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In this article, the parametric robust regression approaches are proposed for making inferences about
regression parameters in the setting of generalized linear models (GLMs). The proposed methods are
able to test hypotheses on the regression coefficients in the misspecified GLMs. More specifically, it is
demonstrated that with large samples, the normal and gamma regression models can be properly adjusted
to become asymptotically valid for inferences about regression parameters under model misspecification.
These adjusted regression models can provide the correct type I and II error probabilities and the correct
coverage probability for continuous data, as long as the true underlying distributions have finite second
moments.
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1. Introduction

Generalized linear models (GLMs) were introduced by Nelder and Wedderburn [1] as a unifying
family of models for non-standard cross-sectional regression analysis with non-normal responses.
The statistical analysis of such models is based on the asymptotic properties of the maximum
likelihood estimator (MLE). Fahrmeir and Kaufmann [2] presented mild general conditions,
which, respectively, assure weak or strong consistency or asymptotic normality of the MLE.
More on this study can be found in [3]. More generally, Fahrmeir [4] dealt with the asymptotic
behaviour of the quasi-MLE in misspecified GLMs.

Cantoni and Ronchetti [5] proposed a natural class of robust estimation techniques for GLMs.
Their method is more reliable than the classical estimation procedures in providing the accurate
statistical inference when the data include outlying points. Adimari and Ventura [6] also studied
robust inference for GLMs. They derived a robust quasi-profile log-likelihood function that was
obtained from an estimating function that defines the class of Mallows-type robust estimators
considered by Cantoni and Ronchetti [5]. Li and Hsiao [7] suggested a method for consistently
estimating GLMs with measurement errors without making any prior distributional assumption on
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the measurement error or the latent variables. However, the robustness of their proposed method
requires the knowledge of the probability distribution of latent variables. Sinha [8] developed a
robust method for analysing GLMs with non-ignorable missing covariates. Recently, Bianco et
al. [9] introduced a resistant procedure to test hypotheses on the regression parameter in GLMs
with missing responses.

On the other hand, Heagerty and Kurland [10] evaluated the impact of model violations on the
estimate of a regression coefficient in generalized linear mixed models (GLMMs). Jiang and Zhang
[11] proposed robust methods to estimate parameters of interest in settings of GLMMs, in which
only the conditional means of the responses given the random effects are specified. Yau and Kuk
[12] proposed robust estimation procedures for GLMMs based on the notion of maximum quasi-
likelihood and residual maximum quasi-likelihood. Sinha [13] developed a robust method for
identifying and downweighting the outliers when estimating the parameters in the GLMMs. Sinha
[14] further described a robust quasi-likelihood method for fitting the GLMMs to longitudinal
data.

In addition, robust restricted maximum likelihood (robust REML) in mixed linear models
are introduced by Richardson and Welsh [15] who made classical REML robust by bounding
the influence of outlying observations on the estimate. Yun and Lee [16] discussed the robust
estimation in mixed linear models with non-monotone missingness. Jacqmin-Gadda et al. [17]
investigated the robustness of the MLE of fixed effects from a linear mixed model when the error
terms are either correlated or non-Gaussian or of non-constant variance.

Royall and Tsou [18] advocated the robust likelihood function concept. They developed a
technique that adjusts a working likelihood function, making it robust. The resulting adjusted
robust likelihood function remains valid evidential representation of the parameter, even when
the working model is incorrect. Motivated by the above results, Tsou [19] proposed a parametric
robust way for comparing two population means and two population variances in misspecified
models. Tsou and Cheng [20] applied the robust likelihood techniques to analyse contaminated
data in regression settings. Tsou [21] further extended the robust likelihood concept to analyse
count data. In this article, the robust likelihood techniques are used to make inferences about
regression parameters in the GLM setting.

This article is organized as follows. Section 2 contains a brief review of the idea of robust
likelihood functions introduced by Royall and Tsou [18]. The robust normal regression (RNR)
and robust gamma regression (RGR) are briefly introduced in Section 3. Section 4 presents
a simulation study which shows the advantage of the RNR and RGR models with respect to
(w.r.t.) the ordinary normal and gamma regression models. Section 5 concludes with a brief
discussion. Some technical background material from the previous sections is deferred into the
appendix.

2. Robust likelihood functions

Suppose that Y1, Y», ..., Yy is a sequence of independent random variables. On the basis of a pri-
ori knowledge or convenience, we postulate a working model for the probability distributions of
Yis, {fi =fi(e;¥) =f(e;n;(¥)),i =1,2,...,N,¢¥ € W}, where ¥ is a fixed-dimensional vector
of unknown parameters. For example, under normal regression settings, n;(¥) = (x!p, o?), v =
V', o) and f; = fi(yi; ¥) = exp{—(y; — x'¥)?/20%} /27w o Here x; represents the p character-
istics that are specific to y;, and y represents the p regression coefficients that describe how x;
affects the expected value of Y;. Note that this model is a collection of probability distributions,
each of which is identified by a unique value of ¥.

Now partition ¥ as ¥' = (¢, ¢'), where 0 is the p-vector of parameters of interest and ¢ is the
remaining fixed-dimensional nuisance parameters. Let 8y and ¢, denote the limiting values of
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the MLEs, 6 and @, based on the working model f = (f1,/3,. . .,fv), when the ¥;’s are actually
generated from the family {h; = h(e;7;(6,1)),i = 1,2,...,N}, where A is the nuisance parameter
vectorunder s = (hy, hy, . . ., hy). Now suppose that the parameters of inference under the working
model f, namely 6, remain the parameters of interest under #, so that 6 has the same interpretation
of the true values of the parameters of interest. This result is what Royall and Tsou [18] referred
to as the first condition of robustness (FCR). This condition is crucial for the working model to be
adjustable for valid inferences. Note that White [22] showed that, more often than not, the FCR
is not satisfied once f # h.

Write [y and [, for the first derivatives of the log-likelihood function /(8, ¢) w.r.t. 6 and ¢,
respectively, whose derivatives w.r.t. ¢ are correspondingly denoted by lg, and [y,. Now, let I,
and Ip,, be the limiting values of —lg,/N and —l,,/N, respectively, under £ and the limiting
values of —lgg/N and —l,9/N, under h, are denoted by Ij,g9 and I}, respectively. Note that these
limiting values are all evaluated at 6, and ¢,,.

Now define the following two p x p matrices:

A = Lnog — Dol p T (1)
and
B = Vg — Ingpl /;,,lwvh(w — Vool ;;,,1(,,1 hoo + Lnopl ,:(,}(,,Vhwl ,;,,1¢I hf- ()

Here Vigg = limy— o0 Enllg(60, 90)ly (00, 90) /N1, Viap = limy . Esllg (00, 901, (80, ¢9) /N1 and
Vige = limy_, o0 Epll, (6o, goo)l;, (00, 9y)/N], where E, stands for the expectation evaluated
under h. . A

Let § be the MLE of § and A and B be the empirical versions of A and B. A direct application of

A An—lA A
Taylor’s expansion shows that the adjusted Wald statistic N (0 — 69)'AB A(0 — 0) has an asymp-
totic Xl? distribution for general h;,i = 1,2, ..., N, that have finite second moments. Here Xl? is
denoted as a chi-squared distribution with p degrees of freedom. Another asymptotically equivalent
~ ~—1 ~ ~

counterpart, the adjusted score statistic N ™! {1580, @(60))}B (60, 9(00)){ly(00, 9(00))}, where

@(0o) and 3(00, @(0))) are the constrained MLEs of ¢ and B given 6, respectively, has the same
limiting sz distribution even if the working model assumptions fail.

3. Robust regression models

Consider a set of observations y;,ys,...,yy corresponding to N independent not identically
distributed random variables Yi, Y5, .. ., Yy. Under GLMs, the mean response, (;, depends on the
p covariates (X;0,Xi1, -, Xip—1) = X}, by ; = g(n;), where n; = xjy = yoXio + yixi1 + - +
¥p—1Xip—1 18 a linear predicator with the p regression coefficients (yo, y1, ..., Vp—1) = y',and g(e)
is a monotonic and differentiable response function.

3.1. Robust normal regression
Under a normal working model, the log-likelihood function for the ith observation y; is

i — Mi)z.

l 11 2 11 2
i =—=logo” — < log2m —
2 %% 2 %% 202
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The log-likelihood equation for y;_; is

N
1 .
;Zﬂg@i_ﬂi)xi,jfl :09 J= la2a~--9p9 (3)

i=1

where p is the first derivative of u; w.r.t. n;. The solutions of Equation (3) are the maximum quasi-
likelihood (MQL) estimators [23-25] or M -estimators [26], when the observations yy, ys, ..., Yy
are not necessarily from normal distributions. McCullagh [27] showed that, under mild regularity
conditions, the consistency of the MQL estimates under model misspecification depends only on
the correct specification of the regression. In other words, the normal working model provides the
consistent estimates of regression parameters under incorrectly specified models. Thus, the FCR
is fulfilled, so that the normal working model can be properly adjusted to become asymptotically
legitimate for regression parameters of interest under model misspecification.

Without loss of generality, let y,_, Yp—w+1,- - > ¥p—2, ¥p—1 be the w parameters of interest
and let (Yp—1, ¥p—2,- - - » YVp—w+1» Yp—w) be denoted by (B, B2, ..., Bu—1,Bw) = B’ for notational
convenience. Let ;o and ,ug,o be, respectively, the true values of w; and ;. Let Var,(Y;),i =
1,2,...,N, be the true variances of Y;,i = 1,2,...,N. Let Z = (z0,21,...,%,—1) be the N x p
design matrix, so that Z' = (x,X2,...,Xy).

After lengthy derivations, it shows that the (u,v),u,v =1,2,...,w, elements of the w x w
adjusting matrices A, and B, of AnB;IAn that make the normal regression model robust can be
written in the forms (for details, see the appendix):

N p—w p—w
A — i 1 /7 N\2 ) |Anj(u)| B ) |Anj(v)| B
n(uv) — N1—>ngo NO’OZ Zl:(:ui,()) xt,p—u - Z |An| -le—l xt,p—v - Z |A”| xz,/—l
i=

J=1 J=1

and

N —_
. 1 7 \2 = |Anj(u)|
B, = Nh_{%o Nod ZVth(Yi)(ui,o) Xip—u — Z Wxi,j—l
0 =1 n

J=1

p—w
|Anj(v)|
X | Xip—y — Z a0 i1
— |A,|
j=1

Here |A,| represents the determinant of the matrix A,, where A, = W’V;lW with W =
(05 -+ ++%j=2,%j—1,%j» - - - . Zp—w—1) and V, = diag((l/u’lgo)z, (1/,u’230)2, ey (1//4\,’0)2) being a
diagonal matrix of order N. On the other hand, A, = W'V, 'Wj(,, and A,y = W'V, 'W;(,, with
Wiy = (205 -+ +2j=2:Zp—usZjs - - - »Zp—w—1) and Wiy = (0, .. .,2j—2,Zp—1>Zj> - - - » Zp—w—1) derived
by the jth column z;_; of W replaced by z,_, and z,,_,, respectively. Here 002 is the limit of the
MLE of o2, 62, that has the same interpretation of the limit of Zf': , Var,(Y;)/N. Note that the
interpretation of 002 depends on 4 and is, therefore, unknown.

In the special case with all the regression coefficients of interest, let (¥,—1, ¥p—2,. .., Y1, Y0) =
(B1, B2y -5 Bp—1,Bp) = B'. Then, the adjusting matrices A,, and B,, can be simplified as follows:

N
. 1 /N2
An(uv) — nglgo N_CIOZ lg]: (/L[,()) (xi,pfu)(xi,pfv)
and

N
. 1 7 \2
Bn(uv) = 1\/1220 Ir‘é Zl Varh(Yi)(Mi,o) (xi,p—u)(xi,p—v)‘
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In applications, consistent estimates An and f?n of A, and B, can be obtained by Vary(Y;)
replaced by (y; — [1;)> with /i being the MLE of 1 and other unknown quantities replaced by their
respective empirical versions.

Let B, be the true value of B and consider the null hypothesis Hy : f = B,. Let B be
the MLE of B based on the normal working model and let @(8,) and ﬁn(ﬁo,@(ﬂo)) be the
restricted MLEs of ¢ and B, given f,. Here the vector of the nuisance parameters, @, con-
tains the scale parameter o> and some regression coefficients that are not to be tested. Under

Hy, the adjusted Wald statistic N (,B — ﬂo)’ﬁnﬁglﬁn(ﬁ — By) and the adjusted score statis-

tic N7! {l;(ﬂo, (p(ﬂo))}l};l (Bo» @B 1By, @(By))} are asymptotically equivalent and have an
asymptotic x2 distribution as long as the second moments of the true underlying distributions

. Aala . .
exist. Note that A,B, A, is free of 0. Thus, with large samples, the effect of o is actually
removed. Hence, o2 can be treated known, a priori, as any arbitrary positive value.

3.2. Robust gamma regression
Under a gamma working model, the log-likelihood function for the ith observation y; is
li=rlog r—rlog wi+ (r— 1) log y; — ri; 'y; — log T'(r).

The score functions

N o
VZ&C)’ M’)x,-JI, ji=12,...,p,

i—1 Wi Wi

have zero expectation as long as u,;,i = 1,2, ..., N, are correctly specified. Hence, the regression
parameters of interest can be consistently estimated by the gamma working model, whatever 4 is.
Thus, the FCR is satisfied.

Calculations parallel to A, and B,, show that the (u,v),u,v = 1,2,...,w, components of the
adjusting matrices A, and B, under the gamma working model are of the forms (for details, see
the appendix):

ro Kio |Agjaw! 1 Agw|
Ag(uv) = 11 N Z( : ) Xip—u — Z A, Xij—1 Xip—y — Z A, Xij—1
1 8 — g

j=1

and

2 N p—w
Var, (V) (Rig [Agial
Bg(uv) = hm o Z — Xip—u — Z |j](u|) Xij—1
8

i=1 Kio Hio =1
p—w
|Ag/(V)|
X x,-,p,v—z A A Niji-1]>
= A

where A, =W'V'W, Agioy =WV, W) and Agiy =WV, 'W;(,, with V, = diag((110/141 ),
(m20/ /1/2’0)2, o (uno/ ,u}\,’o)z). Here ry is the limit of the MLE of r, whose interpretation depends
on h and is, therefore, unknown.
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In the special case with all the regression parameters of interest, A, and B, reduce to

ro Ml
A gwv) = hn;o ]v Z < 2) (xi,p—u)(xi,p—v)

L,

and

2 N
arh(Y) l’Ll
Bg(uv) = hm _OZ ( 0) (xi,p—u)(xi,p—v)~
i=1

/’Ll() Mi,0

In application, consistent estimates Ag and Bg of A; and B, can be derived by replacing the
unknown components in A, and B, by their respective empirical analogues, just as we dealt

~ A~ A A—1n
with A,, and B,.. Note that Ang A, is free of r, so that with large samples, the effect of r is
completely eliminated. Therefore, r can be treated known, a priori, in the beginning as any pos-

~ A A—lA A
itive value. The resulting adjusted Wald statistic N(8 — ﬂo)’Ang A,(B — By) and the resulting

adjusted score statistic N‘l{lfg(ﬂo, @(ﬂo))}f?:(ﬂo, OB 1By, 9(By))}, under Hy : B = B, are

asymptotically distributed as Xﬁ for general h with the finite second moments. Note that here all
MLE:s are derived under the gamma working model.

4. Simulation studies

To investigate the performance of the RNR and RGR models in the finite sample situation, sim-
ulation studies are conducted using N = 450, 900 and 1350 replicated samples, respectively,
generated from the three regression models

Model 1:  u; = exp(n,),
Model 2:  w; = (2.51; +2/3)°,
Model 3:  u; = niz

with the linear predicator 7; given by
ni = X0+ yixi1 +yaxip fori=12,...,N

where the values of x;9,i = 1,2,...,N, are set by 1 and the values of x;;,i =1,2,...,N,j =
1,2, are independently generated from a uniform distribution between 0 and 1. Here regression
coefficients y; and y; are considered as the parameters of interest. For simplicity, let y* = (1, 2)
and yj = (1.0, 1.0). We test the null hypothesis Hy : ¥ = p, and the two alternative hypotheses
Hy:y' = (04,1.0) and y' = (0.7, 1.3), respectively.

Simulated data sets are generated from three sources including the Weibull, inverse Gaussian
and chi-squared distributions, respectively. A Weibull distribution with the shape parameter A and
the scale parameter k, W (k, 1), has a simple relationship between the second central moment and
the first moment, that is, Var(Y) = auz, where a > 0 is a function of the shape parameter . For
example, when A = 1 and k = , Var(Y) = u?. Similarly, an inverse Gaussian distribution with
the mean p and the shape parameter X, IG(u, 1), has a variance proportional to the cubic of its
mean value, that is, Var(Y) = u>/A. On the other hand, a non-central chi-squared distribution
with v degrees of freedom and a non-centrality parameter n—v>0x 2(ju — v), has a mean
value of u and a variance of 2(2j4 — v), so that x2(x — v) has a variance roughly proportional to
its mean.
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To demonstrate the robustness characters of the adjusted Wald and score statistics under the
normal and gamma working models, in our simulations, the observations, y;,i =1,2,...,N,
are sampled in the following way. First, the first 0.3N observations, y;,i = 1,2,...,0.3N, are
independently generated from the Weibull distributions, W (u;, 1), with the shape parameter of
1 and the scale parameter of ;i =1,2,...,0.3N, respectively. Then, the next 0.3N obser-
vations, y;,i = 03N + 1,0.3N +2,...,0.6N, are independently generated from the inverse
Gaussian distributions, IG(u;, 100), with the shape parameter of 100 and the mean value of
Wi, i =03N +1,0.3N +2,...,0.6N, respectively. Finally, the rest of the 0.3N observations,
vi,i = 0.6N 4+ 1,0.6N + 2,..., N, are independently generated from the non-central chi-squared
distributions, Xlz(u,- — 1), with one degree of freedom and the non-centrality parameter of
wi—1,i =0.6N + 1,0.6N + 2,...,N, respectively.

Three additional test statistics are also included for contrast. They are the maximum likelihood
ratio test statistic, the Wald test statistic and the score test statistic, respectively. The maximum
likelihood ratio test statistic for testing the null hypothesis Hy : y = p, is defined by

OL =2{l(¥,9) — 1(¥o, (o))}

Then, its two asymptotically equivalent test statistics, the Wald test statistic and the score test
statistic, are defined by

Ow = N& — o)A — yy)
and

05 = NIy 8VA 20 9Dy (0, O],

respectively. Here all notation definitions are given as in the previous sections. Each of the test
statistics O, Qw and Qs, under the null hypothesis Hy : y = y,, has an asymptotic chi-squared
distribution with degrees of freedom equal to the dimension of p. Thus, in our simulations, each
of the maximum likelihood ratio test statistic, the Wald test statistic and the score test statistic
rejects Hy, when each of the test statistics Qr, Ow and Qs exceeds the critical value of Xzz’o_%,
where X22,0,95 represents the 95th quantile of the chi-squared distribution X22_ More discussions
about the test statistics Q; , Ow and Qs can be found in [28, Section 9.3].

The simulation performance are carried out for 3000 simulation runs with the x; ;’s and x;»’s
being regenerated after every 50 simulation runs. The empirical type I error probabilities based
on the adjusted Wald statistic, the adjusted score statistic, the maximum likelihood ratio test
statistic, the Wald test statistic and the score test statistic are labelled as AWa, ASa, La, W
and Sa, respectively. On the other hand, AWcp, AScp, Lep, Wep and Scp symbolize the coverage
probabilities of the nominal 95% confidence interval constructed using the adjusted Wald statistic,
the adjusted score statistic, the maximum likelihood ratio test statistic, the Wald test statistic and
the score test statistic, respectively. The empirical type I error probability is computed as the
proportion of rejections of the null hypothesis Hy : y = p, at the nominal 5% significance level,
when the data are actually generated from Hj. On the other hand, when the data are sampled from
the alternative hypothesis Hj, the empirical type I error probability exhibits the power of the test.

Results from the adjusted Wald statistic, the adjusted score statistic, the maximum likelihood
ratio test statistic, the Wald test statistic and the score test statistic based on the normal and
gamma working models are tabulated in the tables below. The average of the 3000 y values and
their sample covariance matrix are termed as mean(p) and S2, respectively. In order to contrast
the differences between the covariance matrix estimates based on the adjusted and unadjusted test

.. . . . . ~ ~—1
statistics, the average of the unadjusted covariance matrix estimate of y, namelyA /N, denoted



Downloaded by [National Chiao Tung University ] at 18:45 24 December 2014

Table 1.

Model 1: pu; = exp(n;),i = 1,2,...,N

Working
model  mean(p) s? Vara () Var(p) AWa  AWcp  ASa AScp Lo Lep Wa Wep Sa Scp
N =450
Hy:y= (18) Normal [igg;g] [0'0223 88223} [0.0219 88(2)41‘2] [0'0161 ?)8(1)(6)” 0.0643 09357 0.0587 0.9413 0.1190 0.8810 0.1223 0.8777 0.1157 0.8843
Gamma [8223;] |:0'0 143 88(1)(5)(5):| I:O'O 145 gg(ﬁg] |:0'0 165 88(1)(6);} 0.0597 0.9403 0.0407 0.9530 0.0307 0.9693 0.0290 0.9710 0.0320 0.9680
Hy:y= (?g) Normal |:(1)(3)(9)§(8)] [0'0198 gggéf} [0.0193 gg(])éi] [0'0152 gg?g;} 0.9753 0.9377 0.9673 09413 09860 0.9133 0.9883 0.9137 0.9827 0.9187
Gamma [?33?2] |:0'0154 88(1)(5);} I:O'Ol 54 88(1)(5)411] |:0'01 84 gg?gﬂ 0.9950 0.9350 0.9947 0.9473 0.9923 0.9690 0.9927 0.9690 0.9920 0.9687
Hy:y= <(1);> Normal [?;85;] |:0'0227 gggiz} [0'02]9 ggg;g] |:0'0147 gg?g” 0.8280 0.9393 0.8150 0.9443 0.8573 0.8803 0.8587 0.8730 0.8577 0.8850
Gamma [?;ggg] |:0'0 145 88(1)(5)?} [0.0145 88(1)22] |:0'0 166 gg?gé} 0.8970 0.9453 0.8860 0.9530 0.8603 0.9647 0.8637 0.9653 0.8573 0.9667
N =900
Hy:y= (18) Normal [igggg] |:0'0120 gg?ig} [O 0113 88(1)33] |:0'0081 ggggg} 0.0603 0.9397 0.0593 0.9407 0.1187 0.8813 0.1203 0.8797 0.1183 0.8817
Gamma [éggéi] |:0'0074 gggg;} [O 0073 888(7)5] |:0'0083 88822} 0.0593 0.9407 0.0517 0.9483 0.0357 0.9643 0.0357 0.9643 0.0357 0.9643
Hp:y= <(1)g> Normal [?zgzé] |:0'0 102 ggg;g} [0 0099 ggggg] |:0'0076 88822} 0.9997 0.9403 0.9993 0.9437 0.9997 0.9120 1.0000 0.9100 0.9997 0.9137
Gamma [8332‘7‘] [0'0082 888(7)2} [0 0078 8882;] [0'0092 gggg?} 1.0000 0.9407 1.0000 0.9477 1.0000 0.9647 1.0000 0.9633 1.0000 0.9657
Hy:y= <?;> Normal [?;gi?:l |:0'01 18 88??;} [O 13 gg(ﬁi] |:0'0073 82383} 0.9853 0.9400 0.9847 0.9437 0.9900 0.8793 0.9893 0.8763 0.9890 0.8790
Gamma [?;882] |:0'0073 888(7)3} [O 0073 888(7);] |:0'0083 ggggg} 0.9953  0.9453 0.9953 09510 0.9937 0.9647 0.9937 0.9643 0.9930 0.9963
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Table 1. Continued

V\rll(:(l;lc(iier;g mean() §? Vara (P) Var(p) AWa  AWcp ASa  AScp La Lcp Wa Wcep Sa Scp
N = 1350
Hy:y= <ig> Normal [igg??] |:0'0076 ggg;:} |:0'0073 ggg;:} |:0'0054 ggggg} 0.0560 0.9440 0.0543 0.9457 0.1123 0.8877 0.1130 0.8870 0.1100 0.8900
Gamma [iggiz} |:0'0049 88822} [0'0048 ggggg} |:0'0055 888(5)(5)} 0.0527 09473 0.0450 0.9550 0.0320 0.9680 0.0327 0.9673 0.0323 0.9677
Hp:y= (?g) Normal [?gggﬂ [0'0068 88822} [0'0064 ggggz} |:0'0050 ggggg] 1.0000 0.9367 1.0000 0.9393 1.0000 0.9093 1.0000 0.9083 1.0000 0.9093
Gamma [?gggﬂ |:0'0054 _000%(;31} I:OAOOSZ ggggg} |:0'0061 gggg(ﬂ 1.0000 0.9410 1.0000 0.9460 1.0000 0.9680 1.0000 0.9670 1.0000 0.9693
Hy:y= (?;) Normal [?;8(1)2] |:0'0075 888;:;} [0'0073 ggg;é} |:0'0049 88828} 0.9983 0.9373 0.9983 0.9430 0.9983 0.8793 0.9983 0.8790 0.9983 0.8813
Gamma [?2(9)(9):} |:0'0049 8882;} [0‘0048 ggggé] |:0'0055 888(5)(5)} 0.9993  0.9427 0.9993 0.9463 0.9993 0.9663 0.9993 0.9623 0.9993 0.9637
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Table 2. Model 2: u; = (2.51; +2/3)%,i=1,2,...,N.
Working
model mean(p) 52 Vara () Var(p) AWa  AWcp  ASa AScp La Lcp Wa Wep Sa Scp
N =450
1.0 1.0067 0.0681  0.0342 0.0566  0.0261 0.0302  0.0017
ry= . . . . . . .1763 .8273 X .
Hy:y (1.()) Normal |:l 0107i| |: 0-0674i| [ 0'0531] |: 0'0299i| 0.1123 0.8877 0.1090 0.8910 0.1723 0.8277 0.1763 0.827 0.1650 0.8350
0.9903 0.0144  —0.0001 0.0133  0.0002 0.0099  —0.0003
.0877 912, .064 A 11 .881 .12 R 1167 X
Gamma |:0 9946i| [ 00141 i| [ 0-0132] |: 0.0099 ] 0.08 0.9123  0.0640 0.9360 0.1190 0.8810 0.1200 0.8800 0.1167 0.8833
0.4 0.3974 .0221  0.0061 0.0209  0.0058 L0132 0.0005
Hp:y= <1.0> Normal [1 0059:| |: 0.0247:| [ 0.0225] |: 0.0160:| 0.9753 09027 0.9690 0.9103 0.9767 0.8677 0.9783 0.8650 0.9737 0.8707
0.3953 0.0081  —0.0001 0.0076  0.0001 0.0066 —0.0001
Gamma |:0 9963i| [ 0.0090 i| [ 0.0085] |: 0.0068 ] 1.0000 0.9257 1.0000 0.9457 1.0000 0.9093 1.0000 0.9080 1.0000 0.908
0.7 0.7022 0.0637 0.0317 0.0553  0.0246 0.0283  0.0017
Hp:y= (1.3> Normal [1 3157:| |: 0.07851| [ 0.0605] |: 0.0350:| 0.6840 0.8790 0.6817 0.8853 0.7183 0.8220 0.7190 0.8197 0.7127 0.8287
0.6915 0.0131  —0.0001 0.0123  0.0002 0.0096  —0.0002
Gamma |:1 2931:| [ 0.0149 :| [ 0'0140] |: 0.0100 ] 0.9270 09137 0.9107 0.9337 0.9530 0.8760 0.9557 0.8750 0.9497 0.8760
N =900
1.0 1.0094 0.0289  0.0139 0.0269  0.0131 0.0152  0.0009
Hy:y= (1‘()) Normal [1.0093:| |: 0102711| [ 0.0268] |: 0'0152:| 0.0910 0.9090 0.0897 0.9103 0.1533 0.8467 0.1560 0.8440 0.1507 0.8493
0.9997 0.0068  0.0000 0.0068  0.0001 0.0049  —0.0002
Gamma [0.9994i| |: 0-0065i| [ 0.0067] |: 0.0049 ] 0.0657 0.9343 0.0510 0.9490 0.1047 0.8953 0.1067 0.893 0.1037 0.8963
0.4 0.4030 0.0114  0.0032 0.0107  0.0032 0.0067  0.0002
Hp:y= (LO) Normal [1.0058i| |: 0011 1:| [ 0.01 12] |: 0-0081i| 0.9983  0.9230 0.9967 0.9247 0.9980 0.8730 0.9987 0.8723 0.9980 0.8760
0.3998 0.0038  0.0000 0.0038  0.0032 0.0033  —0.0001
Gamma |:0.9998:| |: 0‘0041:| [ 0.0043] |: 0.0034 ] 1.0000 0.9443 1.0000 0.9500 1.0000 0.9217 1.0000 0.9223 1.0000 0.9223
0.7 0.7081 0.0289  0.0129 0.0269  0.0125 0.0146  0.0009
Hp:y= (1'3> Normal [].3132i| |: 0'0302i| [ 0'030]] |: 0‘0177i| 09177 09047 09190 0.9060 09187 0.8457 0.9150 0.8447 0.9183 0.8500
0.6998 0.0063  0.0000 0.0063  0.0001 0.0048  —0.0002
Gamma [1-2995:| |: 010071:| [ 0-0072] |: 0.0049 ] 0.9983 0.9313 0.9973 0.9497 0.9987 0.8933 0.9990 0.8917 0.9987 0.8910
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Table 2. Continued

Working
model  mean(p) §? Vara (P) Var(p) AWa  AWcp ASa  AScp La Lcp Wa Wep Sa Scp
N = 1350
Hy:y= (ig) Normal [igglg} |:0‘Ol70 88(1)5;} [0'0]69 gg?sl} |:0'0099 88(1)8(5)} 0.0903 0.9097 0.0897 0.9103 0.1560 0.8440 0.1563 0.8437 0.1513 0.8487
Gamma |:(l)(9)3(8)§i| |:0'0045 ggggi} [0'0045 ggggé} [0'0033 _000(())(;21] 0.0610  0.9390 0.0500 0.9500 0.1183 0.8817 0.1167 0.8833 0.1157 0.8843
Hy:y= (?g Normal [?(3)322} [0'0070 ggg?g} |:0'0070 ggggg] |:0'0044 882(5);} 1.0000 0.9313 1.0000 0.9340 1.0000 0.8737 1.0000 0.8727 1.0000 0.8743
Gamma [?3332} |:0'0025 ggggé} [0'0026 gggg;} |:0'0022 ggggg} 1.0000 0.9460 1.0000 0.9530 1.0000 0.9107 1.0000 09113 1.0000 0.9103
Hy:y= (?; Normal [?;8(7),17} [0'0172 88?;2} [0'0172 83?;;] |:0'0095 gg??z} 0.9850 0.9123 0.9870 0.9160 0.9880 0.8430 0.9863 0.8400 0.9877 0.8450
Gamma [?23(8)2} |:0'0042 gggg;} [0'0042 ggggé:l [0'0032 _000(())2(;1] 0.9997 0.9417 0.9997 0.9497 1.0000 0.8907 1.0000 0.8917 1.0000 0.8897

098

nosy '§-I puv uaryy "n-"1



Downloaded by [National Chiao Tung University ] at 18:45 24 December 2014

Table 3. Model 3: u; = 11[-2,1' =1,2,...,N.
Working
model  mean(y) s2 Vara () Var(p) AWa  AWcp  ASa AScp La Lcp Wa Wcep Sa Scp
N =450
1.0 1.0023 0.0242  0.0040 0.0237  0.0038 0.0203  0.0009
Hy:y= (1'()) Normal [0.9991:| [ 0'0232] [ 0.0236] |: 0.0203] 0.0573 0.9427 0.0527 0.9473 0.0793 0.9207 0.0810 0.9190 0.0777 0.9223
1.0020 0.0162  —0.0001 0.0163  —0.0003 0.0191  —0.0008
.04 1951 .03 .9623 .02 . .02 .973 .02! .
Gamma |:0.9989:| |: 0.0163j| |: 0.0164j| [ 0'0192:| 0.0487 09513 0.0377 0.96 0.0270 0.9730 0.0263 0.9737 0.0293 0.9707
0.4 0.3966 0.0180  0.0015 0.0181 0.0014 0.0154  0.0004
Hp:y= (1'0) Normal |:0.9971i| [ 0.0183] [ 0.0178] [ 0.0166] 0.9833 0.9460 0.9813 0.9490 0.9877 0.9310 0.9880 0.9307 0.9873 0.9343
0.3977 0.0129  —0.0004 0.0133  —0.0002 0.0155  —0.0003
Gamma |:0.9968:| |: 0.0137 :| |: 0.0134 i| [ 00162 i| 0.9980 0.9370 0.9960 0.9550 0.9967 0.9697 0.9967 0.9690 0.9967 0.9680
0.7 0.7001 0.0244  0.0041 0.0243  0.0034 0.0199  0.0008
Hy:y= (1-3> Normal |:1‘300()i| [ 0.0256] [ 0-0242] |: 0‘0215] 0.7823 0.9383 0.7750 0.9413 0.7927 09187 0.7927 09163 0.7887 0.9217
0.7001 0.0158  —0.0004 0.0161  —0.0003 0.0187  —0.0007
Gamma |:1.2998:| |: 0.0170 :| |: 0.0164 :| [ 0.0195 :| 0.8360 0.9413 0.8287 0.9593 0.7793 0.9757 0.7850 0.9740 0.7723 0.9730
N =900
1.0 1.0004 0.0128  0.0019 0.0121  0.0020 0.0102  0.0004
Hy:y= (1-()) Normal |:1.00101| [ 001 17] [ 001 17] [ 0‘0101] 0.0567 0.9433 0.0553 0.9447 0.0743 0.9257 0.0757 0.9243 0.0723 0.9277
1.0003 0.0087  —0.0003 0.0083  —0.0002 0.0096  —0.0005
. .9373 . . . .963 . . . A
Gamma [1.0023:| |: 0.0082 :| |: 0.0082 i| [ 0.0095 i| 0.0627 0.937 0.0503 0.9497 0.0367 0.9633 0.0380 0.9620 0.0350 0.9650
0.4 0.4011 0.0095  0.0008 0.0092  0.0008 0.0077  0.0002
Hp :y= 1 1. .94 1. .94 1. 931 1. 1931 1. .
ALY (1.0) Normal |:1'0015:| [ 0.0089] [ 0.0088] [ 0.0()82] 0000 0.9477 0000 0.9480 0000 0.9313 0000 0.9317 0000 0.9337
0.4029 0.0069  —0.0002 0.0067  —0.0001 0.0077  —0.0002
Gamma |:1.00221| |: 0.0069 i| |: 0.0067 i| [ 0.0080 :| 1.0000 0.9383 1.0000 0.9513 1.0000 0.9717 1.0000 0.9703 1.0000 0.9697
0.7 0.7019 0.0130  0.0017 0.0125  0.0019 0.0100  0.0004
Yy = A A . . 9783 . . . . A
Hy:y (1'3> Normal [1.3034:| [ 0.01 15] [ 0'0120] [ 0.0107:| 0.9743 0.9450 0.9747 0.9487 0.978 0.9207 0.9780 0.9227 0.9780 0.9247
0.7015 0.0081  0.0000 0.0082  —0.0002 0.0093  —0.0005
.9897 .94 991 . . .967 .987 .9647 X .
Gamma [1‘3033:| [ 0.0082] |: 0.0082 :| [ 0.0096 :| 0.989 0.9433  0.9910 0.9503 0.9863 0.9673 0.9870 0.96 0.9853  0.9683
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Table 3. Continued

Working
model mean(p) s2 Vara () Var(p) AWa  AWcp  ASa AScp La Lcp Wa Wcep Sa Scp
N = 1350
Hy:y= (18) Normal I}ggi(ﬂ [0'0082 888;(3)} [0'0080 888;(3)] [0'0068 8882;] 0.0627 0.9373 0.0603 0.9397 0.0860 0.9140 0.0860 0.9140 0.0857 0.9143
Gamma [(1)8(9)(9);} [0'0058 _000(())(;(3‘1} |:O'0055 _000(())(;(;1} |:0'0064 _000(2)%23} 0.0580 0.9420 0.0507 0.9493 0.0307 0.9693 0.0340 0.9660 0.0303 0.9697
Hp:y= (?g) Normal I:(l)ggééll} |:0'006l 8882’55] [0'0061 ggggg] I:O'OOS] gggg;] 1.0000 0.9423 1.0000 0.9427 1.0000 0.9243 1.0000 0.9243 1.0000 0.9253
Gamma [(1)3832} [0'0046 8882(7)] [0'0045 7000(())3(;1} |:0'005 ! 7000(())(;(11} 1.0000 0.9380 1.0000 0.9447 1.0000 0.9660 1.0000 0.9650 1.0000 0.9643
Hp:y= (?;) Normal [(1);8(1)2} [0‘0085 gggg?:l |:O~0082 gggéi] |:O~0066 888(7)3] 0.9960 0.9453 0.9957 0.9473 0.9950 0.9157 0.9950 0.9150 0.9947 0.9187
Gamma I:(])Zg?z} |:0'0056 _000(())(;(;2} |:0'0055 _000(())(;(;1} |:0'0062 _000(())(6))(‘]13} 0.9990 0.9480 0.9993 0.9513 0.9983 0.9707 0.9987 0.9687 0.9987 0.9710
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by Var() and the average of the adjusted covariance matrix estimate of y, namely Zfléﬁ’l /N,
denoted by Var, () are also included. Note that because with large samples the adjusted Wald
and score statistics under the normal and gamma working models are free of o> and r, the non-
regression parameters o> and  in the RNR and RGR models are treated known, a priori, as the
same arbitrarily chosen value of 1, respectively.

From Tables 1-3, it is evident that the adjusting matrices successfully correct the normal and
gamma working models and make them robust. As can be seen from Tables 1-3, the averages of
the adjusted covariance matrix estimates, Var (), are nearly equivalent to the sample covariance
matrix of p, S 2 whereas the averages of the unadjusted covariance matrix estimates, Var(p), are
different from S2.

It is also observed that when the simulated data sets are generated under the null hypothesis
H), the adjusted Wald and score statistics are more effective than the test statistics O, Qw and Qs
in providing the correct type I error probabilities. As can be seen from Tables 1-3, when the data
are generated from H), the values of AW« and AS« are more close to the nominal significance
level 0.05, in contrast with the values of Lo, Wa and Sc.

On the other hand, itis noted that when the simulated data sets are generated under the alternative
hypothesis Hy, the adjusted Wald and score statistics not only rightly reject the null hypothesis Hy
but also provide the right confidence region. As can be seen from Tables 1-3, when the data are
generated from Hp, the values of AW« and AS«a gradually approach the value of 1 and the values
of AWcp and AScp inchmeal approximate to the nominal confidence level 0.95, as the sample
size N increases. On the contrary, the test statistics Qr, Qw and Qs, under Hu, only succeed in
rejecting Hy, but they do not provide the exactly correct confidence region. For example, in the case
of Model 2 with the sample size N = 1350 and the alternative hypothesis Hy : ' = (0.7, 1.3),
respectively, the values of Lcp, Wep and Scp under the gamma working model, 0.8907, 0.8917,
and 0.8897, are far from the nominal confidence level 0.95, in comparison with the values of
AWcp and AScp under the gamma working model, 0.9417 and 0.9497.

Obviously, from the results of Tables 1-3, it is enough to verify that the adjusted Wald and
score statistics based on the normal and gamma working models furnish a foundation for valid
inferences for the regression parameters of interest, even though the true underlying distributions
are not from these two working models. Despite the fact that the RNR and RGR models remain
the robustness property in misspecified models, some finite sample differences are revealed in the
numerical performances.

The results in Tables 1-3 apparently display that the adjusted covariance matrix estimates,
Var(p), under the gamma working model are smaller than that under the normal working model.
This explicitly means that in terms of the hypothesis testing, the RGR model is more powerful
than the RNR model for non-negative continuous data.

5. Concluding remarks

We propose the parametric robust regression methods in the GLM setting. The proposed meth-
ods can provide the valid inferences about the regression parameters of interest under model
misspecification.

The adjusting matrices for the normal and gamma working models are submitted here. They
successfully adjust these two working models into robust models, whatever the true underlying
distributions are, as long as their second moments exist. The two adjusted models, namely the RNR
and RGR models, warrant the asymptotically legitimate inferences under model misspecification.
Simulation studies illustrate that the RGR model is more efficient for more general non-negative
continuous random variables.
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One of the many attractive features of our proposed methods is that with large samples, the
effect of o of the normal model and the effect of r of the gamma model are entirely purged
by their respective adjustments. Hence, although the non-regression parameters o> and r are
artificially given positive values, the asymptotic validity of the RNR and RGR models are always
obtained.

Finally, we noted that the above discussion was centred on the case of all continuous random
variables. For robust inferences for count data, we refer the interested readers to [21].
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Appendix

Here some details regarding the quantities required to calculate the adjusting matrices A, and B, of A,B;; 14, that correct
the normal regression model are provided.

To facilitate calculation of the adjusting matrices, let B =B1,B2....Bw) = (Yp—1>¥p=2,- - - » Yp—w) be the w-vector of
parameters of interest and let ¢ be the (p — w + 1)-dimensional nuisance parameters with the non-regression parameter
o2 and the (p — w) regression coefficients (yp, 1. .., ¥p—w—1). Under the normal working model, Igg and I}, are
approximately equal to the w x w matrix

N N
Z:I (M;,o)zx,'z,p_] ce Zl (M;,o)zxi,p—lxi,p—w
= =
1
No? :
0 y 2 y 2,2
’ /
2 (MLO) Xi,p—wXip—1 se- Z[ (,u,',()) xi,pfw
1= =
and the w x (p — w + 1) matrix
[ N /N2 Y /)2 i
0 Z (IL,'AV()) Xip—1Xi,0 ce Z (Ili,()) Xip—1Xip—w—1
i=1 i=1
N N
1 0 Z (ﬂ;,o)zxi,p—le,O (H;qo)zxi,p—in,p—w—l
i=1 i=1
~ 3 B
Nog
X Y Y /2
0 Z (Ili’()) Xi,p—wXi,0 (l‘v,‘,o) Xip—wXip—w—1
i=1 i=1 .
respectively. I, is asymptotically expressed by
Cipo! 0 . 0 7
y 2.2 y 2
!’ !’
0 Zl (Nfi,o) Xio ce Zl (.ui,()) Xi,0Xip—w—1
= =
1
Noy
N 2 N 2.2
0 Z (ﬂ;yo) Xip—w—1Xi0 .- Z (ﬂ;yo) Xip—w—1
i=1 i=1

where igy1 = —0021(,2(,2.
For simplicity of notation, let A, be the (p —w) x (p — w) matrix with the jth row as (Z?]:l (;L;’O)in‘j,lxivo, .
Z?’Zl (/Jv;'())zxij—lxi,p—w—l) forj=1,2,...,p — w. Then, I}y is approximately written in the form

I ~ 1 i¢¢l 0
" NGZ | 0 A

where 0 is a (p — w)-vector and consists of only zeros. Its inverse I;(; 0 is approximately given by

Al 0
ippl e
. N(TOZ 0 Rl,l Rpfw,l
hee | Ayl . . . . ’
0 Rl,pfw cee Rpfw,pfw

where Ry, = (—1)”’”|M(lm)(An)| is the (I,m)th cofactor of A,,.
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Similarly, Vg8, Vige and Vg, are approximately equal to

r N N
2 Van (Y (u DX x Vary (Y) (14 9) i p—1Xip—w
= =
1
Nogy ’
ul 2 y 2 2
Z Varh(Yi)(N;’()) Xip—wXip—1 .- Z Varh(Yi)(ﬂ, 0)°X ip—w
Li=1 i=1
B N ) N ) T
0 X% Vary (Yi) (1] ) Xip—1Xi0 - 21 Var, () (1} 0) "% p—1Xi p—w—1
= =
y 2 ul 2
1 0 Z Varh(Yi)(l‘v;"()) Xip—2Xi,0 cee Z Varh(Yi)(lL;‘()) Xip—2Xip—w—1
i=1 i=1
Naé
Y /N2 ul 2
0 Z Varh(y[)(//vi,o) Xip—wXi0 .- Z Varh(yi)(ll;,()) Xip—wXip—w—1
L i=1 i=1 .
and
Vopl Vazy e Vnzyp_w_] T
N
Vypo? Zl Vary, (Y;) (i 0)*7 - Zl Vary, (Y;) (1] 0)*%i.0% p-w—1
1 = =
- ,
Noy
Y 2 2
Vyp7“,7102 2:1 Vth(Yi)([l,:-’O) Xip—w—1Xi,0 cee Z Vth(Y )(/L, 0) tp w—1
- = i=1

respectively. Here vog1 = a5 Exlly2 (Bo, 90)l52 (Bos @) and vy2, = v, ;2 = 03 Enlly2 (Bo, 90)ly; (Bos 90)1.j = 0. 1,... .,
p—w—1
According to Equation (1), the (u, v) entries of A, are derived as follows:

—1 —1 —1 —1
Ay = Inpupy — Inpugl hwl nopy — Inpyol hwlh«lﬁu + gl thhWI h(p(plh‘ﬂlgu

p—w

1
_Nl—>c>oN 2 Z(M,O) Nip—utip=y = T4 |Z(“10) Xip— \’lew 1 Anja
J
p—w
Xip— ulej I‘Anj(v)‘
re K <
p—w p—w
|A |2 Z(ﬂ,o) ZXU llAﬂj(V)l in‘jfllAnj(u)l
J=1
p—w p—w
| A | [Anjw|
= Jim 72(#,0) Xipu— ) x| X = Y i ]
14, Z 4]

where | Ayl = Y0t Rim Y0y (1) Xim—1Xip—)-
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According to Equation (2), the (u, v) entries of B,, are derived as follows:

—1 —1 —1 —1
Buwy) = Vapupy — Inpupl hwvhwﬂu = Viuol, h¢¢I nopy + Inpuol hWVhWI hwl heopy

N p—w

1
= lim Vary, (Y; Xip—uXi — Vary, (Y; Hxipoy Y xijo1]Ay
Nosoo NO’ Z /l( )(M,()) L,p—uXip—v |A | Z h( )(ﬂ,()) Lp 1; ij l| n_/(u)l

p—w

\A | 4 ZVth(Y)(M,O) xi,pfuzxi,jfllAnj(v)l
n

j=1

p—w
+ |2 ZVam(Y)(u,O) wa HAwl | | D xij- 1A
j=1

j=1

p—w
|Anj(u)| ‘Anj(v)‘
= lim — Vary, (Y; Xip—u — Xjj— Xip—v — X;
N~>00N Z h( )(/41()) ip—u ; |An| ij—1 i,p—v ; |An| ij—1

The adjusting matrices A, and B, of the gamma working model are derived in the analogous way.
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