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In this article, the parametric robust regression approaches are proposed for making inferences about
regression parameters in the setting of generalized linear models (GLMs). The proposed methods are
able to test hypotheses on the regression coefficients in the misspecified GLMs. More specifically, it is
demonstrated that with large samples, the normal and gamma regression models can be properly adjusted
to become asymptotically valid for inferences about regression parameters under model misspecification.
These adjusted regression models can provide the correct type I and II error probabilities and the correct
coverage probability for continuous data, as long as the true underlying distributions have finite second
moments.

Keywords: generalized linear models; robust normal regression; robust gamma regression

1. Introduction

Generalized linear models (GLMs) were introduced by Nelder and Wedderburn [1] as a unifying
family of models for non-standard cross-sectional regression analysis with non-normal responses.
The statistical analysis of such models is based on the asymptotic properties of the maximum
likelihood estimator (MLE). Fahrmeir and Kaufmann [2] presented mild general conditions,
which, respectively, assure weak or strong consistency or asymptotic normality of the MLE.
More on this study can be found in [3]. More generally, Fahrmeir [4] dealt with the asymptotic
behaviour of the quasi-MLE in misspecified GLMs.

Cantoni and Ronchetti [5] proposed a natural class of robust estimation techniques for GLMs.
Their method is more reliable than the classical estimation procedures in providing the accurate
statistical inference when the data include outlying points. Adimari and Ventura [6] also studied
robust inference for GLMs. They derived a robust quasi-profile log-likelihood function that was
obtained from an estimating function that defines the class of Mallows-type robust estimators
considered by Cantoni and Ronchetti [5]. Li and Hsiao [7] suggested a method for consistently
estimating GLMs with measurement errors without making any prior distributional assumption on
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the measurement error or the latent variables. However, the robustness of their proposed method
requires the knowledge of the probability distribution of latent variables. Sinha [8] developed a
robust method for analysing GLMs with non-ignorable missing covariates. Recently, Bianco et
al. [9] introduced a resistant procedure to test hypotheses on the regression parameter in GLMs
with missing responses.

On the other hand, Heagerty and Kurland [10] evaluated the impact of model violations on the
estimate of a regression coefficient in generalized linear mixed models (GLMMs). Jiang and Zhang
[11] proposed robust methods to estimate parameters of interest in settings of GLMMs, in which
only the conditional means of the responses given the random effects are specified. Yau and Kuk
[12] proposed robust estimation procedures for GLMMs based on the notion of maximum quasi-
likelihood and residual maximum quasi-likelihood. Sinha [13] developed a robust method for
identifying and downweighting the outliers when estimating the parameters in the GLMMs. Sinha
[14] further described a robust quasi-likelihood method for fitting the GLMMs to longitudinal
data.

In addition, robust restricted maximum likelihood (robust REML) in mixed linear models
are introduced by Richardson and Welsh [15] who made classical REML robust by bounding
the influence of outlying observations on the estimate. Yun and Lee [16] discussed the robust
estimation in mixed linear models with non-monotone missingness. Jacqmin-Gadda et al. [17]
investigated the robustness of the MLE of fixed effects from a linear mixed model when the error
terms are either correlated or non-Gaussian or of non-constant variance.

Royall and Tsou [18] advocated the robust likelihood function concept. They developed a
technique that adjusts a working likelihood function, making it robust. The resulting adjusted
robust likelihood function remains valid evidential representation of the parameter, even when
the working model is incorrect. Motivated by the above results, Tsou [19] proposed a parametric
robust way for comparing two population means and two population variances in misspecified
models. Tsou and Cheng [20] applied the robust likelihood techniques to analyse contaminated
data in regression settings. Tsou [21] further extended the robust likelihood concept to analyse
count data. In this article, the robust likelihood techniques are used to make inferences about
regression parameters in the GLM setting.

This article is organized as follows. Section 2 contains a brief review of the idea of robust
likelihood functions introduced by Royall and Tsou [18]. The robust normal regression (RNR)
and robust gamma regression (RGR) are briefly introduced in Section 3. Section 4 presents
a simulation study which shows the advantage of the RNR and RGR models with respect to
(w.r.t.) the ordinary normal and gamma regression models. Section 5 concludes with a brief
discussion. Some technical background material from the previous sections is deferred into the
appendix.

2. Robust likelihood functions

Suppose that Y1, Y2, . . . , YN is a sequence of independent random variables. On the basis of a pri-
ori knowledge or convenience, we postulate a working model for the probability distributions of
Yi’s, {fi = fi(•; ψ) = f (•; ηi(ψ)), i = 1, 2, . . . , N , ψ ∈ �}, where ψ is a fixed-dimensional vector
of unknown parameters. For example, under normal regression settings, ηi(ψ) = (xt

iγ , σ 2), ψ =
(γ t , σ 2)t and fi = fi(yi; ψ) = exp{−(yi − xt

iγ)2/2σ 2}/√2πσ . Here xi represents the p character-
istics that are specific to yi, and γ represents the p regression coefficients that describe how xi

affects the expected value of Yi. Note that this model is a collection of probability distributions,
each of which is identified by a unique value of ψ.

Now partition ψ as ψt = (θt , ϕt), where θ is the p-vector of parameters of interest and ϕ is the
remaining fixed-dimensional nuisance parameters. Let θ0 and ϕ0 denote the limiting values of
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852 L.-C. Chien and T.-S. Tsou

the MLEs, θ̂ and ϕ̂, based on the working model f = (f1, f2, . . . , fN ), when the Yi’s are actually
generated from the family {hi = h(•; τi(θ, λ)), i = 1, 2, . . . , N}, where λ is the nuisance parameter
vector under h = (h1, h2, . . . , hN ). Now suppose that the parameters of inference under the working
model f , namely θ, remain the parameters of interest under h, so that θ0 has the same interpretation
of the true values of the parameters of interest. This result is what Royall and Tsou [18] referred
to as the first condition of robustness (FCR). This condition is crucial for the working model to be
adjustable for valid inferences. Note that White [22] showed that, more often than not, the FCR
is not satisfied once f �= h.

Write lθ and lϕ for the first derivatives of the log-likelihood function l(θ, ϕ) w.r.t. θ and ϕ,
respectively, whose derivatives w.r.t. ϕ are correspondingly denoted by lθϕ and lϕϕ. Now, let Ihθϕ

and Ihϕϕ be the limiting values of −lθϕ/N and −lϕϕ/N , respectively, under h and the limiting
values of −lθθ/N and −lϕθ/N , under h, are denoted by Ihθθ and Ihϕθ , respectively. Note that these
limiting values are all evaluated at θ0 and ϕ0.

Now define the following two p × p matrices:

A = Ihθθ − IhθϕI−1
hϕϕIhϕθ (1)

and

B = Vhθθ − IhθϕI−1
hϕϕVhϕθ − VhθϕI−1

hϕϕIhϕθ + IhθϕI−1
hϕϕVhϕϕI−1

hϕϕIhϕθ . (2)

Here Vhθθ = limN→∞ Eh[lθ(θ0, ϕ0)l
t
θ(θ0, ϕ0)/N],Vhθϕ = limN→∞ Eh[lθ(θ0, ϕ0)l

t
ϕ(θ0, ϕ0)/N] and

Vhϕϕ = limN→∞ Eh[lϕ(θ0, ϕ0)l
t
ϕ(θ0, ϕ0)/N], where Eh stands for the expectation evaluated

under h.
Let θ̂ be the MLE of θ and Â and B̂ be the empirical versions of A and B. A direct application of

Taylor’s expansion shows that the adjustedWald statistic N(θ̂ − θ0)
tÂB̂

−1
Â(θ̂ − θ0) has an asymp-

totic χ2
p distribution for general hi, i = 1, 2, . . . , N , that have finite second moments. Here χ2

p is
denoted as a chi-squared distribution with p degrees of freedom.Another asymptotically equivalent

counterpart, the adjusted score statistic N−1{lt
θ(θ0, ϕ̂(θ0))}B̂−1

(θ0, ϕ̂(θ0)){lθ(θ0, ϕ̂(θ0))}, where
ϕ̂(θ0) and B̂(θ0, ϕ(θ0)) are the constrained MLEs of ϕ and B given θ0, respectively, has the same
limiting χ2

p distribution even if the working model assumptions fail.

3. Robust regression models

Consider a set of observations y1, y2, . . . , yN corresponding to N independent not identically
distributed random variables Y1, Y2, . . . , YN . Under GLMs, the mean response, μi, depends on the
p covariates (xi,0, xi,1, . . . , xi,p−1) = xt

i , by μi = g(ηi), where ηi = xt
iγ = γ0xi,0 + γ1xi,1 + · · · +

γp−1xi,p−1 is a linear predicator with the p regression coefficients (γ0, γ1, . . . , γp−1) = γ t , and g(•)

is a monotonic and differentiable response function.

3.1. Robust normal regression

Under a normal working model, the log-likelihood function for the ith observation yi is

li = −1

2
log σ 2 − 1

2
log 2π − (yi − μi)

2

2σ 2
.
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The log-likelihood equation for γj−1 is

1

σ 2

N∑
i=1

μ′
i(yi − μi)xi,j−1 = 0, j = 1, 2, . . . , p, (3)

where μ′
i is the first derivative of μi w.r.t. ηi. The solutions of Equation (3) are the maximum quasi-

likelihood (MQL) estimators [23–25] or M-estimators [26], when the observations y1, y2, . . . , yN

are not necessarily from normal distributions. McCullagh [27] showed that, under mild regularity
conditions, the consistency of the MQL estimates under model misspecification depends only on
the correct specification of the regression. In other words, the normal working model provides the
consistent estimates of regression parameters under incorrectly specified models. Thus, the FCR
is fulfilled, so that the normal working model can be properly adjusted to become asymptotically
legitimate for regression parameters of interest under model misspecification.

Without loss of generality, let γp−w, γp−w+1, . . . , γp−2, γp−1 be the w parameters of interest
and let (γp−1, γp−2, . . . , γp−w+1, γp−w) be denoted by (β1, β2, . . . , βw−1, βw) = βt for notational
convenience. Let μi,0 and μ′

i,0 be, respectively, the true values of μi and μ′
i. Let Varh(Yi), i =

1, 2, . . . , N , be the true variances of Yi, i = 1, 2, . . . , N . Let Z = (z0, z1, . . . , zp−1) be the N × p
design matrix, so that Zt = (x1, x2, . . . , xN ).

After lengthy derivations, it shows that the (u, v), u, v = 1, 2, . . . , w, elements of the w × w
adjusting matrices An and Bn of AnB−1

n An that make the normal regression model robust can be
written in the forms (for details, see the appendix):

An(uv) = lim
N→∞

1

Nσ 2
0

N∑
i=1

(μ′
i,0)

2

⎛
⎝xi,p−u −

p−w∑
j=1

|Δnj(u)|
|Δn| xi,j−1

⎞
⎠

⎛
⎝xi,p−v −

p−w∑
j=1

|Δnj(v)|
|Δn| xi,j−1

⎞
⎠

and

Bn(uv) = lim
N→∞

1

Nσ 4
0

N∑
i=1

Varh(Yi)(μ
′
i,0)

2

⎛
⎝xi,p−u −

p−w∑
j=1

|Δnj(u)|
|Δn| xi,j−1

⎞
⎠

×
⎛
⎝xi,p−v −

p−w∑
j=1

|Δnj(v)|
|Δn| xi,j−1

⎞
⎠ .

Here |Δn| represents the determinant of the matrix Δn, where Δn = WtV−1
n W with W =

(z0, . . . , zj−2, zj−1, zj, . . . , zp−w−1) and Vn = diag((1/μ′
1,0)

2, (1/μ′
2,0)

2, . . . , (1/μ′
N ,0)

2) being a
diagonal matrix of order N . On the other hand, Δnj(u) = WtV−1

n Wj(u) and Δnj(v) = WtV−1
n Wj(v) with

Wj(u) = (z0, . . . , zj−2, zp−u, zj, . . . , zp−w−1) and Wj(v) = (z0, . . . , zj−2, zp−v, zj, . . . , zp−w−1) derived
by the jth column zj−1 of W replaced by zp−u and zp−v, respectively. Here σ 2

0 is the limit of the
MLE of σ 2, σ̂ 2, that has the same interpretation of the limit of

∑N
i=1 Varh(Yi)/N . Note that the

interpretation of σ 2
0 depends on h and is, therefore, unknown.

In the special case with all the regression coefficients of interest, let (γp−1, γp−2, . . . , γ1, γ0) =
(β1, β2, . . . , βp−1, βp) = βt . Then, the adjusting matrices An and Bn can be simplified as follows:

An(uv) = lim
N→∞

1

Nσ 2
0

N∑
i=1

(μ′
i,0)

2(xi,p−u)(xi,p−v)

and

Bn(uv) = lim
N→∞

1

Nσ 4
0

N∑
i=1

Varh(Yi)(μ
′
i,0)

2(xi,p−u)(xi,p−v).
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854 L.-C. Chien and T.-S. Tsou

In applications, consistent estimates Ân and B̂n of An and Bn can be obtained by Varh(Yi)

replaced by (yi − μ̂i)
2 with μ̂ being the MLE of μ and other unknown quantities replaced by their

respective empirical versions.
Let β0 be the true value of β and consider the null hypothesis H0 : β = β0. Let β̂ be

the MLE of β based on the normal working model and let ϕ̂(β0) and B̂n(β0, ϕ̂(β0)) be the
restricted MLEs of ϕ and Bn given β0. Here the vector of the nuisance parameters, ϕ, con-
tains the scale parameter σ 2 and some regression coefficients that are not to be tested. Under

H0, the adjusted Wald statistic N(β̂ − β0)
tÂnB̂

−1
n Ân(β̂ − β0) and the adjusted score statis-

tic N−1{lt
β(β0, ϕ(β0))}B̂−1

n (β0, ϕ̂(β0)){lβ(β0, ϕ̂(β0))} are asymptotically equivalent and have an
asymptotic χ2

w distribution as long as the second moments of the true underlying distributions

exist. Note that ÂnB̂
−1
n Ân is free of σ 2. Thus, with large samples, the effect of σ 2 is actually

removed. Hence, σ 2 can be treated known, a priori, as any arbitrary positive value.

3.2. Robust gamma regression

Under a gamma working model, the log-likelihood function for the ith observation yi is

li = r log r − r log μi + (r − 1) log yi − rμ−1
i yi − log 
(r).

The score functions

r
N∑

i=1

μ′
i

μi

(
yi − μi

μi

)
xi,j−1, j = 1, 2, . . . , p,

have zero expectation as long as μi, i = 1, 2, . . . , N , are correctly specified. Hence, the regression
parameters of interest can be consistently estimated by the gamma working model, whatever h is.
Thus, the FCR is satisfied.

Calculations parallel to An and Bn show that the (u, v), u, v = 1, 2, . . . , w, components of the
adjusting matrices Ag and Bg under the gamma working model are of the forms (for details, see
the appendix):

Ag(uv) = lim
N→∞

r0

N

N∑
i=1

(
μ′

i,0

μi,0

)2
⎛
⎝xi,p−u −

p−w∑
j=1

|Δgj(u)|
|Δg| xi,j−1

⎞
⎠

⎛
⎝xi,p−v −

p−w∑
j=1

|Δgj(v)|
|Δg| xi,j−1

⎞
⎠

and

Bg(uv) = lim
N→∞

r2
0

N

N∑
i=1

Varh(Yi)

μ2
i,0

(
μ′

i,0

μi,0

)2
⎛
⎝xi,p−u −

p−w∑
j=1

|Δgj(u)|
|Δg| xi,j−1

⎞
⎠

×
⎛
⎝xi,p−v −

p−w∑
j=1

|Δgj(v)|
|Δg| xi,j−1

⎞
⎠ ,

where Δg =WtV−1
g W, Δgj(u) =WtV−1

g Wj(u) and Δgj(v) =WtV−1
g Wj(v) with Vg = diag((μ1,0/μ

′
1,0)

2,
(μ2,0/μ

′
2,0)

2, . . . , (μN ,0/μ
′
N ,0)

2). Here r0 is the limit of the MLE of r, whose interpretation depends
on h and is, therefore, unknown.
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In the special case with all the regression parameters of interest, Ag and Bg reduce to

Ag(uv) = lim
N→∞

r0

N

N∑
i=1

(
μ′

i,0

μi,0

)2

(xi,p−u)(xi,p−v)

and

Bg(uv) = lim
N→∞

r2
0

N

N∑
i=1

Varh(Yi)

μ2
i,0

(
μ′

i,0

μi,0

)2

(xi,p−u)(xi,p−v).

In application, consistent estimates Âg and B̂g of Ag and Bg can be derived by replacing the
unknown components in Ag and Bg by their respective empirical analogues, just as we dealt

with Ân and B̂n. Note that ÂgB̂
−1

g Âg is free of r, so that with large samples, the effect of r is
completely eliminated. Therefore, r can be treated known, a priori, in the beginning as any pos-

itive value. The resulting adjusted Wald statistic N(β̂ − β0)
tÂgB̂

−1
g Âg(β̂ − β0) and the resulting

adjusted score statistic N−1{lt
β(β0, ϕ̂(β0))}B̂−1

g (β0, ϕ̂(β0)){lβ(β0, ϕ̂(β0))}, under H0 : β = β0, are
asymptotically distributed as χ2

w for general h with the finite second moments. Note that here all
MLEs are derived under the gamma working model.

4. Simulation studies

To investigate the performance of the RNR and RGR models in the finite sample situation, sim-
ulation studies are conducted using N = 450, 900 and 1350 replicated samples, respectively,
generated from the three regression models

Model 1: μi = exp(ηi),

Model 2: μi = (2.5ηi + 2/3)3,

Model 3: μi = η2
i

with the linear predicator ηi given by

ηi = xi,0 + γ1xi,1 + γ2xi,2 for i = 1, 2, . . . , N ,

where the values of xi,0, i = 1, 2, . . . , N , are set by 1 and the values of xi,j, i = 1, 2, . . . , N , j =
1, 2, are independently generated from a uniform distribution between 0 and 1. Here regression
coefficients γ1 and γ2 are considered as the parameters of interest. For simplicity, let γ t = (γ1, γ2)

and γ t
0 = (1.0, 1.0). We test the null hypothesis H0 : γ = γ0 and the two alternative hypotheses

HA : γ t = (0.4, 1.0) and γ t = (0.7, 1.3), respectively.
Simulated data sets are generated from three sources including the Weibull, inverse Gaussian

and chi-squared distributions, respectively. A Weibull distribution with the shape parameter λ and
the scale parameter k, W(k, λ), has a simple relationship between the second central moment and
the first moment, that is, Var(Y) = aμ2, where a > 0 is a function of the shape parameter λ. For
example, when λ = 1 and k = μ, Var(Y) = μ2. Similarly, an inverse Gaussian distribution with
the mean μ and the shape parameter λ, IG(μ, λ), has a variance proportional to the cubic of its
mean value, that is, Var(Y) = μ3/λ. On the other hand, a non-central chi-squared distribution
with ν degrees of freedom and a non-centrality parameter μ − ν > 0, χ2

v (μ − v), has a mean
value of μ and a variance of 2(2μ − ν), so that χ2

v (μ − v) has a variance roughly proportional to
its mean.
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856 L.-C. Chien and T.-S. Tsou

To demonstrate the robustness characters of the adjusted Wald and score statistics under the
normal and gamma working models, in our simulations, the observations, yi, i = 1, 2, . . . , N ,
are sampled in the following way. First, the first 0.3N observations, yi, i = 1, 2, . . . , 0.3N , are
independently generated from the Weibull distributions, W(μi, 1), with the shape parameter of
1 and the scale parameter of μi, i = 1, 2, . . . , 0.3N , respectively. Then, the next 0.3N obser-
vations, yi, i = 0.3N + 1, 0.3N + 2, . . . , 0.6N , are independently generated from the inverse
Gaussian distributions, IG(μi, 100), with the shape parameter of 100 and the mean value of
μi, i = 0.3N + 1, 0.3N + 2, . . . , 0.6N , respectively. Finally, the rest of the 0.3N observations,
yi, i = 0.6N + 1, 0.6N + 2, . . . , N , are independently generated from the non-central chi-squared
distributions, χ2

1 (μi − 1), with one degree of freedom and the non-centrality parameter of
μi − 1, i = 0.6N + 1, 0.6N + 2, . . . , N , respectively.

Three additional test statistics are also included for contrast. They are the maximum likelihood
ratio test statistic, the Wald test statistic and the score test statistic, respectively. The maximum
likelihood ratio test statistic for testing the null hypothesis H0 : γ = γ0 is defined by

QL = 2{l(γ̂ , ϕ̂) − l(γ0, ϕ̂(γ0))}.

Then, its two asymptotically equivalent test statistics, the Wald test statistic and the score test
statistic, are defined by

QW = N(γ̂ − γ0)
tÂ(γ̂ − γ0)

and

QS = N−1{lt
γ(γ0, ϕ̂(γ0))}Â

−1
(γ0, ϕ̂(γ0)){lγ(γ0, ϕ̂(γ0))},

respectively. Here all notation definitions are given as in the previous sections. Each of the test
statistics QL, QW and QS, under the null hypothesis H0 : γ = γ0, has an asymptotic chi-squared
distribution with degrees of freedom equal to the dimension of γ . Thus, in our simulations, each
of the maximum likelihood ratio test statistic, the Wald test statistic and the score test statistic
rejects H0, when each of the test statistics QL, QW and QS exceeds the critical value of χ2

2,0.95,
where χ2

2,0.95 represents the 95th quantile of the chi-squared distribution χ2
2 . More discussions

about the test statistics QL, QW and QS can be found in [28, Section 9.3].
The simulation performance are carried out for 3000 simulation runs with the xi,1’s and xi,2’s

being regenerated after every 50 simulation runs. The empirical type I error probabilities based
on the adjusted Wald statistic, the adjusted score statistic, the maximum likelihood ratio test
statistic, the Wald test statistic and the score test statistic are labelled as AWα, ASα, Lα, Wα

and Sα, respectively. On the other hand, AWcp, AScp, Lcp, Wcp and Scp symbolize the coverage
probabilities of the nominal 95% confidence interval constructed using the adjusted Wald statistic,
the adjusted score statistic, the maximum likelihood ratio test statistic, the Wald test statistic and
the score test statistic, respectively. The empirical type I error probability is computed as the
proportion of rejections of the null hypothesis H0 : γ = γ0 at the nominal 5% significance level,
when the data are actually generated from H0. On the other hand, when the data are sampled from
the alternative hypothesis HA, the empirical type I error probability exhibits the power of the test.

Results from the adjusted Wald statistic, the adjusted score statistic, the maximum likelihood
ratio test statistic, the Wald test statistic and the score test statistic based on the normal and
gamma working models are tabulated in the tables below. The average of the 3000 γ̂ values and
their sample covariance matrix are termed as mean(γ̂) and S2, respectively. In order to contrast
the differences between the covariance matrix estimates based on the adjusted and unadjusted test

statistics, the average of the unadjusted covariance matrix estimate of γ̂ , namely Â
−1

/N , denoted
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Table 1. Model 1: μi = exp(ηi), i = 1, 2, . . . , N .

Working
model mean(γ̂) S2 VarA(γ̂) Var(γ̂) AWα AWcp ASα AScp Lα Lcp Wα Wcp Sα Scp

N = 450

H0 : γ =
(

1.0
1.0

)
Normal

[
1.0030
1.0024

] [
0.0223 0.0054

0.0242

] [
0.0219 0.0040

0.0216

] [
0.0161 0.0001

0.0161

]
0.0643 0.9357 0.0587 0.9413 0.1190 0.8810 0.1223 0.8777 0.1157 0.8843

Gamma

[
0.9992
0.9998

] [
0.0143 0.0005

0.0150

] [
0.0145 0.0004

0.0143

] [
0.0165 0.0001

0.0165

]
0.0597 0.9403 0.0407 0.9530 0.0307 0.9693 0.0290 0.9710 0.0320 0.9680

HA : γ =
(

0.4
1.0

)
Normal

[
0.3980
1.0038

] [
0.0198 0.0018

0.0203

] [
0.0193 0.0014

0.0194

] [
0.0152 0.0001

0.0177

]
0.9753 0.9377 0.9673 0.9413 0.9860 0.9133 0.9883 0.9137 0.9827 0.9187

Gamma

[
0.3980
1.0016

] [
0.0154 0.0003

0.0158

] [
0.0154 0.0001

0.0154

] [
0.0184 0.0001

0.0184

]
0.9950 0.9350 0.9947 0.9473 0.9923 0.9690 0.9927 0.9690 0.9920 0.9687

HA : γ =
(

0.7
1.3

)
Normal

[
0.7027
1.3032

] [
0.0227 0.0049

0.0248

] [
0.0219 0.0036

0.0227

] [
0.0147 0.0001

0.0181

]
0.8280 0.9393 0.8150 0.9443 0.8573 0.8803 0.8587 0.8730 0.8577 0.8850

Gamma

[
0.7005
1.2987

] [
0.0145 0.0005

0.0151

] [
0.0145 0.0003

0.0145

] [
0.0166 0.0001

0.0166

]
0.8970 0.9453 0.8860 0.9530 0.8603 0.9647 0.8637 0.9653 0.8573 0.9667

N = 900

H0 : γ =
(

1.0
1.0

)
Normal

[
1.0033
1.0003

] [
0.0120 0.0026

0.0112

] [
0.0113 0.0024

0.0109

] [
0.0081 0.0000

0.0080

]
0.0603 0.9397 0.0593 0.9407 0.1187 0.8813 0.1203 0.8797 0.1183 0.8817

Gamma

[
1.0012
0.9995

] [
0.0074 0.0001

0.0072

] [
0.0073 0.0002

0.0072

] [
0.0083 0.0000

0.0082

]
0.0593 0.9407 0.0517 0.9483 0.0357 0.9643 0.0357 0.9643 0.0357 0.9643

HA : γ =
(

0.4
1.0

)
Normal

[
0.3992
1.0009

] [
0.0102 0.0010

0.0098

] [
0.0099 0.0008

0.0096

] [
0.0076 0.0000

0.0088

]
0.9997 0.9403 0.9993 0.9437 0.9997 0.9120 1.0000 0.9100 0.9997 0.9137

Gamma

[
0.3984
0.9997

] [
0.0082 0.0002

0.0076

] [
0.0078 0.0001

0.0077

] [
0.0092 0.0000

0.0091

]
1.0000 0.9407 1.0000 0.9477 1.0000 0.9647 1.0000 0.9633 1.0000 0.9657

HA : γ =
(

0.7
1.3

)
Normal

[
0.7019
1.3011

] [
0.0118 0.0023

0.0115

] [
0.0113 0.0022

0.0113

] [
0.0073 0.0000

0.0090

]
0.9853 0.9400 0.9847 0.9437 0.9900 0.8793 0.9893 0.8763 0.9890 0.8790

Gamma

[
0.7008
1.3005

] [
0.0073 0.0003

0.0070

] [
0.0073 0.0001

0.0072

] [
0.0083 0.0000

0.0082

]
0.9953 0.9453 0.9953 0.9510 0.9937 0.9647 0.9937 0.9643 0.9930 0.9963D
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Table 1. Continued

Working
model mean(γ̂) S2 VarA(γ̂) Var(γ̂) AWα AWcp ASα AScp Lα Lcp Wα Wcp Sα Scp

N = 1350

H0 : γ =
(

1.0
1.0

)
Normal

[
1.0022
1.0015

] [
0.0076 0.0014

0.0073

] [
0.0073 0.0014

0.0073

] [
0.0054 0.0000

0.0054

]
0.0560 0.9440 0.0543 0.9457 0.1123 0.8877 0.1130 0.8870 0.1100 0.8900

Gamma

[
1.0013
1.0014

] [
0.0049 0.0000

0.0047

] [
0.0048 0.0000

0.0048

] [
0.0055 0.0000

0.0055

]
0.0527 0.9473 0.0450 0.9550 0.0320 0.9680 0.0327 0.9673 0.0323 0.9677

HA : γ =
(

0.4
1.0

)
Normal

[
0.4003
1.0033

] [
0.0068 0.0004

0.0068

] [
0.0064 0.0005

0.0065

] [
0.0050 0.0000

0.0059

]
1.0000 0.9367 1.0000 0.9393 1.0000 0.9093 1.0000 0.9083 1.0000 0.9093

Gamma

[
0.4003
1.0023

] [
0.0054 −0.0001

0.0054

] [
0.0052 0.0000

0.0052

] [
0.0061 0.0000

0.0061

]
1.0000 0.9410 1.0000 0.9460 1.0000 0.9680 1.0000 0.9670 1.0000 0.9693

HA : γ =
(

0.7
1.3

)
Normal

[
0.7002
1.3016

] [
0.0075 0.0013

0.0078

] [
0.0073 0.0012

0.0076

] [
0.0049 0.0000

0.0060

]
0.9983 0.9373 0.9983 0.9430 0.9983 0.8793 0.9983 0.8790 0.9983 0.8813

Gamma

[
0.6993
1.3005

] [
0.0049 0.0002

0.0048

] [
0.0048 0.0001

0.0049

] [
0.0055 0.0000

0.0055

]
0.9993 0.9427 0.9993 0.9463 0.9993 0.9663 0.9993 0.9623 0.9993 0.9637
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Table 2. Model 2: μi = (2.5ηi + 2/3)3, i = 1, 2, . . . , N .

Working
model mean(γ̂) S2 VarA(γ̂) Var(γ̂) AWα AWcp ASα AScp Lα Lcp Wα Wcp Sα Scp

N = 450

H0 : γ =
(

1.0
1.0

)
Normal

[
1.0067
1.0107

] [
0.0681 0.0342

0.0674

] [
0.0566 0.0261

0.0531

] [
0.0302 0.0017

0.0299

]
0.1123 0.8877 0.1090 0.8910 0.1723 0.8277 0.1763 0.8273 0.1650 0.8350

Gamma

[
0.9903
0.9946

] [
0.0144 −0.0001

0.0141

] [
0.0133 0.0002

0.0132

] [
0.0099 −0.0003

0.0099

]
0.0877 0.9123 0.0640 0.9360 0.1190 0.8810 0.1200 0.8800 0.1167 0.8833

HA : γ =
(

0.4
1.0

)
Normal

[
0.3974
1.0059

] [
0.0221 0.0061

0.0247

] [
0.0209 0.0058

0.0225

] [
0.0132 0.0005

0.0160

]
0.9753 0.9027 0.9690 0.9103 0.9767 0.8677 0.9783 0.8650 0.9737 0.8707

Gamma

[
0.3953
0.9963

] [
0.0081 −0.0001

0.0090

] [
0.0076 0.0001

0.0085

] [
0.0066 −0.0001

0.0068

]
1.0000 0.9257 1.0000 0.9457 1.0000 0.9093 1.0000 0.9080 1.0000 0.9083

HA : γ =
(

0.7
1.3

)
Normal

[
0.7022
1.3157

] [
0.0637 0.0317

0.0785

] [
0.0553 0.0246

0.0605

] [
0.0283 0.0017

0.0350

]
0.6840 0.8790 0.6817 0.8853 0.7183 0.8220 0.7190 0.8197 0.7127 0.8287

Gamma

[
0.6915
1.2931

] [
0.0131 −0.0001

0.0149

] [
0.0123 0.0002

0.0140

] [
0.0096 −0.0002

0.0100

]
0.9270 0.9137 0.9107 0.9337 0.9530 0.8760 0.9557 0.8750 0.9497 0.8760

N = 900

H0 : γ =
(

1.0
1.0

)
Normal

[
1.0094
1.0093

] [
0.0289 0.0139

0.0271

] [
0.0269 0.0131

0.0268

] [
0.0152 0.0009

0.0152

]
0.0910 0.9090 0.0897 0.9103 0.1533 0.8467 0.1560 0.8440 0.1507 0.8493

Gamma

[
0.9997
0.9994

] [
0.0068 0.0000

0.0065

] [
0.0068 0.0001

0.0067

] [
0.0049 −0.0002

0.0049

]
0.0657 0.9343 0.0510 0.9490 0.1047 0.8953 0.1067 0.8933 0.1037 0.8963

HA : γ =
(

0.4
1.0

)
Normal

[
0.4030
1.0058

] [
0.0114 0.0032

0.0111

] [
0.0107 0.0032

0.0112

] [
0.0067 0.0002

0.0081

]
0.9983 0.9230 0.9967 0.9247 0.9980 0.8730 0.9987 0.8723 0.9980 0.8760

Gamma

[
0.3998
0.9998

] [
0.0038 0.0000

0.0041

] [
0.0038 0.0032

0.0043

] [
0.0033 −0.0001

0.0034

]
1.0000 0.9443 1.0000 0.9500 1.0000 0.9217 1.0000 0.9223 1.0000 0.9223

HA : γ =
(

0.7
1.3

)
Normal

[
0.7081
1.3132

] [
0.0289 0.0129

0.0302

] [
0.0269 0.0125

0.0301

] [
0.0146 0.0009

0.0177

]
0.9177 0.9047 0.9190 0.9060 0.9187 0.8457 0.9150 0.8447 0.9183 0.8500

Gamma

[
0.6998
1.2995

] [
0.0063 0.0000

0.0071

] [
0.0063 0.0001

0.0072

] [
0.0048 −0.0002

0.0049

]
0.9983 0.9313 0.9973 0.9497 0.9987 0.8933 0.9990 0.8917 0.9987 0.8910D
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Table 2. Continued

Working
model mean(γ̂) S2 VarA(γ̂) Var(γ̂) AWα AWcp ASα AScp Lα Lcp Wα Wcp Sα Scp

N = 1350

H0 : γ =
(

1.0
1.0

)
Normal

[
1.0010
1.0048

] [
0.0170 0.0083

0.0173

] [
0.0169 0.0081

0.0174

] [
0.0099 0.0005

0.0100

]
0.0903 0.9097 0.0897 0.9103 0.1560 0.8440 0.1563 0.8437 0.1513 0.8487

Gamma

[
0.9982
1.0005

] [
0.0045 0.0002

0.0044

] [
0.0045 0.0001

0.0045

] [
0.0033 −0.0001

0.0033

]
0.0610 0.9390 0.0500 0.9500 0.1183 0.8817 0.1167 0.8833 0.1157 0.8843

HA : γ =
(

0.4
1.0

)
Normal

[
0.3990
1.0034

] [
0.0070 0.0020

0.0073

] [
0.0070 0.0020

0.0074

] [
0.0044 0.0001

0.0053

]
1.0000 0.9313 1.0000 0.9340 1.0000 0.8737 1.0000 0.8727 1.0000 0.8743

Gamma

[
0.3994
1.0006

] [
0.0025 0.0001

0.0028

] [
0.0026 0.0001

0.0029

] [
0.0022 0.0000

0.0023

]
1.0000 0.9460 1.0000 0.9530 1.0000 0.9107 1.0000 0.9113 1.0000 0.9103

HA : γ =
(

0.7
1.3

)
Normal

[
0.7001
1.3077

] [
0.0172 0.0078

0.0193

] [
0.0172 0.0077

0.0193

] [
0.0095 0.0005

0.0116

]
0.9850 0.9123 0.9870 0.9160 0.9880 0.8430 0.9863 0.8400 0.9877 0.8450

Gamma

[
0.6986
1.3008

] [
0.0042 0.0002

0.0048

] [
0.0042 0.0001

0.0049

] [
0.0032 −0.0001

0.0033

]
0.9997 0.9417 0.9997 0.9497 1.0000 0.8907 1.0000 0.8917 1.0000 0.8897
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Table 3. Model 3: μi = η2
i , i = 1, 2, . . . , N .

Working
model mean(γ̂) S2 VarA(γ̂) Var(γ̂) AWα AWcp ASα AScp Lα Lcp Wα Wcp Sα Scp

N = 450

H0 : γ =
(

1.0
1.0

)
Normal

[
1.0023
0.9991

] [
0.0242 0.0040

0.0232

] [
0.0237 0.0038

0.0236

] [
0.0203 0.0009

0.0203

]
0.0573 0.9427 0.0527 0.9473 0.0793 0.9207 0.0810 0.9190 0.0777 0.9223

Gamma

[
1.0020
0.9989

] [
0.0162 −0.0001

0.0163

] [
0.0163 −0.0003

0.0164

] [
0.0191 −0.0008

0.0192

]
0.0487 0.9513 0.0377 0.9623 0.0270 0.9730 0.0263 0.9737 0.0293 0.9707

HA : γ =
(

0.4
1.0

)
Normal

[
0.3966
0.9971

] [
0.0180 0.0015

0.0183

] [
0.0181 0.0014

0.0178

] [
0.0154 0.0004

0.0166

]
0.9833 0.9460 0.9813 0.9490 0.9877 0.9310 0.9880 0.9307 0.9873 0.9343

Gamma

[
0.3977
0.9968

] [
0.0129 −0.0004

0.0137

] [
0.0133 −0.0002

0.0134

] [
0.0155 −0.0003

0.0162

]
0.9980 0.9370 0.9960 0.9550 0.9967 0.9697 0.9967 0.9690 0.9967 0.9680

HA : γ =
(

0.7
1.3

)
Normal

[
0.7001
1.3000

] [
0.0244 0.0041

0.0256

] [
0.0243 0.0034

0.0242

] [
0.0199 0.0008

0.0215

]
0.7823 0.9383 0.7750 0.9413 0.7927 0.9187 0.7927 0.9163 0.7887 0.9217

Gamma

[
0.7001
1.2998

] [
0.0158 −0.0004

0.0170

] [
0.0161 −0.0003

0.0164

] [
0.0187 −0.0007

0.0195

]
0.8360 0.9413 0.8287 0.9593 0.7793 0.9757 0.7850 0.9740 0.7723 0.9730

N = 900

H0 : γ =
(

1.0
1.0

)
Normal

[
1.0004
1.0010

] [
0.0128 0.0019

0.0117

] [
0.0121 0.0020

0.0117

] [
0.0102 0.0004

0.0101

]
0.0567 0.9433 0.0553 0.9447 0.0743 0.9257 0.0757 0.9243 0.0723 0.9277

Gamma

[
1.0003
1.0023

] [
0.0087 −0.0003

0.0082

] [
0.0083 −0.0002

0.0082

] [
0.0096 −0.0005

0.0095

]
0.0627 0.9373 0.0503 0.9497 0.0367 0.9633 0.0380 0.9620 0.0350 0.9650

HA : γ =
(

0.4
1.0

)
Normal

[
0.4011
1.0015

] [
0.0095 0.0008

0.0089

] [
0.0092 0.0008

0.0088

] [
0.0077 0.0002

0.0082

]
1.0000 0.9477 1.0000 0.9480 1.0000 0.9313 1.0000 0.9317 1.0000 0.9337

Gamma

[
0.4029
1.0022

] [
0.0069 −0.0002

0.0069

] [
0.0067 −0.0001

0.0067

] [
0.0077 −0.0002

0.0080

]
1.0000 0.9383 1.0000 0.9513 1.0000 0.9717 1.0000 0.9703 1.0000 0.9697

HA : γ =
(

0.7
1.3

)
Normal

[
0.7019
1.3034

] [
0.0130 0.0017

0.0115

] [
0.0125 0.0019

0.0120

] [
0.0100 0.0004

0.0107

]
0.9743 0.9450 0.9747 0.9487 0.9783 0.9207 0.9780 0.9227 0.9780 0.9247

Gamma

[
0.7015
1.3033

] [
0.0081 0.0000

0.0082

] [
0.0082 −0.0002

0.0082

] [
0.0093 −0.0005

0.0096

]
0.9897 0.9433 0.9910 0.9503 0.9863 0.9673 0.9870 0.9647 0.9853 0.9683D
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Table 3. Continued

Working
model mean(γ̂) S2 VarA(γ̂) Var(γ̂) AWα AWcp ASα AScp Lα Lcp Wα Wcp Sα Scp

N = 1350

H0 : γ =
(

1.0
1.0

)
Normal

[
1.0025
1.0020

] [
0.0082 0.0013

0.0080

] [
0.0080 0.0013

0.0080

] [
0.0068 0.0002

0.0068

]
0.0627 0.9373 0.0603 0.9397 0.0860 0.9140 0.0860 0.9140 0.0857 0.9143

Gamma

[
1.0007
0.9999

] [
0.0058 −0.0001

0.0054

] [
0.0055 −0.0001

0.0055

] [
0.0064 −0.0003

0.0064

]
0.0580 0.9420 0.0507 0.9493 0.0307 0.9693 0.0340 0.9660 0.0303 0.9697

HA : γ =
(

0.4
1.0

)
Normal

[
0.4021
1.0004

] [
0.0061 0.0005

0.0063

] [
0.0061 0.0005

0.0060

] [
0.0051 0.0001

0.0055

]
1.0000 0.9423 1.0000 0.9427 1.0000 0.9243 1.0000 0.9243 1.0000 0.9253

Gamma

[
0.4028
1.0003

] [
0.0046 0.0000

0.0047

] [
0.0045 −0.0001

0.0045

] [
0.0051 −0.0001

0.0054

]
1.0000 0.9380 1.0000 0.9447 1.0000 0.9660 1.0000 0.9650 1.0000 0.9643

HA : γ =
(

0.7
1.3

)
Normal

[
0.7009
1.3015

] [
0.0085 0.0009

0.0081

] [
0.0082 0.0012

0.0082

] [
0.0066 0.0002

0.0072

]
0.9960 0.9453 0.9957 0.9473 0.9950 0.9157 0.9950 0.9150 0.9947 0.9187

Gamma

[
0.7007
1.3014

] [
0.0056 −0.0002

0.0055

] [
0.0055 −0.0001

0.0055

] [
0.0062 −0.0003

0.0064

]
0.9990 0.9480 0.9993 0.9513 0.9983 0.9707 0.9987 0.9687 0.9987 0.9710

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l C
hi

ao
 T

un
g 

U
ni

ve
rs

ity
 ]

 a
t 1

8:
45

 2
4 

D
ec

em
be

r 
20

14
 



Journal of Statistical Computation and Simulation 863

by Var(γ̂) and the average of the adjusted covariance matrix estimate of γ̂ , namely Â
−1

B̂Â
−1

/N ,
denoted by VarA(γ̂) are also included. Note that because with large samples the adjusted Wald
and score statistics under the normal and gamma working models are free of σ 2 and r, the non-
regression parameters σ 2 and r in the RNR and RGR models are treated known, a priori, as the
same arbitrarily chosen value of 1, respectively.

From Tables 1–3, it is evident that the adjusting matrices successfully correct the normal and
gamma working models and make them robust. As can be seen from Tables 1–3, the averages of
the adjusted covariance matrix estimates, VarA(γ̂), are nearly equivalent to the sample covariance
matrix of γ̂ , S2, whereas the averages of the unadjusted covariance matrix estimates, Var(γ̂), are
different from S2.

It is also observed that when the simulated data sets are generated under the null hypothesis
H0, the adjusted Wald and score statistics are more effective than the test statistics QL, QW and QS

in providing the correct type I error probabilities. As can be seen from Tables 1–3, when the data
are generated from H0, the values of AWα and ASα are more close to the nominal significance
level 0.05, in contrast with the values of Lα, Wα and Sα.

On the other hand, it is noted that when the simulated data sets are generated under the alternative
hypothesis HA, the adjusted Wald and score statistics not only rightly reject the null hypothesis H0

but also provide the right confidence region. As can be seen from Tables 1–3, when the data are
generated from HA, the values of AWα and ASα gradually approach the value of 1 and the values
of AWcp and AScp inchmeal approximate to the nominal confidence level 0.95, as the sample
size N increases. On the contrary, the test statistics QL, QW and QS, under HA, only succeed in
rejecting H0, but they do not provide the exactly correct confidence region. For example, in the case
of Model 2 with the sample size N = 1350 and the alternative hypothesis HA : γ t = (0.7, 1.3),
respectively, the values of Lcp, Wcp and Scp under the gamma working model, 0.8907, 0.8917,
and 0.8897, are far from the nominal confidence level 0.95, in comparison with the values of
AWcp and AScp under the gamma working model, 0.9417 and 0.9497.

Obviously, from the results of Tables 1–3, it is enough to verify that the adjusted Wald and
score statistics based on the normal and gamma working models furnish a foundation for valid
inferences for the regression parameters of interest, even though the true underlying distributions
are not from these two working models. Despite the fact that the RNR and RGR models remain
the robustness property in misspecified models, some finite sample differences are revealed in the
numerical performances.

The results in Tables 1–3 apparently display that the adjusted covariance matrix estimates,
Var(γ̂), under the gamma working model are smaller than that under the normal working model.
This explicitly means that in terms of the hypothesis testing, the RGR model is more powerful
than the RNR model for non-negative continuous data.

5. Concluding remarks

We propose the parametric robust regression methods in the GLM setting. The proposed meth-
ods can provide the valid inferences about the regression parameters of interest under model
misspecification.

The adjusting matrices for the normal and gamma working models are submitted here. They
successfully adjust these two working models into robust models, whatever the true underlying
distributions are, as long as their second moments exist. The two adjusted models, namely the RNR
and RGR models, warrant the asymptotically legitimate inferences under model misspecification.
Simulation studies illustrate that the RGR model is more efficient for more general non-negative
continuous random variables.
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One of the many attractive features of our proposed methods is that with large samples, the
effect of σ 2 of the normal model and the effect of r of the gamma model are entirely purged
by their respective adjustments. Hence, although the non-regression parameters σ 2 and r are
artificially given positive values, the asymptotic validity of the RNR and RGR models are always
obtained.

Finally, we noted that the above discussion was centred on the case of all continuous random
variables. For robust inferences for count data, we refer the interested readers to [21].
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Appendix

Here some details regarding the quantities required to calculate the adjusting matrices An and Bn of AnB−1
n An that correct

the normal regression model are provided.
To facilitate calculation of the adjusting matrices, let βt = (β1, β2, . . . , βw) = (γp−1, γp−2, . . . , γp−w) be the w-vector of

parameters of interest and let ϕ be the (p − w + 1)-dimensional nuisance parameters with the non-regression parameter
σ 2 and the (p − w) regression coefficients (γ0, γ1, . . . , γp−w−1). Under the normal working model, Ihββ and Ihβϕ are
approximately equal to the w × w matrix

1

Nσ 2
0

⎡
⎢⎢⎢⎢⎢⎢⎣

N∑
i=1

(μ′
i,0)

2x2
i,p−1 . . .

N∑
i=1

(μ′
i,0)

2xi,p−1xi,p−w

...
...

...
N∑

i=1
(μ′

i,0)
2xi,p−wxi,p−1 . . .

N∑
i=1

(μ′
i,0)

2x2
i,p−w

⎤
⎥⎥⎥⎥⎥⎥⎦

and the w × (p − w + 1) matrix

1

Nσ 2
0

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
N∑

i=1
(μ′

i,0)
2xi,p−1xi,0 . . .

N∑
i=1

(μ′
i,0)

2xi,p−1xi,p−w−1

0
N∑

i=1
(μ′

i,0)
2xi,p−2xi,0 . . .

N∑
i=1

(μ′
i,0)

2xi,p−2xi,p−w−1

...
...

...
...

0
N∑

i=1
(μ′

i,0)
2xi,p−wxi,0 . . .

N∑
i=1

(μ′
i,0)

2xi,p−wxi,p−w−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

respectively. Ihϕϕ is asymptotically expressed by

1

Nσ 2
0

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

iϕϕ1 0 . . . 0

0
N∑

i=1
(μ′

i,0)
2x2

i,0 . . .
N∑

i=1
(μ′

i,0)
2xi,0xi,p−w−1

...
...

...
...

0
N∑

i=1
(μ′

i,0)
2xi,p−w−1xi,0 . . .

N∑
i=1

(μ′
i,0)

2x2
i,p−w−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where iϕϕ1 = −σ 2
0 lσ 2σ 2 .

For simplicity of notation, let Δn be the (p − w) × (p − w) matrix with the jth row as (
∑N

i=1 (μ′
i,0)

2xi,j−1xi,0, . . . ,∑N
i=1 (μ′

i,0)
2xi,j−1xi,p−w−1) for j = 1, 2, . . . , p − w. Then, Ihϕϕ is approximately written in the form

Ihϕϕ ≈ 1

Nσ 2
0

[
iϕϕ1 0

0 Δn

]
,

where 0 is a (p − w)-vector and consists of only zeros. Its inverse I−1
hϕϕ is approximately given by

I−1
hϕϕ ≈ Nσ 2

0

|Δn|

⎡
⎢⎢⎢⎢⎢⎢⎣

|Δn |
iϕϕ1

0 . . . 0

0 R1,1 . . . Rp−w,1

...
...

...
...

0 R1,p−w . . . Rp−w,p−w

⎤
⎥⎥⎥⎥⎥⎥⎦

,

where Rl,m = (−1)l+m|M(lm)(Δn)| is the (l,m)th cofactor of Δn.
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Similarly, Vhββ , Vhβϕ and Vhϕϕ are approximately equal to

1

Nσ 4
0

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

N∑
i=1

Varh(Yi)(μ
′
i,0)

2x2
i,p−1 . . .

N∑
i=1

Varh(Yi)(μ
′
i,0)

2xi,p−1xi,p−w

...
...

...

N∑
i=1

Varh(Yi)(μ
′
i,0)

2xi,p−wxi,p−1 . . .
N∑

i=1
Varh(Yi)(μ

′
i,0)

2x2
i,p−w

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

1

Nσ 4
0

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
N∑

i=1
Varh(Yi)(μ

′
i,0)

2xi,p−1xi,0 . . .
N∑

i=1
Varh(Yi)(μ

′
i,0)

2xi,p−1xi,p−w−1

0
N∑

i=1
Varh(Yi)(μ

′
i,0)

2xi,p−2xi,0 . . .
N∑

i=1
Varh(Yi)(μ

′
i,0)

2xi,p−2xi,p−w−1

...
...

...
...

0
N∑

i=1
Varh(Yi)(μ

′
i,0)

2xi,p−wxi,0 . . .
N∑

i=1
Varh(Yi)(μ

′
i,0)

2xi,p−wxi,p−w−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and

1

Nσ 4
0

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

vϕϕ1 vσ 2γ0
. . . vσ 2γp−w−1

vγ0σ 2

N∑
i=1

Varh(Yi)(μ
′
i,0)

2x2
i,0 . . .

N∑
i=1

Varh(Yi)(μ
′
i,0)

2xi,0xi,p−w−1

...
...

...
...

vγp−w−1σ 2

N∑
i=1

Varh(Yi)(μ
′
i,0)

2xi,p−w−1xi,0 . . .
N∑

i=1
Varh(Yi)(μ

′
i,0)

2x2
i,p−w−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

respectively. Here vϕϕ1 = σ 4
0 Eh[lσ 2 (β0, ϕ0)lσ 2 (β0, ϕ0)] and vσ 2γj

= vγjσ
2 = σ 4

0 Eh[lσ 2 (β0, ϕ0)lγj (β0, ϕ0)], j = 0, 1, . . . ,
p − w − 1.

According to Equation (1), the (u, v) entries of An are derived as follows:

An(uv) = Ihβuβv − IhβuϕI−1
hϕϕIhϕβv − IhβvϕI−1

hϕϕIhϕβu + IhβvϕI−1
hϕϕIhϕϕI−1

hϕϕIhϕβu

= lim
N→∞

1

Nσ 2
0

⎧⎨
⎩

N∑
i=1

(μ′
i,0)

2xi,p−uxi,p−v − 1

|Δn|
N∑

i=1

(μ′
i,0)

2

⎛
⎝xi,p−v

p−w∑
j=1

xi,j−1|Δnj(u)|
⎞
⎠

− 1

|Δn|
N∑

i=1

(μ′
i,0)

2

⎛
⎝xi,p−u

p−w∑
j=1

xi,j−1|Δnj(v)|
⎞
⎠

+ 1

|Δn|2
N∑

i=1

(μ′
i,0)

2

⎛
⎝p−w∑

j=1

xi,j−1|Δnj(v)|
⎞
⎠

⎛
⎝p−w∑

j=1

xi,j−1|Δnj(u)|
⎞
⎠

⎫⎬
⎭

= lim
N→∞

1

Nσ 2
0

N∑
i=1

(μ′
i,0)

2

⎛
⎝xi,p−u −

p−w∑
j=1

|Δnj(u)|
|Δn| xi,j−1

⎞
⎠

⎛
⎝xi,p−v −

p−w∑
j=1

|Δnj(v)|
|Δn| xi,j−1

⎞
⎠ ,

where |Δnj(u)| = ∑p−w
m=1 (Rj,m

∑N
i=1 (μ′

i,0)
2xi,m−1xi,p−u).
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According to Equation (2), the (u, v) entries of Bn are derived as follows:

Bn(uv) = Vhβuβv − IhβuϕI−1
hϕϕVhϕβv − VhβuϕI−1

hϕϕIhϕβv + IhβuϕI−1
hϕϕVhϕϕI−1

hϕϕIhϕβv

= lim
N→∞

1

Nσ 4
0

⎧⎨
⎩

N∑
i=1

Varh(Yi)(μ
′
i,0)

2xi,p−uxi,p−v − 1

|Δn|
N∑

i=1

Varh(Yi)(μ
′
i,0)

2

⎛
⎝xi,p−v

p−w∑
j=1

xi,j−1|Δnj(u)|
⎞
⎠

− 1

|Δn|
N∑

i=1

Varh(Yi)(μ
′
i,0)

2

⎛
⎝xi,p−u

p−w∑
j=1

xi,j−1|Δnj(v)|
⎞
⎠

+ 1

|Δn|2
N∑

i=1

Varh(Yi)(μ
′
i,0)

2

⎛
⎝p−w∑

j=1

xi,j−1|Δnj(u)|
⎞
⎠

⎛
⎝p−w∑

j=1

xi,j−1|Δnj(v)|
⎞
⎠

⎫⎬
⎭

= lim
N→∞

1

Nσ 4
0

N∑
i=1

Varh(Yi)(μ
′
i,0)

2

⎛
⎝xi,p−u −

p−w∑
j=1

|Δnj(u)|
|Δn| xi,j−1

⎞
⎠

⎛
⎝xi,p−v −

p−w∑
j=1

|Δnj(v)|
|Δn| xi,j−1

⎞
⎠ .

The adjusting matrices Ag and Bg of the gamma working model are derived in the analogous way.
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