illustrated in this archi- 
tectural framework. 

III. NUMERICAL SIMULATIONS AND DISCUSSION 

The active noise controllers often attempt canceling 
out a group of related or nonrelated harmonics during 
practical application by employing the same set of control 
sources positioned at the same locations in the cavity. Only 
a single harmonic line is considered in this study since this 
is sufficient for demonstrating the advantages afforded with 
the proposed optimization. In linear acoustics, however, 
the principle of superposition can be applied to compute 

the sound field. This sound field then is further utilized in 

forming the defined objective function and in optimizing 
both complex strengths and positions for the control of 
several harmonic lines in the proposed optimization proce- 
dure. This procedure is simply implemented by adding an 
iterative loop in the sound field computation module of 
boundary element analysis (in the right side of Fig. 3). 
Also, in practical applications the primary source is often 
outside the cavity (e.g., engine in a car or propellers in an 
aircraft). In coping with these applications, the appropri- 
ate analytical or measuring tool should be utilized first to 
investigate the impact of outside sources on the boundaries 
of the cavity (e.g., finding the equivalent primary sources 
distributed on the boundaries or inside the cavity). The 
BEM can accurately predict the acoustical field of the cav- 
ity if the characteristics of a boundary and/or the equiva- 
lent primary sources are well known. The primary sources 
are assumed here, for brevity's sake, as known and are 
positioned randomly anywhere in the cavity. 

A geometrical configuration of a box type is most com- 
mon for medium or small rooms. Consequently, the nu- 
merical simulations presented here are based on a rectan- 
gular enclosure with dimensions of 4 m X 5 m X 3 m. The 
grid points that determine the squared acoustic pressure p2 
are defined by three layers of 9 X 9 mesh located between 
z= 1.2 m and 1.6 m (approximately the head height of a 
person seated in the enclosure). A frequency ranging from 
30 to 200 Hz is selected to compensate for the limited 
accuracy of the BEM in determining the lower bound and 
the constraint of the Schroeder cutoff frequency for the 
upper bound. The primary and secondary sources are as- 
sumed here to vibrate with the same frequency and are in 
a steady state. For cases studied below, the acoustic system 
has rigid boundaries (i.e., the acoustic velocity normal to 
boundaries is zero). 

A. Optimal location of secondary source versus 
frequency 

No clear evidence is available in the previous litera- 
ture, which indicates a specific qualitative relation between 
the optimal placement of the secondary source and the 
excitation frequency of the primary source, especially in 
the three-dimensional cavity. Therefore, this section is de- 
voted to discovering such a relation. Two caseswone with 
single and one with multiple primary sources--are inves- 
tigated. The excitation frequency of the primary source is 
divided into two categorieswoff-resonance and resonance 
excitations of the enclosure. For resonance excitations of 

the enclosure, six modes are studied: mode (0,1,0)=34.3 
Hz, .(1,0,0)=42.9 Hz, (0,0,1) =57.2 Hz, (0,2,0)=68.9 
Hz, (2,0,0)=86.1 Hz, and (2,2,0)= 110.6 Hz. Typical re- 
sults obtained for these cases are discussed below. 

1. Enclosure with single primary source 

A primary source P• of volume velocity 1 m3/s is po- 
sitioned close to one corner (3.8,4.5,2.5) of the cavity with 
a harmonic excitation. The design bounds and constraints, 
respectively, are 0< •bs< 1 m3/s, - 180< Os< 180 deg, 0<x< 4 
m, 0<y<5 m, 0<z<3 m, 0.1 m<ld-dsl, and SPL at 
(1.5,1.2,1.4) and (3.2,4,1.6)<100 dB, which are arbi- 
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FIG. 4. Schematic diagram of ANC in the enclosure with single primary 
source. Primary source P1 is positioned at (3.8,4.5,2.5). Optimal candi- 
date locations of secondary source are as follows: S1=(3.8,4.4,2.5), 
S2= (3.8,4.5,0.5), and S3= (0.2,0.5,0.5). The asterisk represents the po- 
sition of specified SPL. 

110 I o o ' ' •" no control ' l .... = optimal control 
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Frequency (Hz) 

FIG. 5. Objective function as a function of frequency for the case of 
rectangular enclosure with single primary source (Secs. IIIA 1 and 
III B). •bu is the upper bound of the strength of the secondary source. 

trarily chosen for illustrative purposes. At off-resonances, 
the optimal secondary source always approaches closely a 
position of $1 = (3.8,4.4,2.5) with an antiphase (i.e., -- 180 
deg), where it approximately forms a dipole with the pri- 
mary source P1. For a cavity of simple geometrical config- 
uration (e.g., the rectangular ,•-,• used i, t•i• ••-• t• 
position of maximum acoustic pressure (globally) is pri- 
marily located in the vicinity of the primary source at off- 
resonance excitations. Via this simple geometrical con- 
straint, the optimal secondary source positioned in or close 
to this place can effectively attenuate the noise as indicated 
by the above results. More than one position of peak acous- 
tic pressure (locally) is available in the cavity at higher 
excitation frequencies of the primary source [but still below 
the Schroeder cutoff frequency (in this example 200 Hz)]. 
The solution can therefore be varied from different initial 

designs in light of the algorithm searching for the local 
minimum. The optimization solutions shown here and af- 
ter are selected from the better one of various initial con- 

ditions. However, a totally different situation is obtained at 
resonances of the enclosure. The optimal secondary source 
of modes (0,1,0), (1,0,0), and (2,0,0) approaches 
S2= (3.8,4.5,0.5), a mirror image position of P• along an 
edge, and it approaches S3 = (0.2,0.5,0.5), a mirror image 
position of P• along a diagonal, for modes of (0,2,0) and 
(2,2,0). The optimal secondary source is, however, 
patched to S• = (3.8,4.4,2.5) for mode (0,0,1 ). Physically, 
the results for a cavity with a simple geometrical configu- 
ration can be related to the position of the primary source, 
and the shape of sound field in the enclosure, in which it is 
almost of geometrical symmetry and the positions of peak 
acoustic pressure are close to the boundaries. The relative 
positions of P•, S•, S2, and S3 are shown in Fig. 4. The 
complex strength of the optimal secondary source in each 
case is of volume velocity 1 m3/s and phase -- 180 deg shift 
relative to the primary source. This knowledge of the dis- 
tribution of the optimal secondary source in the frequency 
range of interest suggests that a sufficient guideline for 
setting up an ANC system lies in either attempting an edge 
or diagonal mirror image position of the primary source for 

resonance excitation or placing the secondary source close 
to the primary source for off-resonance excitation. The mir- 
ror image strategy is similar to that of efficient coupling 
into the appropriate mode, as advocated by Bullmore 
et al. 25 in a two-dimensional cavity, in which the placement 
of the secondary source is based on the shape analysis of 
sound field before control. However, for cavities of irregu- 
lar boundaries it is not easy to predict the positions of peak 
acoustic pressures in advance. Therefore, an optimization 
procedure optimizing the positions and complex strengths 
of the control sources at the same time makes the tool very 
attractive for practical work in active noise control. Note 
that this rule is generally valid for simple cavities with 
geometrical constraints among the sound sources. Figure 5 
illustrates that the optimal controller performs well at fre- 
quencies below 100 Hz, where reduction of total acoustic 
potential energy is more than 15 dB. All of the constraints 
are satisfied in these simulations and the SPL at the spec- 
ified positions is below 90 dB, which implies that this con- 
straint is inactive. 

2. Enclosure with multiple primary sources 

Two primary sources, P1 and P2 of volume velocity 1 
m3/s, in-phase, and the same excitation frequency, are po- 
sitioned close to (3.8,4.5,2.5) and (0.2,2.5,1.5), respec- 
tively. The one-on-one approach is chosen as the control 
technique that attenuates the noise level in a specified re- 
gion; that is, each primary source is controlled by a corre- 
sponding secondary source. The design bounds are 
O<•bsl,•bs2<l m3/s, --180<0s],0s2<180 deg, O<x],x2<4 m, 
O<y•,y2<5 m, and O<z•,z2<3 m, and the constraints are 
O.l m<ld.o•-ds• I, O.l m<ld•--ds2 I, 0.1 m<ld•2--dsl I, 
0.1 m< I d2-ds2 I, 0.1 m< I ds-d2 I, and SPL at positions 
of ( 1.5,1.2,1.4) and (3.2,4,1.6) < 100 dB, respectively. 

At resonance excitations of the enclosure, the optimal 
locations of the secondary sources are at S1 = (3.8,4.5,0.5) 
and S2 = (3.8,2.5,1.5) for modes of (0,1,0) and (2,0,0); 
meanwhile, for other modes they change to 
S3 = ( 3.8,4.4,2.5 ) and S4 = (0.2,2.5,1.6). Relative positions 
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FIG. 6. Schematic diagram of ANC in the enclosure with multiple pri- 
mary sources. Locations of primary sources P• and P2 are positioned at 
(3.8,4.5,2.5) and (0.2,2.5,1.5), respectively. Optimal candidate locations 
of secondary sources are as follows: S•---(3.8,4.5,0.5), S2= 3.8,2.5,1.5), 
S3-- (3.8,4.4,2.5), and S4-- (0.2,2.5,1.6). The asterisk represents the po- 
sition of specified SPL. 

11o 

no control 

optimal control 

20 60 100 140 180 220 

Frequency (Hz) 

FIG. 7. Objective function as a function of frequency for the case of 
rectangular enclosure with multiple primary sources (Sec. IIIA 2). 

of S•, S2, S3, and S4 are shown in Fig. 6. The optimal 
complex strength for all the secondary sources is 1 m3/s in 
magnitude and -180 deg in phase shift. Note that at res- 
onance excitations, the optimal locations of the secondary 
sources are primarily not at edge or diagonal mirror image 
positions of the primary sources. However, these locations 
tend to form a dipole with the corresponding primary 
source. At off-resonance excitations, the optimal locations 
of the secondary sources are always at S3 and S4, respec- 
tively, where they tend to form a dipole with the corre- 
sponding primary source. The same physical reasoning as 
in Sec. IIIA 1 can be applied on the basis of the above 
results. For the case of multiple primary sources, however, 
the sound field in the enclosure is more complex than the 
one of a single primary source. Additionally, its locations 
of maximum and/or peak acoustic pressure are highly de- 
pendent on the relative positions and phase differences of 
the primary sources. Unlike the case of a single primary 
source, predicting the optimal locations of the controllers 
would be difficult without carrying out simulations such as 
those described here. However, a general strategy for the 
placement of secondary sources for the case of multiple 
primary sources can still be suggested. The secondary 
source is first patched so as to form a dipole with the cor- 
responding primary source. If that does not work, one 
should then attempt to position the secondary source in an 
edge mirror position of the corresponding primary source. 
This is somewhat different from the strategy demonstrated 
in Sec. IIIA 1. The performance of the optimal ANC is 
verified in Fig. 7 by the reduction of the total acoustic 
potential energy in the control volume, where it is over 15 
dB in the frequency below 110 Hz. 

B. Effect of design bound 

Table I compares the optimal locations of the second- 
ary source at resonance excitations of the enclosure for 
different upper bounds on the strength of the secondary 
source, •b u. The enclosure of a single primary source is 
again discussed here, assuming that the volume velocity of 

the primary source is 1 m3/s. As expected, for the case 
where •bu> 1 m3/s the optimal placement of the secondary 
source is the same as that for the case where •bu = 1 m3/s. 
This is because for cavities of simple geometrical configu- 
ration the primary and secondary source having equal but 
inverse contribution can make the greatest noise reduction 
in a one-on-one control strategy. 

For cases of •bu < 1 m3/s, however, the location of the 
optimal controller is quite different from that in the case of 
•bu = 1 m3/s. Because of the lack of effective power, in most 
situations the controller cannot be afforded with the largest 
attenuation at the position of the case •bu>• 1 m3/s; as a 
result, the controller converges to the other place (local 
minimum) by tailoring its strength. As mentioned in Sec. 
III A, the positions of peak acoustic pressure are in or close 
to the boundaries of the cavity at resonance excitations. 
Hence, for the case of •bu < 1 m3/s the optimal location of 
the secondary source is definitely in the vicinity of the 
mirror image of the primary source. For •bu < 1 m3/s the 
optimal location would generally approach a position some 
distance away from an edge or a diagonal mirror image 
position of the primary source. Furthermore, the objective 
function increases as •bu decreases. For example, at 34.3 Hz 
the optimal locations of the secondary source for •bu>• 1, 
•bu=0.75, and •bu=0.5 m3/s are at (3.8,4.5,0.5), 
(0.2,0.5,2.5) +, and (0.2,0.5,0.5) +, respectively, where the 
superscript "+" indicates "in the neighborhood of." At 
resonances of 68.9 and 110.6 Hz, however, the optimal 
controller of •bu < 1 m3/s is located in the vicinity of the 
position of •bu>• 1 m3/s along with the values of the objec- 
tive function for •bu>• 1 m3/s and •bu=0.75 m3/s being quite 
close (at least in the first decimal digit). This infers that for 
•bu>/0.75 m3/s at these two resonances, the objective func- 
tion is insensitive to the variation of design variables in the 
neighborhood of the position (0.2,0.5,0.5). 

The upper bound of the strength of the secondary 
source having a definite impact on the optimal placement 
of the controller is confirmed by the above results. Also, at 
the optimum the magnitude •b of the secondary source 
reaches to •bu in most situations, where only maximum 
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TABLE I. Comparison of the optimal location of the secondary source with objective function at resonances of the enclosure for various upper bounds 
on the strength of the secondary source, •u- The superscript "+" indicates "in the neighborhood of." 

Frequency •bu• 1 m3/s •b•=0.75 m3/s •u=0'5 m3/s No control 
(Hz) (x,y,z) f (dB) (x,y,z) f (dB) (x,y,z) f (dB) f (dB) 

34.3 (3.8,4.5,0.5) 65.3 (0.2,0.5,2.5) + 78.6 (0.2,0.5,0.5) + 88.2 105.4 
42.9 (3.8,4.5,0.5) 67.5 (0.2,0.5,2.5) + 79.9 (3.8,0.5,0.5) + 84.8 103.6 
57.2 (3.8,4.4,2.5) 77.4 (0.2,4.5,0.5) + 78.3 (0.2,0.5,2.5) + 80.9 92.4 
68.9 (0.2,0.5,0.5) 78.2 (0.2,0.5,0.5) + 78.2 x (0.2,0.5,0.5) + 87.9 105.1 
86.1 (3.8,4.5,0.5) 77.0 (3.8,0.5,0.5) + 83.6 (0.2,0.5,0.5) + 85.1 102.4 

110.6 (0.2,0.5,0.5) 79.6 (0.2,0.5,0.5) + 79.6 (0.2,0.5,0.5) + 80.1 99.9 

output of the controller can make the effective noise reduc- 
tion. The optimal phase 0 is normally either a 0 or --180 
deg shift, which depends on the phase of the optimal po- 
sition in the sound field before control, relative to the pri- 
mary source. From a practical point of view, the general 
strategy for placement of the optimal controller obtained in 
Sec. IIIA must be modified if the power of the secondary 
source being smaller than that of the primary source is 
used. 

IV. SENSITIVITY ANALYSIS 

Two categories of sensitivity information are generally 
of interest and significance during and/or after optimiza- 
tion of engineering systems. Parameter sensitivity analysis 
is to be performed if system parameters are modified after 
the optimization is complete. The primary objective of pa- 
rameter analysis lies in both estimating the sensitivity of an 
optimum design to some new problem parameter and pro- 
viding the engineer with a measure of what effect such 
changes would have on the design. Some useful methods, 
including the traditional approach based on the Kuhn- 
Tucker necessary conditions for optimality, are available in 
Vanderplaats and Yoshida. 26 A systematic sensitivity anal- 
ysis using a multiobjective optimization approach for the 
determination of system parameters has also recently been 
proposed. 27 Another kind of sensitivity information is the 
first and second derivatives of objective and constraint 
functions on design variables, which are also referred to as 
the gradient and Hessian, respectively. Such information 
plays a key role in the search of optimal point. Most search 
methods require either first- or second-order information. 
Deriving an explicit expression for gradient and Hessian is 
often difficult in an engineering design optimization as a 
consequence of the complexity of engineering systems. 
Therefore, how this information can be accurately and ef- 

28 
ficiently obtained has been extensively investigated. One 
simple but extensively utilized approach is the finite differ- 
ence method. For a given tolerance, this approach can pro- 
vide an adequate approximation to either first- or second- 
order derivatives. 

The estimation of effects of relative small errors 

present during the installation and/or operation of the op- 
timal controller on the optimal design is of primary con- 
cern in this study. Therefore, the sensitivity of objective 
function on design variables, i.e., position vector for instal- 
lation and complex strength for operation, can be practical 

for required sensitivity analysis. A case of Sec. IIIA 1 is 
employed in demonstrating the concept of sensitivity anal- 
ysis described above. The required sensitivity c•f(x)/o•x for 
design variables x is shown in Fig. 8 at various frequencies, 
in which it is divided into three groups because of different 
dimensions for design variables. Table II is included to 
compensate for any misconception that has probably arisen 
from the fact that the sensitivity to position (x, y, and z) 
actually has not the same dimensions as that for strength 
(•b and 0). The effect of each design variable on the design 
objective is presented in Table II under a specified varia- 
tion of the optimal value. Via this information, more at- 
tention is drawn to those design variables that have a sig- 
nificant effect on design requirement in the course of 
installation and operation. As a result, the required opti- 
mum design can be correctly implemented. On the other 
hand, the total resulting variation of objective function can 
be evaluated on the basis of the deviations of design vari- 
ables 6x (after final setting up) by 6f=c9f/ 
C•X 1 •Xl +C• f /c•x 2 •X2+ ' ' ' +c• f /c•x n •X n. An optimal con- 
figuration is assumed to be reached if this value is within an 
acceptable range; otherwise, retuning of the controller is 
necessary. Some conclusions can be drawn from the sensi- 
tivity information and the effect of each design variable on 
the objective function given in Fig. 8 and Table II. 

(i) For position components, the sensitivity with re- 
spect to x is generally more significant with all resonant 
frequencies. This implies that the x component of the po- 
sition of the controller demands more accuracy during in- 
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FIG. 8. Sensitivity analysis of the secondary source at optimum. 
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TABLE II. The effect of a small variation of design varables on the objective function at the optimum. The 
figures provided here represent the increase of objective function in decibels. Note that while one of design 
variables is varied, the other variables remain unchanged. 

Frequency (Hz) 

Variation 34.3 42.9 57.2 68.9 86.1 110.6 

•Sx=0.01 m 17.77 14.09 1.43 4.29 4.42 1.22 

•Sy=0.01 m 0.22 0.20 1.20 0.03 1.31 0.02 
•Sz=0.01 m 0.17 0.24 0.01 0.01 1.31 0.03 

•b=0.01 m3/s 4.04 2.68 0.32 0.27 1.07 0.12 
•50= 1 deg 6.66 4.08 0.02 0.20 0.69 0.38 

stallation while others may allow some deviations. How- 
ever, the x dominate can be related to the shape of sound 
field in this simple cavity. At resonance excitations, the 
shape of original sound field in the vicinity of the mirror 
image of the primary source (such as the positions of S2 
and $3 in Fig. 4) is quite fiat along the y or z direction but 
rather steep along the x direction, especially at resonances 
of 34.3 and 42.9 Hz. Hence, a small variation of •Sx with 
the optimal value has a larger effect than those of •Sy and 
on the objective function. Also, the effect of variation •Sx at 
lower frequencies of 34.3 and 42.9 Hz is more crucial than 
that at higher frequencies, where reasoning similar to that 
above can be applied. 

(ii) For the characteristics of the controller itself, the 
given sensitivity indicates that the design objective is gen- 
erally insensitive to the variation of •5•b (except for 34.3 and 
42.9 Hz) and •50. This sensitivity arises since the optimal 
placement of the secondary source is of efficient coupling 
into the appropriate mode, in which the design objective is 
primarily influenced by the positions of peak acoustic pres- 
sure (local minima). In light of the different dimensions of 
•b and 0, the combination of sensitivity analysis (Fig. 8) 
and the effect of design variable on the objective (Table II) 
is required for evaluating their influence. For example, at 
resonance of 34.3 Hz the sensitivity of c•f(x)/o•x for •b is 
substantially larger than that for 0. From Table II, a vari- 
ation of •5•b=0.01 m3/s produces a 4.04-dB increase of 
objective function and, however, a 6.66-dB increase for the 
variation of •50= 1 deg. Further, if the variation is doubled, 
a 7.85-dB increase of objective function would occur for 
/5•b=0.02 m3/s, as compared to a 11.66-dB increase for 
•50= 2 deg. Accurately controlling the phase of controller 
is difficult in application. From this point of view and the 
results shown above, careful tuning is thus required in set- 
ting up the phase of the controller. 

(iii) The sensitivity with respect to x at 57.2 Hz is 
significantly less than that at other frequencies. In this 
case, the objective function is apparently insensitive with 
respect to all design variables. However, which factor will 
dominate the design? The optimal location of the second- 
ary source in this case can be postulated as being so close 
to the primary source that the former can still produce the 
proper approximated inversed acoustic field so as to atten- 
uate the noise under a small variation of •Sx. This argument 
is supported by the observation that the inequality con- 
straint, which defines the allowable distance between the 
primary and secondary sources, is active in this case. Fur- 

ther insight into the sensitivity on the constraint could be 
obtained by performing a parameter sensitivity analysis 
with respect to parameter •Sa, i.e., the inequality constraint 
is changed from g(x)<0 to g(x)<•Sa. The multiobjective 
optimization approach reported by Tseng and Lu 27 is sug- 
gested for further details regarding the sensitivity on •Sa. 

A working instruction on the installation and opera- 
tion of the active noise control system can be drawn on the 
basis of the optimal design along with the above sensitivity 
analysis so as to guide all of the implementations. 

V. CONCLUDING REMARKS 

An effective software design tool was proposed in this 
study for solving active noise control problems associated 
with constraints, in which the complex strength and loca- 
tion of the secondary source of an active noise control 
system in an enclosed space are simultaneously optimized. 
In light of practical considerations, the design of an active 
noise control system in an enclosure was formulated as a 
constrained optimization problem but not as an uncon- 
strained one as proposed in previous research efforts. The 
approach presented above was found to be straightforward 
and versatile. The acoustic properties of the enclosure 
boundaries and the complex strength and location of the 
primary and secondary sources could easily be varied. The 
parameters assigned in the optimization scheme SQP 
proved effective in ensuring the scheme robust as it con- 
verges quickly (within a few iterations) for all the example 
cases. Convergence to a local minimum would also be 
guaranteed by this scheme for various initial designs. 

This constrained optimization model was applied to- 
ward designing ANC systems for a rectangular cavity 
through computer simulations. Results indicated the opti- 
mal location of the secondary source generally tends to 
form a dipole with the primary source at off-resonance 
excitations and approaches a mirror image position of the 
primary source at resonance excitations of the enclosure. 
Furthermore, the optimal location of the controller was 
observed to change for varied rates of output powers of the 
secondary source, which corresponds to the upper bound 
of the strength of the secondary source. The effect of a 
small variation in •Sx being crucial was confirmed by sen- 
sitivity analysis at the optimum, especially at lower reso- 
nant frequencies. Consequently, this effect could be related 
to the shape of sound field in this simple cavity. 
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