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MODELING OF HEAT TRANSFER ACROSS
THE INTERFACE IN TWO-FLUID FLOWS

Yeng-Yung Tsui, Shi-Wen Lin, and Kuen-Je Ding
Department of Mechanical Engineering, National Chiao Tung University,
Hsinchu, Taiwan, Republic of China

A model is presented in this article to deal with heat transfer across the interface separating

two immiscible fluids. It is suitable to be incorporated into interface-tracking methods,

such as volume-of-fluid (VOF) methods, because a sharp interface is available in these

approaches. The temperature at the interface and the heat flux through it are calculated

in such a way that the continuity of the two properties at the contact surface is satisfied

explicitly. With use of these values, the temperature either at the centroid or on a face of

the interface cell can be estimated, which serves as Dirichlet boundary condition for the

energy equation. The temperature field is then calculated by solving the energy equations

for the two fluids simultaneously in an implicit way. This method is first assessed via testing

on two heat conduction problems in which two solids are in contact. Good agreement

between numerical solutions and theory is obtained. To demonstrate its capability, it

is applied to two kinds of heat transfer problems, one being the collapse of a heated

water column in a cavity, and the other the falling of a molten tin droplet in an oil tank.

The effect of fluid flow on the heat transfer is clearly illustrated.

INTRODUCTION

Free surface flow with heat transfer can be found in many industrial applica-
tions. As examples, injection of gas into molten metal has been a common method
for the molten metal refining process in refining and casting plants [1]. In direct-
contact heat exchangers, liquid or gas is bubbled through another liquid [2]. In the
filling process of mold casting, the fluid and accompanying heat transfer are closely
related to the casting quality, surface finish and segregation of the cast part, and
mold erosion [3, 4]. Injection-molded parts suffer from shrinkage and warpage after
injection. In order to simulate the deformation, residual stresses induced by tempera-
ture during the molding process must be calculated [5].

In two-fluid flows, the surface boundary separating the two fluids undergoes
continuous distortion, which may cause overturning or breaking of the surface or
coalescence of two such surfaces. A popular approach to tackle these problems is

Received 25 November 2013; accepted 27 December 2013.

Address correspondence to Yeng-Yung Tsui, Department of Mechanical Engineering, National

Chiao Tung University, 1001 Ta-Itsueh Road, Hsinchu 300, Taiwan, Republic of China. E-mail: yytsui@

mail.nctu.edu.tw

Color versions of one or more of the figures in the article can be found online at www.tandfonline.

com/unhb.

Numerical Heat Transfer, Part B, 66: 162–180, 2014

Copyright # Taylor & Francis Group, LLC

ISSN: 1040-7790 print=1521-0626 online

DOI: 10.1080/10407790.2014.894450

162

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l C
hi

ao
 T

un
g 

U
ni

ve
rs

ity
 ]

 a
t 1

9:
18

 2
4 

D
ec

em
be

r 
20

14
 



to use a Euler mesh and allow the interface to move around in the mesh.
Two indicator functions, volume-of-fluid (VOF) and level set functions, are usually
adopted to track and locate the interface [6–10]. The entire flow field is solved in the
manner that the different fluids are treated as one fluid with variable thermophysical
properties. However, owing to the abrupt change of material properties across
the interface, numerical calculations often suffer instability problems. A common
approach to relieve this is to diffuse the interface so that the gradients of the proper-
ties are smeared. This smoothing practice is usually adopted in solving the
Navier-Stokes equations with free surface flows [11, 12]. Application of the diffused-
interface method for the energy equation may result in significant errors in calculating
temperature gradients around the interface.

As reported by Storr and Behnia [13] for a heated falling jet, unrealistic
temperature distributions appear in their results; large temperatures are presented
as hot-spots at the back edge of the jet. To prevent unrealistic temperature
distribution, Pericleous et al. [14] simply employed the second-order total variation
diminishing (TVD) scheme of van Leer [15] for calculation of velocity and tempera-
ture. The accuracy of this simple way is questionable because diffuseness of
the interface cannot be avoided, as evidenced in their results. Mehdi-Nejad et al.
[16] showed that the van Leer scheme alone is not sufficient to eliminate false
diffusion, especially if the differences in thermal properties between the two fluids
are large. To remedy this defect, a ‘‘two-temperature model’’ was used in the
interface cells in their study. This two-temperature model is similar to the method
employed by Davidson and Rudman [17]. The interface is first reconstructed using
the VOF function to separate the interface cell into two parts occupied by the two
fluids individually. The total convective energy flux crossing the cell face is obtained

NOMENCLATURE

Cp specific heat

f VOF function

Fd diffusive flux

~gg gravitational acceleration

h specific energy

k thermal conductivity

Dn normal distance away from the

interface

P pressure
_qq heat flux

r gradient ratio

~sswf surface vector of wetted area

~SSf surface vector

~SS source terms in momentum equation

t time

Dt time-step size

T temperature

Dv cell volume
~VV velocity vector

a thermal diffusivity

c(r) flux limiter depending on

gradient ratio
~dd distance vector

m viscosity

q density

r surface tension coefficient
~~ss~ss viscous stresses

Subscripts

D downstream cell

f cell face

fj jth cell face

int interface

N neighboring cell

P primary cell

U upstream cell

UU far upstream cell

1, 2 fluids 1 and 2

Superscripts

n new time step

o old time step
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via combination of the two individual fluid fluxes. For the cells away from the inter-
face, the flux-corrected transport algorithm of Zalesak [18] is used by Davidson and
Rudman. Discretization of the diffusive flux in their study is based on an analysis of
1-D diffusion across the interface.

Accompanied by heat transfer, mass transfer is also included in such processes
as boiling and evaporation. In simulating these flows, the temperature at the
interface is often assumed to be known at the saturated temperature [19–21]. In
contrast, the temperature at the interface is not known a priori in the flow without
phase change. Care must be taken in calculating heat transfer in the region
near the interface. In this study, a new approach is proposed to account for the heat
transfer across the fluid interface without phase change involved. In this method,
the temperature of the interface is obtained from the continuity condition for the
temperature and diffusive heat flux. With use of this temperature as an internal
boundary condition, the temperature field for the two fluids can be solved without
suffering from any numerical diffusion at all.

MATHEMATICAL MODEL

The flows in both fluids are assumed to be laminar and incompressible.
The conservation equations for the two fluids can be given by one set of equations.

r � ~VV ¼ 0 ð1Þ

qq~VV
qt

þr � ðq~VV � ~VVÞ ¼ �rPþr � ~~ss~ssþ q~ggþ~SS ð2Þ

qqh
qt

þr � ðq~VVhÞ ¼ r � k

Cp
rh

� �
ð3Þ

where ~VV is the velocity, q the density, h the specific energy, P the pressure, k the
thermal conductivity, Cp the specific heat, and ~~ss~ss the viscous stress. The momentum
source ~SS is generally zero except in the cells containing the interface, where surface
tension acts. With the CSF (continuum surface force) model [22], the surface tension
can be formulated as a body force.

~SS ¼ �rr � rf

rfj j

� �
rf ð4Þ

where f is the VOF function and r is the surface tension coefficient.
Within the frame of the VOF method, the interface is determined from the

volume fraction f. It is either 0 or 1 in the single-phase cells and a value greater
than 0 and less than 1 in the cells containing the interface. The transport equation
for this function can be cast as

qf
qt

þr � ð~VVf Þ ¼ 0 ð5Þ
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NUMERICAL METHODS

Numerical Methods for Interface Tracking

An interface-tracking procedure, termed CISIT, has been developed by the
present authors recently [23]. Unlike other VOF methods, the interface is simply
characterized by the contour surface of VOF value 0.5, which can easily be
reconstructed. The moving of the interface through the grid is fulfilled by enforcing
mass conservation of the fluids across the control surface of the interface cells in
a predictor-corrector manner. This procedure is briefly addressed in the following.
Details about the method can be found in the original article.

To obtain the contour surface (or contour line in 2-D problems, as exemplified
in the present study), a linear interpolation practice is employed. The original VOF
value is stored at the centroid of each grid cell. An interpolation practice is first
carried out to obtain this function on the grid nodes. It is followed by examining
the two end nodes of each side edge of the grid cell. The edge is intersected by the
interface when the VOF value of one node is less than 0.5 and the other greater
than 0.5. A continuous piecewise linear interface can then be built after this process
proceeds throughout all the grid cells.

To illustrate the moving of the interface, an interface cell shown in Figure 1
is under consideration. The surface area wetted by one of the fluids on the face of
its control surface is denoted by~sswf . This fluid flows into or out of the cell through
this wetted surface. Thus, the mass conservation of the fluid in this cell gives rise
to the following equation:

Dv
Dt

ðf nP � f oP Þ þ
X
j

~VVfj �~sswfj ¼ 0 ð6Þ

Figure 1. Illustration of the wetted area for an interface cell.
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where the index j indicates the jth face of the control surface and the sum is over all
the faces. It gives a new VOF value f nP for the interface cell. This calculation performs
well when the interface remains in the cell during the time marching (see Figure 2a).
However, it cannot tackle the situation that arises when the interface is moving
to the adjacent cell in the time interval. Four situations need to be considered:
overfilling (f nP > 1), underfilling (f nP < 1), overdepleting (f nP < 0), and underdepleting
(f nP > 0). Consider an example that a vessel is filled with water. When water is
flowing into the vessel, the value f nP will be greater than 1 (i.e., the vessel is overfilled)
as the time interval Dt is large enough (see Figure 2b). Similarly, the VOF will
become less than 0 as the vessel is overdrained (see Figure 2c). For the overfilling
case the excessive portion of fluid must be reallocated to the neighboring cells at
the downstream, whereas the overdrained fluid in the overdepleting case must be
retrieved from the downstream cells. These overfilling and overdepleting situations
occur when the velocity field is considerably uniform. In highly shear flows, f nP
may remain to be less than 1 (underfilling) or greater than 0 (underdepleting)
when the interface is advancing or retreating to the neighboring cell. For under-
filling, fluid must be retrieved from the downstream cells to fill the considered cell
such that f nP is equal to 1. As for the case of underdepleting, the residual fluid
in the cell must be allocated to the downstream cells so that f nP becomes zero.

Numerical Methods for Velocity Field

The governing equations for the flow field are discretized using the finite-
volume method, suitable for unstructured grids [24]. The diffusive flux through
the face of a control volume is given by

Fd ¼
mS2

f

~ddPN �~SSf

ð/N � /PÞ þ mðr/Þf � ~SSf �
S2
f

~ddPN �~SSf

~ddPN

 !
ð7Þ

where~SSf is the surface vector of the face, the subscripts P and N denote the centroids
of the considered cell and its neighboring cell common to the face, and ~ddPN is the
vector connecting P and N.

As for convection, the face flux value is approximated by

/f ¼ /U þ cðrÞ
2

ð/D � /UÞ

Figure 2. Illustration of the interface motion in a cell: (a) normal filling; (b) overfilling; (c) overdraining.
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where the subscripts U and D denote the cells upstream and downstream of the
considered face, respectively, and c represents flux limiter, which is a function of the
gradient ratio r defined as

r ¼ /U � /UU

/D � /U

ð8Þ

Here /UU is the value at a node far upstream, estimated by

/UU ¼ /D � 2ðr/ÞU �~ddUD ð9Þ

A variety of TVD and NVD schemes are available by assigning different expressions
to the flux limiter function c(r) [25]. In the following calculations, the van Leer
scheme is employed, which is given by

cðrÞ ¼ rþ rj j
rþ 1

ð10Þ

In solving the Navier-Stokes equations, the large gradients in density and vis-
cosity across the interface may cause solution oscillation and numerical instability.
In order to relieve this problem, these properties are artificially diffused in the region
of the interface. They are calculated from a smoothed VOF function f� as

q� ¼ f �q1 þ ð1� f �Þq2 ð11aÞ

m� ¼ f �m1 þ ð1� f �Þm2 ð11bÞ

An averaging smoother is used to smear the VOF function. The original f is stored at
the cell centroid. An interpolation practice is carried out to find VOF on the grid
nodes (vertices). Then, a new VOF at the centroid (f�) is obtained by averaging over
those values on all the cell vertices. It is usual to take two such smoothing steps in the
calculation to enhance the smearing effect.

The coupling between momentum and continuity equations is tackled using
a noniterative predictor-corrector algorithm. The momentum equations are solved
first. The resulting velocities need to be adjusted and the prevailing pressure must
be updated such that the continuity equation is satisfied. The enforcement of mass
conservation results in a pressure-correction equation. After this equation is solved,
the velocities and pressure are upgraded according to the pressure corrections. Two
correction steps are usually taken. More information about this algorithm can be
found in the study [26].

Numerical Methods for Temperature Field

The energy equation is discretized in a similar way to the momentum equation;
Eq. (7) is adopted for approximation to the energy diffusion and the van Leer
scheme for the energy convection. However, it needs to be stressed that with use
of the diffused-interface technique described in the above in solving the energy
equation in the interface region would distort the heat transfer rate there and, thus,
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bring about considerable inaccuracy in temperature distribution. A sharp-interface
method is introduced below.

In the heat transfer process, both temperature and heat flux are continuous at
the contact boundary between the two fluids.

Tint ¼ Tþ
1 ¼ T�

2 ð12Þ

_qqint ¼ �k1
qT1

qn

� �þ
¼ �k2

qT2

qn

� ��
ð13Þ

Using one-sided differencing, the heat fluxes on the two sides of this contact surface
can be approximated as

k1
Tn1 � Tint

Dn
¼ k2

Tint � Tn2

Dn
ð14Þ

where, as seen in Figure 3, Tn1 and Tn2 denote the temperatures at a normal distance
Dn away from the interface for the two separate fluids, which can be obtained by
interpolation from surrounding nodal values. The interface temperature can be found as

Tint ¼
k1Tn1 þ k2Tn2

k1 þ k2
ð15Þ

The temperature gradients on the two sides of the interface can then be obtained.
The interface is regarded as an internal boundary for the temperature field. The
temperature and heat flux obtained must be imposed as boundary conditions. For
the cells next to the interface cell to see proper such boundary conditions, an approxi-
mation practice is conducted to find the temperature at relevant points using the inter-
face temperature and heat flux. As an illustration, the temperature field in fluid 1 is
under consideration. It is shown in Figure 4 that two situations need to be considered.

Figure 3. Illustration for calculating temperature gradients at interface.
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The centroid of the interface cell A is located in the region of fluid 1. The temperature
at this point can be calculated by

TA ¼ Tint þ
qT1

qn

� �
Dn ð16Þ

In the second situation, the centroid of the interface cell B lies in the region of the other
fluid. For the neighboring cell on the south, the face temperature Tf is required to be
known, which can be estimated in a similar way as Eq. (16). The centroid temperature
TA and the face temperature Tf form Dirichlet boundary conditions for fluid 1. The
same treatments can be conducted for the other fluid. As in cell B, the temperature
TB at the centroid is calculated to give boundary condition for fluid 2.

The discretized energy equation is solved in an implicit manner, which can be
cast into the following form:

APTP ¼
X

ACTC þ S ð17Þ

where the subscript C denotes the surrounding cells. In order to treat the two
individual fluid fields as a whole, the temperature distribution in the interface cells,
which has been obtained as T�

P using the method just described, is also expressed
in the above form with the following settings:

AP ¼ D AC ¼ 0 S ¼ DT�
P ð18Þ

where D is a large number.

RESULTS AND DISCUSSION

The solution method is first tested on one-dimensional model problems for
which theoretical or reference solutions are available. Realistic problems under

Figure 4. Illustration for calculating temperatures at the centroid and a face of the interface cell.
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consideration include collapsing water flow in a cavity and falling of a liquid tin
droplet in an oil tank.

1-D Conduction in Two Solids with Continuous Initial Temperature

The heat transfer in a finite solid block and a semi-infinite block is considered.
The configuration of this test problem is shown in Figure 5. The first block has
a length L1 (1m) and the other one has a much longer length L2 (20m). The two
solid blocks are in perfect contact at x¼ 0. The contact resistance is ignored and,
thus, the continuity condition of Eqs. (12) and (13) is applied at this contact surface.
Both blocks have the same initial temperature T0 (¼ 300K). A high temperature TB

(400K) is imposed at the left boundary of block 1. This problem can be solved using
Laplace transforms and contour integration in the complex domain [27] to yield

h1
hB

¼ 1� 2e
p

Z 1

0

sin nðxþ L1Þ
cos2ðnL1Þ þ e2 sin2ðnL1Þ

expð�a1 tn
2Þ dn

n
ð19Þ

h2
hB

¼ 1� 2

p

Z 1

0

cosðnL1Þ sinðgnxÞ þ e sinðnL1Þ cosðgnxÞ
cos2ðnL1Þ þ e2 sin2ðnL1Þ

" #
expð�a1 tn

2Þ dn
n

ð20Þ

where h¼T�T0, g ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
a1=a2

p
, e¼gk2=k1, n ¼

ffiffiffiffiffiffiffiffiffi
r a1=

p
, and r is the radius in the

complex plane. The interface temperature is that at x¼ 0. Numerical integration
of the above equations is carried out to find the temperature distribution.

The thermal diffusivities and conductivities are given by a1¼ 0.1, a2¼ 0.01,
and k1¼ k2¼ 1. The grid size used in calculations is Dx¼ 0.02m. The time variation
of the interface temperature is shown in Figure 6a and the temperature distribution
at various instants is given in Figure 6b. It is obvious that the agreement between
numerical calculations and theoretical solutions is very good, which validates the
method to treat the heat transfer at contact surface.

Figure 5. Illustration for the 1-D problem with a finite solid and a semi-infinite solid.
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1-D Conduction in Two Solids with Discontinuous
Initial Temperature

In this problem, the two solid blocks in contact are of the same finite length L
(5m). As illustrated in Figure 7, temperature is uniformly distributed initially in the
blocks, but different from each other. The initial temperature is TB1 (400K) for
block 1 and TB2 (300K) for block 2. The temperatures at the two outer boundaries
remain the same as their initial values during the heat transfer process. To our best
knowledge, there is no theoretical solution to this problem because the continuity of
temperature at the internal boundary of contact surface is not satisfied. However,
a reference solution is derived in the following way.

First, consider heat conduction in a 1-D solid of length L, whose surfaces at x¼ 0
and x¼L are maintained at constant temperatures TC and TD. The temperature is
uniformly distributed at T0 initially. With use of the superposition principle and

Figure 6. 1-D conduction with a finite and a semi-infinite solid: (a) variation of interface temperature;

(b) temperature distribution at various times.

Figure 7. Illustration for the 1-D problem with two finite solids.
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the method of separating variables, the solution can be found as

T ¼ TC þ ðTD � TCÞ
x

L

þ
X1
n¼1

2

np
½ðTD � T0Þð�1Þn þ ðT0 � TCÞ� sin

npx
L

� �
exp �at

np
L

� �2� �� 	
ð21Þ

For the problem of two solid blocks the temperature at the contact surface
is assumed to be Tint,ref. Thus, the temperature distribution in the two blocks is of

Figure 8. Variation of interface temperature for 1-D conduction with finite solids.

Figure 9. Temperature distribution at various times for 1-D conduction with finite solids.
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a form similar to the above by using Tint,ref as a boundary temperature. Applying the
continuity condition for heat flux at the contact surface [Eq. (13)] gives the interface
temperature.

Tint;ref ¼

k1
k2
TB1 þ TB2 þ 2

P1
n¼1

TB2 exp �a2 t np
L


 �2h i
þ k1TB1

k2
exp �a1 t np

L


 �2h in o
k1
k2
þ 1þ 2

P1
n¼1

exp �a2 t np
L


 �2h i
þ k1

k2
exp �a1 t np

L


 �2h in o ð22Þ

Initial temperature at the interface can be obtained as

Tint;refðt ¼ 0Þ ¼ k1TB1 þ k2TB2

k1 þ k2
ð23Þ

When time approaches infinity, the interface temperature is the same as its
initial value.

Tint;refðt ! 1Þ ¼ Tint;refðt ¼ 0Þ ð24Þ

Figure 10. Temperature distribution at various times for collapsing flow.
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The same thermal properties as the first model problem are used in simulations.
The calculated results are given in Figures 8 and 9. Both the initial interface
temperature and that at steady state are 350K according to the above solution.
It is interesting to see from Figure 8 that the interface temperature drops very
sharply from its initial value, followed by gradual recovery and then approaching
the steady state. It can be found that both the numerical and reference solutions have
very similar trends. However, the recovery in the reference solution is faster, leading
to a higher level of interface temperature. The above observation is also reflected in
the temperature distribution shown in Figure 9. As seen in Figure 9a for time smaller
than 100 s, the temperature curves intersect at about 325K, which corresponds to the
interface temperature. The numerical solution is close to the reference solution at this
stage. Considerable disagreement is detected between the two in later time given
in Figure 9b, corresponding to the recovery stage seen in Figure 8. The problem
approaches the steady state at large time and the disagreement gradually dwindles.
It needs to be stressed that the reference solution given above is not exact. It is used
only for quantitative assessment of the numerical method, not to evaluate the
accuracy of the method.

Collapsing Flow in a Cavity

A square cavity of 1m is divided into two equal vertical sections. The left part
is filled with water of 350K and the right contains air at 300K. The surrounding
walls are assumed to be insulated. The grid size used in calculations is 0.01m.

The evolution of the interface and the temperature distribution are presented in
Figure 10. Collapse of the water column on the left side causes a water front to move
along the bottom wall toward the right and, in the meanwhile, a water front on the
top to retreat toward the left. After the front on the bottom reaches the right-hand side

Figure 11. Variation of droplet speed for the case with zero initial velocity.
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wall, it moves upward along this wall. The heat transfer mechanism is mainly controlled
by the diffusion. It can be detected that the thermal diffusion process mainly occurs on
the air side, because the thermal diffusivity of air is an order higher than that of water.
The thermal layer around the interface remains thin during the process. This is not
unexpected, because the thermal penetration of heat conduction is proportional
to

ffiffiffiffiffi
at

p
, giving a length 0.0028m for aair¼ 2E� 5m2=s and t¼ 0.4 s. A similar flow

was simulated by Pericleous et al. [14]. It was found that the thermal layer in their
results is quite thick. One reason for this is the coarse grid adopted in their calculations.
However, a most important factor is the diffused-layer method used by them.
It could be identified from their contour plots of VOF function that the interface
is greatly smeared. As a result, the thermal layer around the interface is also diffused.

Falling of a Liquid Tin Droplet in Oil

A square tank of 0.008m is filled with oil at temperature 250�C. A 2-D molten
tin droplet of size 0.002m in diameter and temperature 800�C is released. The initial

Figure 12. Flow and temperature fields for the case with zero initial velocity. The streamlines on the left

are on the laboratory frame and those on the right are on the relative frame.
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velocity is assumed to be 0 or 0.5m=s. The walls surrounding the tank are insulated.
The grid size for computation is 2.2� 10�5m. The thermodynamic properties
are q¼ 6,970 kg=m3, CP¼ 244 J=kgK, k¼ 33.6W=mK, and m¼ 1.92� 10�3N s=m2

for the molten tin, and q¼ 1,067 kg=m3, CP¼ 2,700 J=kgK, k¼ 22.6W=mK,
and m¼ 2.28� 10�3N s=m2 for the oil. The surface tension coefficient is given by
r¼ 0.5N=m.

As shown in Figure 11 for the zero-initial-velocity case, the falling speed of the
droplet, characterized by that at the droplet center along the center axis, is acceler-
ated in a linear manner until it is very close to the bottom wall, where the maximum
speed is about 0.23m=s. Owing to the low velocity, the geometry of the droplet
remains nearly a circle except when it approaches the bottom wall. The streamlines
shown on the left of each sketch in Figure 12 indicate that the flow field in the tank
is dominated by a vertical vortex induced by the falling droplet. In order to illustrate
the effect of convection on heat transfer, the flow field is transformed onto a frame of
reference relative to the moving bubble, obtained via subtracting the droplet velocity
from the velocity field. The streamlines on this relative frame are presented on the
right of each sketch in the figure. It can be seen that a recirculation zone is found
at the stagnation region on the front side of the droplet and a small separation
bubble at the rear side at the early time t¼ 0.01 s. Beyond the early stage, the oil
flows smoothly over the droplet. Flow recirculation develops and becomes dominant
inside the droplet. When the droplet is close to the bottom, streamlines penetrate
into the droplet. It is obvious that the temperature distribution is closely related
to the flow pattern. The oil flowing over the droplet carries away the thermal energy
of the molten droplet, resulting in the temperature contours shown in the figure.

The falling speed of the droplet is given in Figure 13 for the case with initial
velocity 0.5m=s. It is decelerated first, followed by acceleration. The minimum speed

Figure 13. Variation of droplet speed for the case with initial velocity 0.5m=s.
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occurs at 0.007 s. The droplet changes its shape constantly during this process, as seen
from Figure 14. The convex side faces the bottom wall in the decelerating stage
and changes its facing direction toward the upper wall in the accelerating stage.
At t¼ 0.007 s, the droplet is in a shape of ellipse. To illustrate the cause of the droplet
geometry change, pressure contours are presented in Figure 15 for t¼ 0.005 and
0.009 s, respectively representing the decelerating and accelerating stages. It is clear
that the core pressure inside the droplet is much higher than the pressure outside.
Comparing the lower surface (the front side of the falling droplet), the pressure
on the upper surface (the rear side) of the droplet is always lower throughout
the entire process. However, it can be found by closely examining the pressure
distribution around the surface of the droplet that the pressure difference across this
interface on the upper side is smaller than that on the lower side at t¼ 0.005 s,
whereas the situation on the two side surfaces is reversed for t¼ 0.009 s. According
to the Young-Laplace equation, the pressure difference across the interface is

Figure 14. Flow and temperature fields for the case with initial velocity 0.5m=s. The streamlines on the left

are on the laboratory frame and those on the right are on the relative frame.
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balanced by the surface tension, which is linearly related to the surface curvature.
Therefore, it is not surprising to get flatter surface on the upper side during the
decelerating period and on the lower side when the droplet is accelerated.

It is seen from Figure 14 that the streamlines on the relative frame penetrate
into the droplet and recirculating flow is developed in the droplet at t¼ 0.003 s. The
coverage of the recirculation zone extends beyond the droplet. The recirculation is then
transformed into two vortices, as seen at t¼ 0.005 s. A bigger one remains in the droplet
and a small one is formed in the wake just downstream of the droplet. The vortex in the
wake moves away from the droplet, and its size is gradually decreased in the latter
time. The flow inside the droplet is complicated, with smaller vortices developed and
embedded in the big one. The streamline penetration ends as time approaches
0.005 s. The effect of the vortex flow on heat transfer in the wake is quite obvious by
noting that the temperature contours are bent backward in this region.

CONCLUDING REMARKS

A sharp-interface model to tackle heat transfer across the interface between
two immiscible fluids has been developed. It is based on satisfaction of the continuity
condition to find temperature and heat flux at the interface. The temperature at
relevant locations in the interface cell can then be calculated using the interface
temperature, which is imposed as internal boundary condition for energy solution.

In the model testing cases, heat conduction in two solids, being in contact, was
considered. In one case, the initial temperature is continuous at the contact surface.
The calculation shows good agreement with the exact solution. In the other case,
a jump in the initial temperature exists between the two solids. There is no theoretical
solution available, but a reference solution is derived, which is used for quantitative
assessment of the method. It is seen that the numerical results follow the trend of
the reference solution closely.

Figure 15. Pressure distribution for the case with initial velocity 0.5m=s.
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In flow applications, heat transfer from collapse of a heated water column in
a cavity was first examined. The mechanism of heat transfer in this flow is mainly
due to thermal conduction. A thin thermal layer can be found in the interface region,
demonstrating that numerical diffusion can be waived by using this model. The
second flow case was to consider a 2-D molten tin droplet falling into an oil tank.
To illustrate flow effect on the heat transfer, the velocity field is transformed onto
a relative frame of reference. It was shown that strong recirculating flow is formed
in the droplet. A small recirculation zone appears in the wake of the droplet for
the case with initial velocity 0.5m=s. Thermal energy is carried away by the oil
flowing over the droplet. The dependence of the temperature contour on the flow
pattern is clearly identified.
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