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In this paper, we study a two-dimensional piecewise smooth map arising in ecology.
Such map, containing two parameters d and β, is derived from a model describing
how masting of a mature forest happens and synchronizes. Here d is the energy
depletion quantity and β is the coupling strength. Our main results are the following.
First, we obtain a “weak” Sharkovskii ordering for the map on its nondiagonal
invariant region for a certain set of parameters. In particular, we show that its
Sharkovskii ordering is the natural number (resp., the positive even number) for
β > 1 (resp., 0 < β < 1). Second, we obtain a region of parameter space for which
its corresponding global dynamics can be completely characterized.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Many dynamical systems contain terms that are non-smooth functions of their arguments. Important
examples are electrical circuits having switches, mechanical devices in which components make impact
on each other, problems with friction, sliding or squealing [4]. Even one-dimensional piecewise-smooth
maps are known to have surprisingly rich dynamics, including periodic orbits with high period and the
period-adding bifurcations [9,10]. In this paper, we are to investigate a certain properties and the global
dynamics of a piecewise-smooth map arising in ecology. Specifically, we are concerned with a two dimensional
piecewise-smooth map Fd,β with two positive parameters d and β of the form:

Fd,β(x, y) =
(
x + 1 −

(
d[y]β+ + 1

)
[x]+, y + 1 −

(
d[x]β+ + 1

)
[y]+

)
=:

(
F1(x, y), F2(x, y)

)
,

where 1 − d � x, y � 1, d, β > 0, and [x]+ = x if x � 0; [x]+ = 0 if x < 0. (1.1)
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We then define its associated lower dimensional map fd,β to be of the form:

fd,β(x) =
{
x + 1 =: f1(x), if x � 0,
−dxβ+1 + 1 =: gd,β(x), if x > 0.

(1.2)

It should be remarked that the diagonal set S, S = {(x, y): x = y, 1 − d � x, y � 1}, is invariant under the
map Fd,β . In fact, fd,β(x) is obtained from Fd,β by restricting its dynamics on S. Hence, we shall call fd,β
the synchronous map of the system. Let Id = [1 − d, 1] and Dd = Id × Id. Then all initial iterates of fd,β
and Fd,β enter the invariant region Id and Dd, respectively, at finite time. We shall, henceforth, treat the
domains of fd,β and Fd,β to be Id and Dd, respectively. The ecological meaning of the parameters d and β

are to be explained in Section 2.

2. Forest model

To give some ideas as what model gives rise to (1.1) and (1.2), we shall begin with a brief introduction of
the coupled trees model considered by Isagi et al. [5], and Satake and Iwasa [11]. Let Y (k) be the amount of
normalized energy reserve at the beginning of year k. Here Y (k) is normalized in a way that 0 is the critical
energy level for a tree to reproduce and that its energy level lies in between 1 and −d + 1, where d is the
depletion coefficient. Due to the photosynthesis, each tree will gain a normalized mount of energy each year.
Moreover, if the energy level of the tree is below critical at the year k, then all its energy is preserved to the
following year. On the other hand, if its energy exceeds the critical level, then it will set flower and grow
seeds. As a result, its energy is decreased after a reproductive year. The quantity d is a measurement to such
energy depletion. Consequently, the motion of its energy reserve yearly for an individual tree reads as follows.

Y (k + 1) =
{
Y (k) + 1 if Y (k) � 0,
−dY (k) + 1 if Y (k) > 0.

(2.1)

If the resource depletion by fruit production is heavy, meaning a larger d, the reproductive activities tend
to fluctuate between years with a large variance. In a mature forest, fruiting efficiency may depend on the
flowering activity of the other trees in a forest. This is because the pollination efficiency changes with the
number of plants flowering in a population. To model the pollen limitation of the reproduction, d in (2.1)
is replaced by dPi(k), where Pi(k) is a factor smaller than or equal to 1, and indicates outcross pollen
availability for the i-th tree. Then the normalized energy reserve of the i-th tree at year k + 1 is

Yi(k + 1) =
{
Yi(k) + 1 if Yi(k) � 0,
−dPi(k)Yi(k) + 1 if Yi(k) > 0,

(2.2a)

where

Pi(k) =
(

1
n− 1

n∑
j=1
j �=i

[
Yj(k)

]
+

)β

. (2.2b)

Here n is the total number of trees in the forest and β is the coupling strength, which measures the efficiency
of the spread of outcross pollen produced by other flowering activities. In fact, the rate of setting seeds
and fruits is limited by its pollen availability, which depends on the coupling strength β. The coupling
strength β determines the shape of the outcross pollen availability function Pi(k) and controls the degree
of dependence of fruit production on Pi(k). If β is chosen to be closed to zero, then the fruit production is
almost independent of the reproductive activities of the other trees in a forest. Small β means that a small
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fraction of flowering is sufficient to achieve good fruiting success. This, in turn, indicates that the forest
has either a high pollination efficiency or a high density of trees. On the other hand, a large β indicates
a strong dependence of seed and fruit production on the reproductive activities of the other trees in the
forest. Note that Pi(k) = 1 only if the other trees reproduce at full intensity. Model (2.2a), (2.2b) is a
system of coupled map lattices. The dynamics of the model in (2.2a) and (2.2b) with n = 2 is depicted by
the map defined in (1.1). Coupled map lattices are models for studying fundamental questions in spatially
extended dynamical systems. They exhibit very rich phenomena (see e.g. [1,6–8] and the work cited therein),
including a wide variety of both spatial and temporal periodic structure, intermittence, chaos as well as
synchronization. The purpose of this work is to investigate a certain properties and the global dynamics
of Fd,β . We obtain the following results. First, we derive a “weak” Sharkovskii ordering for the map on its
nondiagonal invariant region. In particular, we show that on such region, its weak version of the Sharkovskii
ordering is the natural number (resp., the positive even number) for β > 1 (resp., 0 < β < 1). Second, we
prove that if d|β−1| < 1, then all initial states of Fd,β converge to the diagonal. We further prove the above
mentioned assertion also holds true for d � 1 and β > 0.

3. Weak Sharkovskii ordering

It is well-known that for a continuous one dimensional map f , the ordering of the periods of its periodic
points follows the so called “Sharkovskii” order (see e.g., [3]). In this section, we shall investigate a weak
version of the “Sharkovskii” order for the two dimensional map Fd,β on its nondiagonal region Dd − S. To
this end, we first set up the following notations. Let Dd = R1 ∪R2 ∪R3 ∪R4, where the subscript k means
that the corresponding region Rk is in the k-th quadrant. All the regions Rk, k = 1, 2, 3, 4, are closed.
Hence, they are not disjoint. We further divide R1 into four closed regions i1,0, i2,0, i3,0 and i4,0 so that
Fd,β(ik,0) =: ik,1 ⊂ Rk. Clearly, those regions ik,0, k = 1, 2, 3, 4, are separated by two boundary curves γ1
and γ2. Here

γ1: −dyβx + 1 = 0 and γ2: −dxβy + 1 = 0. (3.1)

For β = 1, γ1 = γ2, and, hence, i2,0 ∪ i4,0 = γ1 ∪ γ2. For β > 1 and 0 < β < 1, the corresponding i4,0 lie
below and above the diagonal, respectively, as illustrated in Fig. 3.1. Let

�θ,0 be the line segments in Dd passing through the point (1, 1) =: B with slope tan θ. (3.2)

Define

00 :=
(
1, (1/d)1/β

)
=: (0̄0, 0̃0) (3.3a)

and

0n := (0̄n, 0̃n) := Fd,β(0n−1). (3.3b)

Proposition 3.1. Let

h1(x, y) =
{

(xβy − yβx)/(x− y), y �= x,

(β − 1)yβ , y = x,
(3.4a)

and for 1 < β < 2, we set

h1(x, y) = 1/d, (3.4b)
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Fig. 3.1. (a) β = 3
2 , d = 1.8, (b) β = 0.5, d = 1.8. The regions ik,0, k = 1, 2, 3, 4, for β > 1 and 0 < β < 1 are illustrated in (a)

and (b), respectively.

and for 0 < β < 1, we let

h1(x, y) = −1/d. (3.4c)

Then Eq. (3.4b) (resp., (3.4c)) defines a curve y = h2(x) near (x, y) = (xs, xs), where

xs =
(
1/

(
d(β − 1)

))1/β (
resp.,

(
1/

(
d(1 − β)

))1/β)
. (3.4d)

Moreover, h′
2(x) < 0 and h′′

2(x) > 0. In particular, h2(x) is tangent to the straight line x + y = 2xs

at (xs, xs).

Proof. Consider the case that 1 < β < 2. Let g(x, y) = h1(x, y) − 1/d. Then

gx(x, y) =

⎧⎨
⎩

(β−1)xβy−βxβ−1y2+yβ+1

(x−y)2 := ā(x,y)
(x−y)2 , x �= y,

β(β−1)
2 · xβ−1

s , x = y = xs,

and

gy(x, y) =

⎧⎨
⎩

xβ+1−βyβ−1x2+(β−1)yβx
(x−y)2 := b̄(x,y)

(x−y)2 , x �= y,

β(β−1)
2 · xβ−1

s , x = y = xs.

For β �= 1, we have, via the Implicit Function Theorem, that Eq. (3.4b) defines a curve y = h2(x) with
h′

2(xs) = −gx/gy|x=xs,y=ys
= −1. To compute the second derivative of h2, we need the second derivatives

of g. After some laborious calculations, we have that

gxx(x, y) =

⎧⎨
⎩

(β−1)(β−2)xβy−2β(β−2)xβ−1y2−2yβ+1+β(β−1)xβ−2y3

(x−y)3 := c̄(x,y)
(x−y)3 , x �= y,

β(β−1)(β−2)
3 · (xs)β−2, x = y = xs,

gyy(x, y) =

⎧⎨
⎩

−β(β−1)yβ−2x3+2β(β−2)yβ−1x2−(β−1)(β−2)yβx+2xβ+1

(x−y)3 := d̄(x,y)
(x−y)3 , x �= y,

β(β−1)(β−2)
3 · (xs)β−2, x = y = xs,

and

gyx = gxy =

⎧⎨
⎩

(β−1)xβ+1−(β+1)xβy+(β+1)yβx−(β−1)yβ+1

(x−y)3 := ē(x,y)
(x−y)3 , x �= y,

β(β−1)(β+1) · xβ−2, x = y = x .
6 s s
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Note that h′′
2(xs) satisfies the following equation

gxx + gxyh
′
2 +

(
gyx + gyyh

′
2
)
h′

2 + gyh
′′
2 = 0.

Hence,

h′′
2(x) =

(
2gxgygxy − g2

ygxx − g2
xgyy

)
/g3

y.

To complete the assertions of the proposition, we need to know the signs of ā, b̄, c̄, d̄ and ē. To this end, we
compute partial derivatives of them. The resulting calculations are displayed in the following

āx = β(β − 1)xβ−2y(x− y),
b̄y = β(β − 1)xyβ−2(y − x),
c̄x = β(β − 1)(β − 2)xβ−3y(x− y)2,
d̄y = −β(β − 1)(β − 2)xyβ−3(x− y)2,
ēx = (β − 1)(β + 1)xβ − β(β + 1)xβ−1y + (β + 1)yβ ,

and ēxx = β(β − 1)(β + 1)xβ−1(x− y).

From āx and b̄y, we conclude that ā and b̄ have a unique absolute minimum at x = y. Consequently, gx(x, y)
and gy(x, y) are positive for all x and y. Since c̄x � 0 and c̄(x, x) = 0, we have that c̄(x, y) > 0 if x < y and
c̄(x, y) < 0 if x � y. Consequently, gxx(x, y) < 0 for all x and y. Similarly, gyy(x, y) < 0. Since ēxx < 0 if
x < y and ēxx > 0 if x > y, ēx has a unique absolute minimum at x = y. Therefore, ēx(x, y) � ēx(x, x) = 0
and so, ē(x, y) < 0 if x < y and ē(x, y) > 0 if x > y. This implies gxy > 0 for all x, y. Combining the above
calculations, we have that h′′

2(x) > 0 for all x in its domain. �
Lemma 3.1. Assume that

d|β − 1| > 1 (3.5)

Then each of Eqs. (3.4b) and (3.4c) with x = 1 has exactly one solution ȳ for which 0 < ȳ < 1.

Proof. We shall only illustrate the case for Eq. (3.4b). The solution to this case can be formulated as the
intersection of two functions f1(y) and f2(y), where f1(y) = dyβ and f2(y) = (d + 1)y − 1. Using the facts
that f1(1) = f2(1), f ′

1(1) > f ′
2(1) and f ′′

1 (y) > 0 on (0, 1), we conclude that the assertion of the lemma holds
as claimed. �
Proposition 3.2. (i) Let β � 1 and 1 < d � 2. Then 0̃2 > 0̃0 if and only if

(1 + d)β < 2βd or, equivalently, β <
ln d

ln(1 + d) − ln 2 =: Γ1(d). (3.6)

Moreover, Γ1(d) is strictly decreasing on d ∈ (1,∞), limd→1+ Γ1(d) = 2 and limd→∞ Γ1(d) = 1.
(ii) Let An be the set of period n points of Fd,β. Suppose (3.6) is satisfied and

(A2 ∩ i3,0) − S = ∅. (3.7)

Define Γ2(β, k) = ββ

(k+1)β(β−1)β+1 . Then

d � Γ2(β, 1). (3.8)
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(iii) If (3.6) and (3.7) are satisfied, then Fd,β does not have a fixed point in (i1,0 − S).
(iv) Let (3.5) be satisfied and d > Γ2(β, 0). Then Fd,β has a fixed point on (i1,0 − S).

Proof. Note that 0̃2 > 0̃0 if and only if (1 + d) < 2d
1
β , or equivalently, β < Γ1(d). To see Γ1(d) is

decreasing in d, we note that Γ ′
1(d) < 0 provided that Γ3(d) := (d + 1)[ln(d + 1) − ln(2)] − d ln d < 0.

Now, Γ ′
3(d) = ln(d+1

2d ) < 0. Thus Γ3(d) < Γ3(1) = 0. Hence, Γ1(d) is a decreasing function of d. The
remaining assertions for (i) are obvious, and, thus, omitted.

Let (x, y) ∈ A2 ∩ i3,0. Then (x, y) satisfies the following equations with m = 2.

−dxyβ + m = x,

−dxβy + m = y. (3.9)

Consequently, x satisfies the equation h3(x) = h4(x) where h3(x) = x
2−x and h4(x) = 1

d(1+dxβ

2 )β . Both
functions are increasing and concave upward. For 1 < d � 2, one can show that fd,β exists a unique period
two point p > 0 and fd,β(p) < 0. Note that such p satisfies the equation −dxβ+1 + 2 = x and that (3.6)
implies that h4(1) < h3(1). Since these two functions h3(x) and h4(x) only intersect at p, we must have that

2
(2 − p)2 = h′

3(p) � h′
4(p) = β2

2β
(
p + dpβ+1)β−1 = β22β−1

2β = β2

2 . (3.10)

Otherwise, h3(x) and h4(x) also intersect at a point x∗ with p < x∗ < 1. Moreover, the corresponding solu-
tion y∗ to (3.9) is 2

1+d(x∗)β , which is less than 1, a contradiction to (3.7). To have the inequality in (3.10) held,
we must have that p ∈ [2− 2

β , 1). Since −dxβ+1+2 =: h5(x) is a decreasing function, to ensure p ∈ [2− 2
β , 1),

h5(2− 2
β ) must stay on or above the diagonal. Hence, −d(2− 2

β )β+1 +2 � 2− 2
β , or equivalently, (3.8) holds.

We next turn our attention to the proof of the third assertion of the proposition. Using (3.9), we have
that

d
(
xyβ − xβy

)
= y − x, 0 � x � 1. (3.11a)

Clearly, the graph of (3.11a) is the union of diagonal segment y = x, 0 � x � 1 and a curve defined by
Eq. (3.4b). The solutions to Eq. (3.9) are determined by the intersection of curves (3.11a) and the curve

y = 2
1 + dxβ

=: h6(x). (3.11b)

Since h6(0) = 2 and h6(1) = 2
1+d < 1, h6(x) intersects y = x, 0 � x � 1, exactly at one point. It then

follows from (3.7) that the curve decided by (3.4b) must completely lie above or below the curve described
by y = h6(x). To see which one is the case, we first compute the intersection of the diagonal and the
curve y = h2(x) as defined in Proposition 3.1. Some direct calculations yield that the x-coordinate of such
intersection is

xs =
(

1
d(β − 1)

) 1
β

, (3.11c)

and that

h6(xs) − xs � 0. (3.11d)

Note that (3.11d) is equivalent to (3.8). Consequently, the curve 1 = dh1(x, y) lies completely above or on
the curve y = h6(x). The fixed point of Fd,β in i1,0 satisfies (3.9) with m = 1. Finding the solutions in
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the above equations is equivalent to solving equations (3.4b) and y = 1
1+dxβ =: h7(x). However, the curve

y = h7(x) lies completely below h6(x). The assertion of the proposition (iii) now follows.
To conclude the proof of the proposition, we first note that h1(1, h7(1)) < 1

d for 0 < y < 1. Consequently,
h7(1) < ȳ. Here ȳ is the unique solution of

h1(1, y) = 1
d

(3.12)

The existence and uniqueness of ȳ have been proved in Lemma 3.1. The assumption that d > Γ2(β, 0) yields
h7(xs) − xs > 0. This in turn implies that the intersection of h7(x) and the diagonal y = x is above the
point (xs, xs). The assertion of proposition-(iv) now follows. �
Proposition 3.3. Assume that β > 1, d > 2 and that (3.5) is satisfied. Let [d] be the least integer that is equal
to or greater than d. Let n = [d]. Suppose, for k = 0, 1, . . . , n − 2, let the parameters d and β satisfy (3.5)
and the following inequalities.

β <
ln(d) − ln(k)

ln(1 + d) − ln(k + 1) (3.13)

and

d > Γ2(β, k). (3.14)

Then Fd,β has a period k+ 1 point (x, y) with x �= y satisfying (3.9) with m = k+ 1. Furthermore, Fd,β has
a period � point satisfying (3.9) with m = �, where 1 � � < k + 1 on its nondiagonal region.

Proof. Following the same set up for proving Proposition 3.2-(iv), we have that the corresponding h7(x)
equals to k+1

1+dxβ and that (3.14) is equivalent to h7(xs)−xs > 0. Moreover, (3.13) is amount to the condition
that h7(1) < ȳ, where ȳ is defined as in Lemma 3.1. Consequently, the first assertion of the proposition
follows. Let 1 � � < k + 1. Consider the equation

−dxyβ + � = x,

−dxβy + � = y.

Since the corresponding h7(x) for the above equation has the property that h7(1) = �
1+d < k+1

1+d . Hence, the
above equation has a solution (x, y) with x �= y. �

For d > 1 and 0 < β < 1, the corresponding 00, the intersection of γ2 and �π
2 ,0 is

00 := (0̄0, 0̃0) := (1, 1/d).

Moreover, its corresponding 01 and 02 now locate above the diagonal, as shown in Fig. 3.1. To see the
above, we note that �π

2 ,1 = Fd,β(�π
2 ,0) = (−dtβ + 1,−dt + 1), 0 � t � 1. For 0 < β < 1, the x-coordinate

of �π
2 ,1 is less than or equal to its y-coordinate. Therefore �π

2 ,1 is above the diagonal. As a result, 01
whose y-coordinate is the zero is the image of 00 for which its y-coordinate has to be 1

d . As a result, the
corresponding condition (3.6) is

0̄2 > 0̃0, or, equivalently, β > 2 −
(
ln(2d− 1)

)
/ ln(d) := Γ3(d). (3.15)

We further note that the line �π
2 ,0 will keep flipping over the diagonal under the dynamics guided by Fd,β .

This observation leads to the following propositions.
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Proposition 3.4. Let 1 < d � 2 and 0 < β < 1. Then the following hold.

(i) Γ3(d) is strictly increasing in d ∈ (1,∞). Moreover, limd→1+ Γ3(d) = 0 and limd→∞ Γ3(d) = 1.
(ii) Let

d >
(2 − β)β

(1 − β)β+1 . (3.16)

If (3.5) and (3.16) hold, then Fd,β exists a period two point on (i1,0 − S).

Proof. To study Γ3(d), we compute its derivative. The resulting calculation yields that Γ ′
3(d) =

−2d ln d+(2d−1) ln(2d−1)
(ln d)2d(2d−1) =: Γ4(d)

(ln d)2d(2d−1) and Γ ′
4(d) = 2(ln(2d− 1) − ln d) � 0. Since Γ ′

4(1) � 0, Γ4(d) � 0 on
[1,∞). Consequently, Γ3(d) is strictly increasing on d ∈ (1,∞). Some direct calculations give that Γ3(1) = 0
and Γ3(∞) = 1. Due to symmetry of the map and the flipping natural of the map around the diagonal, we
consider a period two point (x, y) in i3,0 satisfying the following equation with m = 1.

−dxyβ + m = y,

−dxβy + m = x. (3.17)

Following the similar approach in proving Proposition 3.2-(iv), we get that the corresponding xs and h7(x)
have, respectively, the form xs = ( 1

d(1−β) )
1
β , and h7(x) = 1−x

dxβ . Moreover, Eq. (3.4b) becomes (3.4c). It is
clear that (3.16) is equivalent to h7(xs)−xs > 0. Since h7(1) = 0 < ȳ, where ȳ is the given as in Lemma 3.1
for the case that 0 < β < 1. Hence, there exists a period two point in i1,0 − S. �
Proposition 3.5. Assume that 0 < β < 1 and d > 2. Let (3.5) hold. Let n = [d]. Suppose, for k =
1, 2, . . . , n− 2, the following inequalities hold.

d >
(2 − β)β

kβ(1 − β)β+1 , (3.18)

and

β >
2 ln d− ln(dk − k + 1)

ln d− ln(k − 1) . (3.19)

Then Fd,β has a period 2k point with x �= y satisfying (3.17) with m = k. Furthermore, Fd,β has a period
2� point satisfying (3.17) with m = 2� for 1 � � < k + 1 on its nondiagonal region.

We note that assumptions (3.18) and (3.19) are, respectively, amount to h7(xs) > xs and h7(1) < ȳ. The
proof of the proposition is similar to that of Proposition 3.2 and is thus skipped.

Remark 3.1. Propositions 3.4-(ii) and 3.5 amount to saying that for a certain parameters a “weak Sharkovskii
ordering” of periodic points of Fd,β for each of the cases that β > 1 and 0 < β < 1 on its nondiagonal region
is, respectively, the natural numbers and positive even numbers. It should also be noted that such region of
parameters is nonempty.

4. Line-order preserving maps

The following concepts of monotonicity and line-order preserving play the important role of understanding
the global dynamics of Fd,β .
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Definition 4.1. Let D be a compact set in R
2. A smooth map F :D ⊂ R

2 → R
2 is said to be monotonically

preserving on D if γ is an increasing and smooth curve in D, then so is F (γ). The map is line-order preserving
on D if the following hold.

(i) There exists a set M = {�θ,0: a � θ � b, a, b ∈ R} of line segments such that D = M .
(ii) Let xθ,k ∈ D be the x-coordinate of the unique intersection of y = k and F (�θ,0). Then for any k, xθ,k

is strictly monotonic in θ.

Lemma 4.1. Let

K0 be the triangle whose vertices are (0, 0), (1, 0) and (1, 1) =: B. (4.1)

Then Fd,β is monotonicity and line-order preserving on D1 and K0, respectively.

Proof. Let γ be an increasing curve in D1. Without loss of generality, we assume that γ(t) = {(x(t),
y(t)): 0 � t � 1}. Let dx/dt and dy/dt have the same sign for all t. Since Fd,β(x(t), y(t)) = (F1(x(t), y(t)),
F2(x(t), y(t))) = (−d(y(t))βx(t) + 1,−d(x(t))βy(t) + 1), we have that

dF1/dt = −dβ
(
y(t)

)β−1(dy/dt)x(t) − d
(
y(t)

)β(dx/dt),

and

dF2/dt = −dβ
(
x(t)

)β−1(dx/dt)y(t) − d
(
x(t)

)β(dy/dt).

Hence, dF1/dt and dF2/dt have the same sign for all t. Consequently, Fd,β(γ) is also an increasing curve.
Thus, Fd,β is monotonicity preserving on D1.

To see Fd,β is line-order preserving on K0, we first note that K0 = {�θ,0: π/4 � θ � π/2}. Here �θ,0 are
defined in (3.2). The equations of �θ,0 are

x = 1 + cot θ(y − 1), 0 � y � 1. (4.2)

Treating y as a parameter t, then Fd,β(�θ,0) = (−dtβ(1+cot θ(t− 1))+1,−d(1+cot θ(t− 1))βt+1) =: �θ,1.
Here 0 � t � 1 and the second component k of the subscript of �θ,k is to be used as the iteration index
under Fd,β . Since Fd,β is monotonically preserving, �θ,1 is an increasing curve.

Let xθ,k be the unique intersection of the line y = k and �θ,1, as illustrated in Fig. 4.1. (4.3)

Clearly, xθ,k satisfies the following equations

xθ,k = −dtβ
(
1 + cot θ(t− 1)

)
+ 1, (4.4a)

and

k = −d
(
1 + cot θ(t− 1)

)β
t + 1. (4.4b)

Note that t is an implicit function of θ. Differentiating (4.4a) and (4.4b) with respect to θ, we have that

∂xθ,k/∂θ = −dtβ−1[(dt/dθ)(β + βt cot θ − β cot θ + t cot θ) −
(
csc2 θ

)
t(t− 1)

]
,
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Fig. 4.1. (a) and (b) give pictorial images of Aθ, B, C, �θ,0, �θ,1 and xθ,k. For β > 1 (resp., 0 < β < 1), �π/3,1 stays below (resp.,
above) the diagonal. For β = 1, �θ,1 coincides with the diagonal for all θ.

and

dt/dθ =
((
− csc2 θ

)
βt(1 − t)

)
/
(
βt cot θ + 1 + (t− 1) cot θ

)
.

Combining the above, we get that

∂xθ,k/∂θ = d
(
csc2 θ

)
tβ(1 − t)

(
β2 − 1

)
(1 + t cot θ − cot θ)/

(
βt cot θ + 1 + (t− 1) cot θ

)
,

which is nonnegative (resp., nonpositive) whenever β � 1 (resp., 0 < β � 1) for all t and θ, π/4 � θ � π/2.
Moreover,

for θ �= π/2, t �= 0, t �= 1 and β �= 1, ∂xθ,k/∂θ > 0 (resp., < 0) whenever β > 1 (resp., < 1). (4.5)

Note that for t = 0 or t = 1 or β = 1, xθ,k is either a point or does not exist for all θ, π/4 � θ � π/2.
Hence, xθ,k is strictly monotonic in θ for any k. �
Lemma 4.2. Let �θ,0, 0 � θ � π/2, be given as in (4.2). Let Aθ = (1− cot θ, 0) and C = (1− d, 1− d). Then
the following hold true.

(i) For all d, β > 0 and 0 � θ � π/2, �θ,1 are increasing curves with Fd,β(Aθ) = B and Fd,β(B) = C, as
seen in Fig. 4.1.

(ii) Let d � 1. Then Fd,β(Dd) is symmetric with respect to y = x, for which its boundaries are �0,1 ∪ �π/2,1.
Furthermore, if β > 1 (resp., 0 < β < 1), �θ,1 moves from the upper left (resp., the lower right) to the
lower right (resp., the upper left) as θ varies from π/4 to π/2. In both cases, �π/4,0 is a fixed line, i.e.,
�π/4,0 = �π/4,1. See Fig. 4.1 for the illustration.

Proof. The first assertion of the lemma follows from some direct calculations and the fact that Fd,β is
monotonicity preserving. Since the map Fd,β is line-order preserving, �0,1 ∪ �π/2,1 are the boundaries of
Fd,β(D1) with their relative positions being as claimed in the lemma. �
5. Global dynamics of Fd,β

In this section, we shall investigate the global dynamics of Fd,β . We begin with the following results.

Theorem 5.1. Let d > 1. Assume that

d|β − 1| < 1. (5.1)
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Then limn→∞ Fn
d,β(x0, y0) ∈ S for any (x0, y0) ∈ Dd, or equivalently, the coupled map lattices (2.2a)

and (2.2b) with n = 2 is globally synchronized.

Proof. Assume that β � 1. Let (x0, y0) ∈ R1. We may assume that 0 � x0 � y0 � 1. Let (x1, y1) =
Fd,β(x0, y0). Then, for some z0 ∈ [x0, y0], |x1 − y1| = |dx0y0(xβ−1

0 − yβ−1
0 )| = |d(β − 1)x0y0z

β−2
0 ||x0 − y0| �

|d(β− 1)x0z
β−1
0 ||x0 − y0| � d|β− 1||x0 − y0|. Consequently, the point (x0, y0) moves close to the diagonal S

after the iteration under the map Fd,β . In fact, its contraction rate is smaller than or equal to d|β − 1|. For
(x0, y0) ∈ R2 ∪ R3 ∪ R4, it is easy to see that |x0 − y0| � |x1 − y1|. Let (x0, y0) ∈ Dd. Then (x0, y0) must
enter R1 infinitely many times. As a result, limn→∞ |xn − yn| = 0.

For 0 < β < 1 and 0 � x0 � y0 � 1, we have that |x1 − y1| = |dxβ
0y

β
0 (x1−β

0 − y1−β
0 )| = d|1 −

β||xβ
0y

β
0 z

−β
0 ||x0 − y0| � d|1−β||x0 − y0|. Here z0 ∈ [x0, y0]. Similarly, we have that limn→∞ Fn

d,β(x0, y0) ∈ S

for any (x0, y0) ∈ Dd. �
For 0 < d � 1, the sufficient condition (5.1) can be further improved. In particular, we shall prove

that the corresponding system is globally synchronized for any β > 0. To this end, we first prove that the
corresponding smooth system is locally synchronized with the help of the Schwarzian derivative and a result
of Singer [12]. The Schwarzian derivative was first introduced into the study of one dimensional systems by
Singer [12] in 1978. It is a valuable tool for a number of reasons. For instance, it can be used to prove that
a certain map has an entire interval on which the map is chaotic. In this paper, we shall use it to prove that
the existence and the uniqueness of a globally stable periodic orbit for fd,β with 0 < d � 1.

Definition 5.1. Let I be a compact interval and f : I → I be a piecewise monotone continuous map. This
means that f is continuous and that f has a finite number of turning points, i.e., points in the interval of
I where f has a local extremum. Such a map is called unimodel (resp., l-model) if f(∂I) ⊂ ∂I and if f has
precisely one (resp., l) turning point (resp., points). Here ∂I is the boundary of I. We say that a periodic
attractor is essential if it contains a turning point in its basin.

Definition 5.2. The Schwarzian derivative of a function f at x is

Sf(x) = f ′′′(x)/f ′(x) − 3/2
(
f ′′(x)/f ′(x)

)2
.

Theorem 5.2. (See [2].) Let f ∈ C3(I). Assume that f has negative Schwarzian derivative on I. Then

(i) the immediate basin of any attracting periodic orbit contains either a turning point of f or a boundary
point of the interval;

(ii) each neutral periodic point is attracting.

Proposition 5.1. (i) Let d � 1/((β + 1)((β + 1)/(β + 2))β) =: d1,β. Then fd,β has a unique attracting fixed
point at pd,β. Moreover, pd1,β ,β = (β + 1)/(β + 2).

(ii) If x ∈ Id, then limn→∞ fn
d,β(x) = pd,β.

(iii) For d1,β < d � 1, fd,β has a unique stable periodic two orbit {x1, x2}, which attracts all initial points
except pd,β. Consequently, |f ′

d,β(x1)f ′
d,β(x2)| < 1.

Proof. Note that d1,β < 1. Hence, fd,β is a smooth map on Id. Moreover, some direct calculations yield that
Sfd,β(x) < 0, pd1,β ,β = (β + 1)/(β + 2) and that 0 > f ′

d,β(pd,β) > −1 if and only if d < d1,β . The first part
the proof can then be completed by applying Theorem 5.2-(ii). Since fd,β(x) on Id has no critical point,
it then follows from Theorem 5.2-(i) that the immediate basin of contains a boundary of the interval Id.
Consequently, pd,β is a globally attracting fixed point of fd,β on Id. This completes the proof of the second
part. For 1 � d > d1,β , the fixed point becomes unstable. Hence, the graph of f2

d,β(x) must be under (resp.,
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Fig. 5.1. The graphs of f0.7,2 and f2
0.7,2.

above) the diagonal whenever x is a little bit to the left (resp., right) of the fixed point pd,β , as shown in
Fig. 5.1. Otherwise, pd,β is stable. Since f2

d,β(0) = 1 − d, the graph of f2
d,β must intersect the diagonal at

points other than the fixed point. From the graph analysis, we see that at least one stable periodic point
with period two must exist. Applying Theorem 5.2-(i), we conclude that the orbit of the period two points
is unique. The assertions of the proposition-(iii) now follow from Theorem 5.2-(i). �
Proposition 5.2. For 0 < d � 1 and β > 0, limn→∞ Fn

d,β(x0, y0) ∈ S provided that (x0, y0) is sufficiently
close to B.

Proof. For 0 < d � 1, the map Fd,β is smooth. Depending on the range of d (see Proposition 5.1), we compute
the derivative of Fd,β at the fixed point (pd,β , pd,β) or the stable period two points {(x1, x1), (x2, x2)}. Then

F ′
d,β(pd,β , pd,β) = −dpβd,β

(
1 β

β 1

)
or

(
F 2
d,β

)′(x1, x1) = d2xβ
1x

β
2

(
1 β

β 1

)2

.

Thus, the largest eigenvalue λ in magnitude of F ′
d,β on (pd,β , pd,β) or (x1, x1) is |λ| = |f ′

d,β(pd,β)| or |λ| =
|f ′

d,β(x1)f ′
d,β(x2)|, respectively. According to Proposition 5.1, we see that |λ| < 1. Hence, those periodic

points on the diagonal is stable with respect to the map Fd,β . Using Proposition 5.1, we have that B is in
the basin of the attraction for Fd,β . The assertion of the proposition now follows. �
Theorem 5.3. Let 0 < d � 1 and β > 0. Then limn→∞ Fn

d,β(x0, y0) ∈ S for any initial condition
(x0, y0) ∈ Dd.

Proof. Due to the symmetry of Fd,β with respect to the diagonal y = x, it suffices to show that the assertion
of the theorem holds true for (x0, y0) ∈ K0. Assume that β � 1. Consider Fd,β(Dd) ∩K0. It follows from
Proposition 5.2 that there exists an ε such that if |x0 − y0| <

√
2ε, then limn→∞ Fn

d,β(x0, y0) lies on the
diagonal. Let �θ1,0 be the line segment joining the points B and xπ/2,1−ε, as illustrated in Fig. 5.2. Here
xπ/2,1−ε is defined as in (4.3). Clearly θ1 < π/2. Let K1 be the region whose boundaries are �θ1,0, the
x-axis and the diagonal. It then follows from Lemmas 4.1 and 4.2 that Fd,β(K1) contains a boundary �θ1,1
which is strictly to the left of �π/2,1 except at C and B. We may define inductively that �θn,0 are the line
segments joining B and xθn−1,1−ε and Kn are the regions whose boundaries are �θn,0, the x-axis and the
diagonal. Again, from Lemmas 4.1 and 4.2, one sees that limn→∞ Kn = {(x, x): 1 − d � x � 1}. Note that
Fd,β(Dd) ∩K0 ⊂ K1 ∪ {(x, y): y � x, 1 − ε � y � 1, 1 − ε � x � 1} =: K1 ∪ Γ . Moreover, K1 and Γ both
converge to the diagonal under the map Fd,β . Thus, for β > 1, Fn

d,β(x, y) converges to the diagonal as n
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Fig. 5.2. The points xπ/2,1−ε and xθ1,1−ε. The graphs of �θ1,0, �π/2,1, �θ1,1 and �θ2,0 for β > 1.

approaches to infinity for any (x, y) ∈ Dd. The case for 0 < β < 1 is similar. It is obvious that the theorem
holds for β = 1. �
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