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This paper presents the design of a neural-based acoustic control used for the equalization of the 
response of a sound reproduction system. The system usually can be modeled as a composite 
system of a loudspeaker and an acoustic signal-transmission channel. Generally, an acoustic 
signal radiated inside a room is linearly distorted by wall reflections. However, in a loudspeaker, 
the nonlinearity in the suspension system produces a significant distortion at low frequencies and 
the inhomogeneity in the flux density causes a nonlinear distortion at large output signals. Both 
the linear and nonlinear distortions should be reduced so that high fidelity sound can be 
reproduced. However, the traditional adaptive equalizer which is only capable of dealing with 
linear systems or specific nonlinear systems cannot compensate these nonlinear distortions. The 
time-delay feedforward neural network (TDNN) which has the capability to learn arbitrary 
nonlinearity and process the temporal audio patterns are particularly recognized as the best 
nonlinear inverse filter of the composite system. The performance of a TDNN-based acoustic 
controller is verified by some simulation results. 

PACS numbers: 43.60.Gk, 43.38.Ar, 43.55.Me 

INTRODUCTION 

The objective of the sound reproduction system has 
been assumed to be the "perfect" reproduction of the re- 
corded signals at the listener's ears, i.e., the signals re- 
corded at two points in the recorded space are reproduced 
exactly at points in the listening space. Generally, the 
sound reproduction system is used to achieve the perfect 
reproduction of the recorded audio signals at the listener's 
ears, i.e., the signals recorded at a point in the recording 
space are reproduced exactly at a point in the listening 
space. However, the original audio signals are imperfectly 
reproduced at the ears of a listener when these signals are 
replayed via loudspeakers in a listening room. The imper- 
fections in the reproduction arise from two main sources: 
(i) the acoustic signals radiated inside a room are linearly 
distorted by wall reflections, and (ii) in a loudspeaker, the 
suspension nonlinearity produces a significant distortion at 
low frequencies and the imhomogeneity in the flux density 
causes a nonlinear distortion at large output signals. In 
order to eliminate the above two undesired factors, it is 
necessary to introduce inverse filters that act on the inputs 
to the loudspeakers used for reproduction which will com- 
pensate for both the loudspeaker response and the room 
response. Initial attempts to design such inverse filters has 
been considered in designing the filters used for the equal- 
ization of the response of the room acoustic signal- 
transmission channel. Neely and Allen • showed through 
computer simulations that the loudspeaker to microphone 
room impulse response is generally a nonminimum phase. 
This means that it is not possible to realize the exact in- 
verse of an acoustic system that has nonminimum phases. 
Alternative approachs for the realization of the inverse 2'3 
are on the basis of the conventional least-squares error 
(LSE) methods. However, this inverse is not an exact in- 

verse but rather an approximate inverse of the acoustic 
system. The principal objective of such equalization 
schemes has been assumed to be the production of a "clos- 
est possible approximation" to the exact reproduction of a 
recorded audio signal at a single point in the listening 
space. 

An account 4 of work aimed at producing widespread 
effectiveness of the equalization of low-frequency sound 
reproduction in automative interiors shows that such an 
approach may well be useful. Since the traditional equal- 
ization can only deal with the linear systems or specific 
nonlinear systems, the suspension nonlinearity of loud- 
speakers will significantly degrade the quality of reproduc- 
tion at low frequencies by using such an equalization. For 
small input signals, the loudspeakers can be approximated 
as a linear system, and the transfer behavior is described by 
a linear transfer response. However, the nonlinear distor- 
tions, i.e., harmonics and intermodulation, increase rapidly 
when the input signal power becomes larger. This leads to 
the nonlinear inverse filters that can equalize the nonlinear 
distortions of the loudspeakers. Most of them are based on 
the Volterra series expansion. 5-7 The Volterra series is both 
a useful tool for analyzing weakly nonlinear systems and a 
basis for synthesizing nonlinear filters with desired param- 
eters. Nevertheless, the realization of Volterra filters suffers 
from its cumbersome representation and computational in- 
efficiency. The emerging feedforward neural networks 8-•ø 
have the capability to learn arbitrary nonlinearity and 
show great potential for nonlinear filter application. Arti- 
ficial neural networks are systems that use nonlinear com- 
putational elements to model the neural behavior of the 
biological nervous systems. The properties of neural net- 
works include: massive parallelism, high computation 
rates, and ease for VLSI implementation. The neural-based 
inverse filters would be applied to the equalization of the 
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FIG. 1. A stereophonic sound reproduction system with acoustic con- 
troller. 

response of a composite system of both loudspeakers and 
room acoustics. 

I. MODEL DESCRIPTION FOR A COMPOSITE SYSTEM 
OF LOUDSPEAKERS AND ROOM ACOUSTICS 

As alluded to earlier, the problem of loudspeaker- 
room interaction draws more attention in accurate sound 

reproduction. Bascially, a block diagram of a composite 
system consisting of loudspeakers and a room acoustic 
signal-transmission channel is illustrated in Fig. 1. How- 
ever, a lot of researchers •-3 did not consider the nonlinear 
distortion of loudspeakers which could degrade the quality 
of sound reproduction. In this section, we would like to 
review the mathematical models for the loudspeakers and 
room acoustics. A nonlinear inverse filter based on time- 

delay neural networks will be introduced in the next sec- 
tion. 

A. The image models for room acoustics 

Image methods are commonly used for the analysis of 
the acoustic properties of enclosures. Allen and Barkley TM 
applied the image model to characterize the impulse re- 
sponse of the acoustic signal-transmission channel in a 
small rectangular room. Moreover, the room reverberation 
of any input audio signal can be obtained when the result- 
ing impulse response is convolved with the input signal. 

Usually, a loudspeaker in a room is modeled as a point 
source in a rectangular cavity. A signal frequency point 
source of acceleration in free-space emits a pressure wave 
of the form, 

exp[ rio(R/c--t) ] 
P(co,X,X' ) = 4•rR ' ( 1 ) 

where P= pressure, co = angular frequency, t=time, 
c=speed of sound, R =distance between X and X', X=the 
vector that represents the loudspeaker's location (x,y,z), 
and X'=the vector that represents the microphone's loca- 
tion (x',y',z'). 

When a rigid wall is present, the rigid wall boundary 
condition may be satisfied by placing an image symmetri- 
cally on the far side of the wall. Since there are generally 
six walls that enclose a room, the situation becomes more 
complicated because each image is itself imaged. Allen and 
Berkley ll showed that the pressure can be written, 

8 • exp [ j ((D/C) I Rp -Jr- R r I ] Z Z 
p=l r----oo 4•rlR•,+Rrl 

X exp(--jcot), (2) 

where R e denotes the eight permutation vectors over the 
positive and negative signs, 

Re= ( x + x',y + y',z + z' ) , l<p<8 (3) 

and 

Rr= 2rL = 2 ( n L• ,lLy ,m L•), (4) 

where r-(n,l,m) is an integer vector and L= (Lx,Ly,Lz) 
is a vector that represents the room dimensions. 

Since Eq. (2) is the pressure frequency response, its 
corresponding time-domain impulse response can be ob- 
tained by taking the inverse Fourier transform, 

8 o• ti[t_(lRp_l_Rrl/c) ] p(t,X,X')= •, •, . (5) 
p=l r=--oo 4•rlRp-I-Rrl 

In practice, the room walls are not rigid. Allen and 
Berkley ll showed that the nonrigid walls can be approxi- 
mated by the above point image method with an angle- 
independent pressure wall reflection coefficient/3. The wall 
reflection coefficients are greater than 0.7 over the fre- 
quency range of 100 Hz4 kHz for the typical listening 
room geometries. Introducing the wall reflection coeffi- 
cients into Eq. (5), the time-domain impulse response be- 
comes 

1 

p(t,X,X')= • • •lxn--Pl Inl II-71•11l•lrn---kl• Irnl 
p=O r=--oo 

ti[t--( lR•,+Rrl/c) ] 
X 4•riRp_l_Rrl , (6) 

where R e is now expressed in terms of the integer vector 
Is = ( q,i,k ) as 

R e = (x -- x' + 2qx',y--y' + 2iy',z-- z' + 2kz' ). ( 7 ) 
The B's are the pressure reflection coefficients of the six 
walls with the subscript "1" referring to walls adjacent to 
the reference origin. Subscript 2 is the opposing wall. Here, 
R e is identical to that of (5). 

B. Equivalent electrical and mechanical circuit model 
for a loudspeaker 

A loudspeaker is composed of an electrical part and a 
mechanical part. The electrical part is the voice coil. The 
mechanical part consists of the cone, the suspension, and 
the air load. The two parts interact through the magnetic 
field. The mechanical part can also be described by an 
equivalent electrical circuit. References 6 and 7 introduced 
an equivalent electrical circuit of a loudspeaker that is 
shown in Fig. 2. In the voice coil electrical circuit, e, i, r, L, 
and E represent the input voltage, the current in the voice 
coil, the electrical resistance of the voice coil, the induc- 
tance of the voice coil, and the voltage produced in the 
electrical circuit by the mechanical circuit, respectively. 
The voltage E is equal to Bl dx/dt, where B is the mag- 
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FIG. 2. Equivalent electrical and mechanical circuit of a loudspeaker. 

netic flux density in the air gap, I is the length of the voice 
coil conductor, and x is the cone displacement. In the me- 
chanical circuit, rn, rM, CM, and fM denote the total mass 
of the coil and the air load, total mechanical resistance due 
to the dissipation in the air load and the suspension system, 
the compliance of the suspension, and the force generated 
in the voice coil, respectively. The force fM is equal to Bli. 

Generally, the mechanomotive force in the voice coil is 
a nonlinear function of the displacement x. The force de- 
flection characteristics of the loudspeaker cone suspension 
system is approximated by 

f M = OtX -3- BX 2 -3- ]/X 3. ( 8 ) 

Thus the compliance of the suspension system is obtained 

x 1 

CM--f M--a + [3x + Tx 2 . (9) 
Another source of harmonic distortion is nonuniform 

flux density B. The flux density is a function of the dis- 
placement x, which may also be approximated by a second- 
order polynomial, 

B(x) = Bo+ BlX -3- B2 x2. (lO) 

Let the state variables x• =i, x2=x, and x3=dx2/dt. From 
the equivalent electrical and mechanical circuits, one can 
obtain the following state-space dynamical equation' 

dx• 1 
dt --L ( --rx•-- Bolx3+e-- BllX2x 3-- B21x22x3), 

dx 2 
dt --x3' (11) 

dx 3 
dt 

1 

-- ( BolXl--ax2--rMx3--lSx22--]/x• + lBlXlX2 
rn 

+ lB2x lx22 ), 
and 

y(t)=x2(t), 

where y(t) is output signal of the loudspeaker. 

(12) 

II. NEURAL-BASED MODEL IDENTIFICATION 

Neural networks have become a very fashionable area 
of research with a range of potential applications that 
spans artificial intelligence (AI), engineering, and science. 
All the applications are dependent upon training the net- 
work with illustrative exa,,mples and this involves adjusting 
the weights which defin4 the strength of connection be- 
tween the neurons in the network. This can often be inter- 

preted as a system identification problem of estimating the 
system that transforms inputs into outputs given a set of 
examples of input-output pairs. 

This section focuses on the feasibility of neural net- 
works and their learning algorithms for training the net- 
works to represent forward and inverse transform models 
of nonlinear acoustic systems. Training a neural network 
using input-output data from a nonlinear plant can be 
considered as a nonlinear functional approximation prob- 
lem. Approximation theory is a classical field of mathemat- 
ics. From the well-known Stone-Weierstrass theorem, •2 it 
shows that polynomials can approximate arbitrarily well a 
continuous function. Recently, the approximation capabil- 
ity of networks has been investigated 8-•ø by using the sim- 
ilar concept based on the Stone-Weierstrass theorem. A 
number of results have been published showing that a feed- 
forward network of the multilayer perceptron type can ap- 
proximate arbitrarily well a continuous function. 8-•ø To be 
specific, these research works prove that multilayer feed- 
forward networks with as few as a single layer and an 
appropriately smooth hidden layer activation function are 
capable of arbitrarily accurate approximation to an arbi- 
trary continuous function. 

Before applying the feedforward neural networks to 
the model identification of loudspeaker-room system, it is 
important to establish their approximation capabilities to 
some arbitrary nonlinear real-vector-valued continuous 
mapping y=f(x)'DC_Rn•R m from input/output data 
pairs {x,y}, where D is a compact set on R. Consider a 
feedforward network F(x,w) with x as a vector represent- 
ing inputs and w as a parameter-weighting vector that is 
updated by some learning rules. It is desired to train 
F(x,w) to approximate the mapping f(x) as close as pos- 
sible. The Stone-Weierstrass theorem 12 shows that for any 
continuous function f•Cl(D) with respect to x, a compact 
metric space, an F(x,w) with appropriate weight vector w 
can be found such that IIF(x,w ) - f(x )11 < for an arbi- 
trary e > 0, where Ilell is the norm defined by 

Ilell-sup(lle(x)ll:xD, I1'11 is the vector norm}. 
" (13) 

For network approximators, key equations are how 
many layers of hidden units should be used, and how many 
units are required in each layer. Cybenko 9 and Homik 
et al. lO have shown that the feedforward network with a 
single hidden layer can uniformly approximate any contin- 
uous function to an arbitrary degree of exactness-- 
providing that the hidden layer contains a sufficient num- 
ber of units. However, it is not cost effective for the 
practical implementation. Nevertheless, Chester 13 gave a 
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FIG. 3. Multilayer feedforward neural network. 

N 

E= • Ek, (15) 

where E• is the square error of the kth pattern, 
1 

IIm(x,w)-f(x)II 2 
1 

IIo-dll 
m 

_1 • (Okj_dkj)2 ' (16) 
2j=] 

and N is the number of samples, oaj and daj are the jth 
compenents of oa and da, respectively. 

Here, we define the weighted sum of the output of the 
previous layer by the presentation of input pattern xa: 

theoretical support to the empirical observation that net- 
works with two hidden layers appear to provide high ac- 
curacy and better generalization than a single hidden layer 
network, and at a lower cost (i.e., fewer total processing 
units). Since, in general, there is no prior knowledge about 
the number of hidden units needed, a common practice is 
to start with a large number of hidden units and then prune 
the network whenever possible. Additionally, Huang and 
Huang TM gave the lower bounds on the number of hidden 
units which can be used to estimate its order. 

A. Feedforward neural networks and their learning 
rules 

A feedforward neural network shown in Fig. 3 is a 
layered network consisting of an input layer, an output 
layer, and at least one layer of nonlinear processing ele- 
ments. The nonlinear processing elements, which sum in- 
coming signals and generate output signals according to 
some predefined function, are called neurons. In this paper, 
the function used by nonlinear neurons is called the sig- 
moidal hyperbolic tangent function (7, which is similar to a 
smoothed step function, 

(7(x) =tanh (x). (14) 

The neurons are connected by terms with variable weights. 
The output of one neuron multiplied by a weight becomes 
the input of an adjacent neuron of the next layer. 

In 1986, Rumelhart et al. •5 proposed a generalized 
delta rule known as backpropagation for training layered 
neural networks. For control engineers, it is appropriate to 
consider feedforward neural networks as a tool to solve 

function approximation problems rather than pattern rec- 
ognition problems. In mathematical sense, the backpropa- 
gation learning rule is used to train the feedforward net- 
work F(x,w) to approximate a function f(x) from 
compact subset D of n-dimensional Euclidean space to a 
bounded subset f(D) of m-dimensional Euclidean space. 
Let Xk which belongs to D be the kth pattern or sample 
and selected randomly as the input of the neural network, 
let F(xk,w) (=ok) be the output of the neural network, 
and let f(xk)(=dk) which also belongs to f(D) be the 
desired output. This task is to adjust all the variable 
weights of the neural network such that the system error E 
can be reduced, where E is defined as 

netkj= • WjPki, (17) 
i 

where wji is the weight that connects the output of the ith 
neuron in the previous layer with respect to the jth neu- 
ron, and oki is the output of the ith neuron. It should be 
noted that oki is equal to xki when the ith neuron is located 
in the input layer, where xki is the ith component of pattern 
x k. Using (14), the output of neuron j is 

xkj, if the neuron j belongs to the input layer 
(7(net•), otherwise. (18) 

As discussed above, the goal is to choose the network 
connection weights Wji'S such that the system error E is 
reduced. The most popular technique for training neural 
networks and modifying those connection parameters is 
the backpropagation algorithm. •6 The algorithm computes 
iteratively the partial derivatives of the system error E with 
respect to each parameter and modify the parameter in 
order to achieve a gradient descent in E with a momentum 
term added to dampen oscillations. In particular, the 
weight Wji is updated at the t+ 1st iteration, according the 
rule, 

c•E 

Awji(t+ 1)=--( 1--a)r/(t+ 1) •-•ji+aAwj•(t), 
(19) 

where Awji(t-[-1) is the weight increment for the t+ 1st 
iteration, r/(t + 1 ) is the learning rate value corresponding 
to Aw(t+ 1 ) at time t+ 1, and a is the momentum rate. 

Since the expression of OE/Owij could be in terms of 
OEk/Owij's, it is useful to see this partial derivative for 
pattern k, OEk/OWii , as resulting from the product of two 
parts: one part reflecting the change in error to a function 
of the change in the network input to the neuron and one 
part representing the effect of changing a particular weight 
on the network input: 

c•Ek c9Ek c9 netkj 
• o 

C•Wji • netkj c•wji 
From (17), the second part becomes 

(20) 

•WJ i __•Wji . WjtOki =Oki. (21) 
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An error signal term 6 called delta produced by the jth 
neuron is defined as follows: 

0Ek 

8•-• 0(net•j) ' (22) 
Note that E is a composite function of netkj, it can be 
expressed as follows: 

=E•(G(net•l ),G(net•2) .... ,G(net•L)), (23) 

where L is the number of the neurons in the current layer. 
Thus we have from (22), 

0Ek 0o•j 
ß (24) •kJ= -0o•,j a netkj 

Denoting the second term in (24) as a derivative of the 
activation function, 

aOk] 
-- G' (net•j). (25) a net• 

However, to compute the first term, there are two 
cases. For the hidden-to-output connections, it follows the 
definition of Ek that 

OEk 

OOk• .= -- ( dkj--Okj ) . (26) 
Substituting for the two terms in (24), we can get 

t•kj: ( dkj --Okj ) G' ( netkj ) . ( 27 ) 

Second, for hidden (or input)-to-hidden connection, the 
chain rule is used to write 

aEk aEk a netk/ 

Ook•-- • O netk/ Ook-•-. ---- Z 8klWlj. l 

Substituting into (24), it yields 

(28) 

8kj = G' (netkj) • 8kzWtj. ( 29 ) 

Equations (27) and (29) give a recursive procedure 
for computing the 8's for all neurons in the network. Once 
those error signal terms have been determined, the partial 
derivatives for the system error can be computed directly 
by 

N N N 

0E 0Ek 0Ek a netkj -- awji- a netkj awji -- -- • •kjOki' aw/i k= 1 k= 1 k= l 
(30a) 

where 

•kj: 

(dkj--okj)6' (netkj), 
if neuron j belongs to the output layer, 

G' (netkj) • 8k•w/i, otherwise. (30b) 
l 

It should be mentioned that oki is equal to xki when neuron 
i belongs to the input layer. The expression of Eqs. (30a) 
and (30b) is also called the generalized delta learning rule. 

Jacobs 16 showed that the momentum can cause the 
weight to be adjusted up the slope of the system error 
surface. This would decrease the performance of the learn- 
ing algorithm. To overcome this difficulty, Jacobs 16 pro- 
posed a promising weight update algorithm based on the 
delta-bar-delta rule which consists of both a weight update 
rule and learning rate update rule. The weight update rule 
is the same as the steepest descent algorithm and is given 
by (19). The delta-bar-delta learning rate update rule is 
described as follows: 

Ar/(t+ 1) = 

where 

OE 

•(t)--Owij 
and 

K, if it(t-- 1)it(t) >0, 

-•br/(t), if it(t-- 1)it(t) <0, 
0, otherwise, 

(31a) 

(3lb) 

it(t) = ( 1 -- 0)it (t) +0it(t-- 1 ). (3 lc) 

In these equations, it (t) is the partial derivative of the 
system error with respect wij at the tth iteration and it (t) 
is an exponential average of the current and past deriva- 
tives with 0 as the base and index of iteration as the expo- 
nent. If the current derivative of a weight and the expo- 
nential average of the weight's previous derivatives possess 
the same sign, then the learning rate for that weight is 
incremented by a constant K. The learning rate is decre- 
mented by a proportion •b of its current value when the 
current derivative of a weight and the exponential average 
of the weight's previous derivatives possess opposite signs. 

From Eqs. (3 la) and (3 l c), it can be found that the 
learning rates of the delta-bar-delta algorithm are incre- 
mented linearly in order to prevent them from becoming 
too large too fast. The algorithm also decrements the learn- 
ing rates exponentially. This ensures that the rates are al- 
ways positive and allows them to be decreased rapidly. 
Jacobs 16 showed that a combination of the delta-bar-delta 
rule and momentum heuristics can achieve both the good 
performance and faster rate of convergence. 

B. Forward and inverse system model identification 
by feedforward network 

In gereral, system identification is usually recognized 
as a process to train networks to represent nonlinear dy- 
namical systems and their inverses. This would be dis- 
tinctly helpful in achieving the desired output signal of the 
system. The issue of identification is perhaps of even 
greater importance in the field of adaptive control and sig- 
nal processing systems. 17 Since the plant in an adaptive 
control varies in operation with time, the adaptive control 
must be adjusted to account for the plant variations. 

The procedure of training a neural network to repre- 
sent the forward dynamics will be referred to as forward 
model identification. The basic configuration f6r achieving 
this is shown schematically in Fig. 4. A feedforward neural 
network with a single hidden layer is placed in parallel 
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FIG. 4. Forward model identification. 

with the system and receives the same input x as the sys- 
tem. The system output provides the desired response d 
during training. The purpose of the identification is to find 
the appropriate weights w•js of the network with response 
o that matchs the response y of the system for a given set 
of inputs x. During the identification, the norm of the error 
vector, Ilell--Ila--oll, is minimized through a number of 
weight adjustments by the delta-bar-delta learning rule. In 
our case, those weights are updated by minimizing the 
system error, E= by the same algorithm, where 
ek= (dk--Ok). Figure 4 shows the case for which the net- 
work attempts to model the mapping of system input to 
output, which both input and output measured at the same 
time. With sufficiently large number of hidden units, 
Stone-Weierstrass theorem shows that the neural network 

will be identical to the system in the domain of interest. 
Figure 4 shows use of a feedforward neural network 

for direct modeling of an unknown system to obtain a close 
approximation to its responses. By changing the configu- 
ration, it is possible to use the feedforward network for 
inverse modeling to obtain the reciprocal of the unknown 
system's transfer function when the system is invertible. In 
contrast to forward system characteristics identification, 
the system output o is used as neural network input, as 
shown in Fig. 5. The unknown system's input x delayed by 
A time units is the desired response of the feedforward 
network. Thus the error vector of network training is com- 
puted as a x(t--A)-o(t). The system erro_r to be mini- 
mized through learning is therefore E=•_•llx(tk 
--A)--o(t•) II 2. The neural network trained by the delta- 
bar-delta algorithm will implement the mapping of the sys- 
tem inverse. Once the network has been successfully 
trained to mimic the delayed system inverse, it can be used 
directly for inverse feedforward control. In other words, 
the inverse model is cascaded with the controlled unknown 

system in order that the composed system results in an 
identity mapping with a time delay A between desired re- 
sponse (i.e., the network inputs) and the controlled system 

FIG. 5. Inverse model identification. 

output. The output of the system follows the input signal 
delayed by A time samples. 

As mentioned, it is assumed that the system is invert- 
ible. Then there exists an injective mapping which repre- 
sents its inverse. If it is not true, a major problem with 
system inverse identification arises when the system inverse 
is not uniquely defined. A second approach to inverse mod- 
eling which aims to overcome these problems is known as 
specialized inverse learning. •8 As pointed out in Psaltis 
et al., 18 the specialized method allows the training of the 
inverse network in a region in the expected operational 
range of the system. On the other hand, the generalized 
training procedure produces an inverse over the operating 
space which may be uniquely defined. Fortunately, the 
mapping of a loudspeaker-room system may have a unique 
inverse or its approximation. Thus we could apply the di- 
rect invesre method as illustrated in Fig. 5 to find the 
approximation of the inverse. In addition, since the non- 
linearity of a system inverse is higher than that of forward 
modeling, a network with two hidden layers is considered 
in constructing the inverse modeling. 

III. INVERSE FILTERING AND MODEL 
IDENTIFICATION OF A LOUDSPEAKER-ROOM 
SYSTEM BY THE TIME DELAY NEURAL NETWORK 

As discussed in the above section, the feedforward 
neural network results in a static network which maps 
static input patterns to static output patterns. Any tempo- 
ral patterns in the input data are not recognizable by such 
a network. A time delay neural network (TDNN) shown 
in Fig. 6 is extended to networks with delay elements in the 
connections can be trained to recognize specific spectral 
structures within a consecutive frame of audio signal. •9 
Usually, these temporal audio patterns generated by 
loudspeaker-room system can be governed by a nonlinear 
discrete-time difference equation where the output has a 
finite temporal dependence on the input, that is, 
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FIG. 6. Time-delay neural network. 

y(t) =f{x(t--A f),x(t--A f-- 1 ),...,x(t--A f--nf)), 
(32) 

where Af is the forward system time delay and (A f+ n f) is 
the maximum lag in the input. 

This architecture is equivalent to a linear finite impulse 
response (FIR) filter when the function f( ß ) is a weighted 
linear sum. This would be identical to our method without 

including the nonlinearity of the loudspeakers. The trans- 
fer function of the acoustic signal-transmission channel be- 
tween loudspeaker and microphone is denoted as G(z), 
which is a FIR (finite impulse response) system, G(z) 
represents the reflective sound as well as the direct sound 
between the loudspeaker and microphone. 

To process the time series data generated by (32), it is 
possible to convert the temporal audio sequence into a 
static pattern by unfolding the sequence over time and then 
use this pattern to train a static network. From a practical 
point of view, it is suggested to unfold the sequence over a 
finite period of time. This can accomplished by feeding the 
input sequence into a tapped delay line of finite extent, then 
feeding the taps from the delay line into a static feedfor- 
ward network. Because there is no feedback in this net- 

work, it can be trained using the standard backpropagation 
algorithm. 

Since the input-output structure of a real acoustic sys- 
tem involves the loudspeaker's nonlinearity, it is quite dif- 
ficult to describe clearly the dynamic behavior of the in- 
verse of a nonlinear system. For simplicity, we would like 
to discuss the linear acoustic signal-transmission channel 
and its inverse. Generally, Refs. 1 and 2 showed that the 
transfer function of the acoustic channel G(z) is consid- 
ered to be a nonminimum phase system where G(z) has 
one or more of its zeros outside the unit circle in the z 

plane. A reciprocal transfer function D(z){=l/G(z)} 
would then have unstable poles. Usually, the reciprocal 
function D(z) can be decomposed into two component 
subsystems, each of which has all of its poles either inside 
or outside the unit circle, that is, 

D(z)=D½(z)Dac(Z), (33) 

where De(z) and Dac(Z) have stable and unstable poles, 
respectively. 

In other words, the system implements D(z) by a cas- 
cade connection of the subsystems De(z) and Dac(Z). Be- 
cause the poles of De(z) are inside the unit circle, a stable 
causal recursive filter can implement De(z). Since the poles 
of Dac(Z) are outside the unit circle, no stable implemen- 
tation of Da½(Z) exist if the causality is required. However, 
by allowing their impulse responses to extend backward in 
time, the stable inverse filter does exist. To better under- 
stand this principle, it is necessary to review the properties 
of the bilateral z transform. A specific pole contributes 
either to the causal or the anticausal portion of the impulse 
response of Da½(Z) depending on the associated region of 
convergence (ROC) of its z transform. Consider a circle in 
the z plane that is centered at the origin and that passes a 
pole; if the Roe associated with the pole lies outside that 
circle, then the time response extends forward in time. 
Conversely, if the ROC of the pole is inside that circle, the 
time response extends backward in time. For example, the 
same expression of Dac (z) = z/z-- a, a > 1 yield two differ- 
ent impulse responses, that is, a stable anticausal impulse 
response h •[n] = - (a) nu[- n- 1] and an unstable causal 
impulse response h2[n ] = (a)nu[n], where u[n] is a discrete- 
time unit step function. 

The Roe of the entire system is the intersection of the 
ROes of all the poles. This intersection must include the 
unit circle for the system to be stable. Therefore, there 
exists a stable inverse to G(z) when the impulse response 
of Dc[z ] is strictly causal and the impulse response of 
Dac(Z) is strictly anticausal. If the anticausal impulse re- 
sponse is finite in duration, noncausal filtering can be 
achieved exactly when the filtering introduces delay, effec- 
tively shifting the impulse response until it is strictly 
causal. Moreover, Widrow 17 showed that the anticausal 
impulse response could be approximated by a causal stable 
impulse response truncated and shifted in time. As a result, 
it can be shown that a causal FIR filter can approximate a 
delayed version of the system inverse D(z). This argument 
is also true when the room acoustic system includes the 
nonlinearity of speakers. The causal FIR filter can be re- 
placed by a nonlinear FIR filter which approximates the 
system inverser of (32) and given by 

u( t) =g{x( t-- A/),x( t-- A/-- 1 ) ,...,x( t-- A/-- n•) ), 
(34) 

where x (t) is the input voltage, u (t) is the driver voltage to 
the loudspeaker, A• is the system inverse time delay, and 
(A•+ n•) is the maximum lag in the input. 

Similarly, the TDNN can implement the nonlinear 
FIR filter by inputting the temporal audio signal, i.e., x(t) 
to a tapped delay line, then feeding the taps from the delay 
line into a static feedfoward network. Next the output of 
the static network, i.e., u(t) acts as a drive voltage to the 
composite system of loudspeaker and room acoustic chan- 
nel. From the previous section, the inverse of the compos- 
ite system can be identified by minimizing the system error 
E-•,•-•llx(t•-%)-O(t•) II 2 where O(tk) is the kth sam- 
ple of the response of the composite system. The trained 
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FIG. 7. TDNN-based plant inverse acoustic controller. 
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TDNN-based inverse model can be cascaded with the com- 

posite system and then preequalize its response. The prop- 
erly trained TDNN acts as the inverse feedforward con- 
troller in the configuration as illustrated in Fig. 7. 

IV. ILLUSTRATED EXAMPLES 

To evaluate the performance of TDNN-based model 
identification, the simulation of the composite system of 
loudspeakers and room acoustics is performed by a fourth- 
order Runge-Kutta method with sampling period= 1/5 
kHz= 2 X 10-4s. The dimensions of the rectangular listen- 
ing room are 10X 15X 12.5 ft 3 with equal wall reflection 
coefficients of/3x=/Jy=0.9 and with floor and ceiling re- 
flection coefficients of/3z=0.7. The loudspeaker is mounted 
on location (3.75, 12, and 5 ft). The location of micro- 
phone is (6.25, 1.25, and 7.5 ft). The simulated room im- 
pulse response can be calculated using the image method. TM 
For the simulation of loudspeakers, it requires knowing the 
values of the associated parameters, that is, (r/L)=l.1, 
( Bol/L ) =0.2, ( Bol/rn ) =0.6, (a/m) =0.5, ( rM/rn ) 
=1.15, (B11/L)=O.04, (B21/L)=O.05, (r/m)=O.08, 
(lB1/m) --0.01, and (lB2/m) =0.02 which are suggested 
by Ref. 6. Since/3 is very small in practice,/3 is chosen as 
zero. Notice that e of (11) is the input voltage to the 
dynamic system. Here, y(t) of (12) is the resulting output 
of the loudspeaker and also acts as an input signal to the 
room acoustic signal transmission channel. As a result, the 
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FIG. 9. Comparison of the desired response (--), the response without 
equalizer (.--), and the response (---) with TDNN-based equalization. 

response of a composite system of loudspeaker and room 
acoustics is produced by convolving y(t) with the calcu- 
lated room impulse response. 

Two TDNNs with one hidden layer and two hidden 
layers are designed to learn the forward and inverse models 
of the composite system, respectively. According to Huang 
and Huang's suggestions, TM it is possible to estimate the 
lower bounds on the numbers of hidden units in both 

TDNNs. The numbers of hidden units for both the 

TDNNs associated with the forward and inverse models 

are chosen as 30 for each layer. For the TDNN associated 
with the forward model, the number of taps and Af deter- 
mined by the model validation test 2ø are equal to 100 and 
40 units, respectively. Similarly, the tap number and As of 
the TDNN for the inverse model are chosen as 100 and 90 

units, respectively. By inputting 10 000 random sequence 
with unity maximum amplitude into the composite system 
and then performing the delta-bar-delta algorithm on the 
TDNN-based forward model, the training root-mean- 
square error (rms) can be found as 0.0031. Similarly, it 
can be found that the training error is 0.007 for TDNN- 
based inverse model. 

Next, we would like to verify the performance of both 
the estimated TDNN-based forward and inverse models by 
a test signal x(t) =0.3 sin(1.28wt) +0.5 cos(3.93wt), 
where co= 200rr. The resulting error for the TDNN-based 
forward and inverse model are 0.015 and 0.0267, respec- 
tively. Figure 8 illustrates a comparison of the responses of 
both the composite system and TDNN-based forward 
model. Figure 9 shows the tracking performance of the 
TDNN-based inverse feedforward control. The presented 
curves clearly show the performance improvement that is 
achieved by using the proposed inverse model. It should be 
noted that the error resulted from the composition system 
without including the TDNN-based inverse controller 
would become 0.2951. The TDNN-based inverse controller 

improves the performance of the sound reproduction by an 
order of magnitude. 

v. CONCLUSION 

FIG. 8. Comparison of the desired response (--) from the actual system 
and the response (---) from the estimated forward model. 

The use of TDNN-based inverse filters for loud- 

speaker-room correction promises to bring a new level of 
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accuracy to sound reproduction systems. The inverse filter 
is simply cascaded with the controlled system in order that 
the composed system results in an identity mapping be- 
tween desired response (i.e., the network inputs) and the 
controlled output. A model of combining the room acous- 
tics and loudspeaker's system dynamics has been devel- 
oped and studied which take into account a linear rever- 
berant distortion and two principal sources of nonlinear 
loudspeaker distortion. Based on this, simulations of the 
proposed method have been performed. The results have 
shown that both linear and nonlinear distortions of the 

composite system can be reduced by an order of magni- 
tude. 
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