
European Journal of Operational Research 238 (2014) 54–64
Contents lists available at ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier .com/locate /e jor
Discrete Optimization
Fast approximation algorithms for bi-criteria scheduling with machine
assignment costs
http://dx.doi.org/10.1016/j.ejor.2014.03.026
0377-2217/� 2014 Elsevier B.V. All rights reserved.

⇑ Corresponding author. Tel.: +1 212 998 0287; fax: +1 212 995 4227.
E-mail addresses: klee5@york.cuny.edu (K. Lee), leung@cis.njit.edu

(J.Y-T. Leung), zhjia@mail.ustc.edu.cn (Z.-h. Jia), liwenhua@zzu.edu.cn (W. Li),
mpinedo@stern.nyu.edu (M.L. Pinedo), bmtlin@mail.nctu.edu.tw (B.M.T. Lin).

1 Work supported in part by the NSF Grant CMMI-0969830.
2 Work supported in part by the Science Foundation of Anhui University Grant

33050044, NSFC Grant 71171184, and China Scholarship Council Grant
201206505002.

3 Work supported in part by the NSFC Grant 11171313.
4 Work supported in part by the NSF Grant CMMI-0969755.
5 Work supported in part by the National Science Council of Taiwan Grant

NCS-101-2918-I-009-008.
Kangbok Lee a, Joseph Y-T. Leung b,1, Zhao-hong Jia c,2, Wenhua Li d,3, Michael L. Pinedo e,⇑,4,
Bertrand M.T. Lin f,5

a Department of Business & Economics, York College, The City University of New York, 94-20 Guy R. Brewer Blvd, Jamaica, NY 11451, USA
b Department of Computer Science, New Jersey Institute of Technology, Newark, NJ 07102, USA
c Key Lab of Intelligent Computing & Signal Processing of Ministry of Education, Anhui University, Hefei, Anhui 230039, PR China
d School of Mathematics and Statistics, Zhengzhou University, Zhengzhou, Henan 450001, PR China
e Department of Information, Operations & Management Sciences, Stern School of Business, New York University, 44 West 4th Street, New York, NY 10012-1126, USA
f Department of Information & Finance Management, National Chiao Tung University, Taiwan

a r t i c l e i n f o a b s t r a c t
Article history:
Received 28 May 2013
Accepted 17 March 2014
Available online 29 March 2014

Keywords:
Bi-criteria scheduling
Maximum machine cost
Total machine cost
Makespan
Total completion time
Heuristics
We consider parallel machine scheduling problems where the processing of the jobs on the machines
involves two types of objectives. The first type is one of two classical objective functions in scheduling
theory: either the total completion time or the makespan. The second type involves an actual cost asso-
ciated with the processing of a specific job on a given machine; each job-machine combination may have
a different cost. Two bi-criteria scheduling problems are considered: (1) minimize the maximum
machine cost subject to the total completion time being at its minimum, and (2) minimize the total
machine cost subject to the makespan being at its minimum. Since both problems are strongly NP-hard,
we propose fast heuristics and establish their worst-case performance bounds.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

In traditional scheduling theory, most problems are concerned
with the minimization of certain functions of the completion times
of the jobs. This type of objectives relate in certain ways to cus-
tomer satisfaction since they tend to result in schedules that have
either early completion times or on-time completions of the jobs.
In reality, there are other important aspects in the evaluation of
schedules, namely, aspects that are related to the machines them-
selves. When a job is assigned to a machine, the assignment results
in a cost (or profit) that depends on the job as well as on the ma-
chine. The machines’ objective may be the minimization of the to-
tal cost incurred by all the machines or the maximum cost incurred
by any machine.

This type of multi-criteria scheduling problem occurs nowadays
quite often in manufacturing as well as in services industries. Con-
sider, for example, a manufacturing company with multiple plants
in different locations. The production cost of a customer order at
one plant may be completely different from the production cost at
another plant. The company has to worry about the timing of the
production (in order to provide good customer service) as well as
the production cost (in order for the company to remain profitable).

In the services industries also, such multi-criteria scheduling
problems have become more and more important in recent years.
Consider, for example, an organization that provides professional
services and has, say, m service providers (e.g., medical doctors,
teams of consultants, lawyers, etc.) and n tasks (e.g., patients, pro-
jects, legal cases, etc.). Each task has to be handled by one of the
service providers. A service provider could be regarded as a ‘‘ma-
chine’’ and a task may be regarded as a ‘‘job’’. The service providers
in such an environment are typically not identical, i.e., different
providers have different skill sets and different experience levels
and charge therefore differently. The tasks may also be different
in such a way that each may require a provider with a specific skill
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set. From the organization’s point of view (e.g., a clinic, a consulting
company, a legal firm, etc.), the objective is to minimize the total
completion time of the tasks or to minimize the latest completion
time so as to increase the clients’ satisfaction levels, while at the
same time minimize the total service providers’ cost in order to
maximize the organization’s profit or minimize the maximum
profit of any service provider in order to balance the profits over
the service providers. Balancing the profits of the service providers
is an important goal in maintaining the morale of the employees in
the company.

Clearly, the framework considered in this paper applies to any
organization that has to assign a resource to a specific task or pro-
ject while taking into account objectives related to customer satis-
faction levels as well as objectives related to the costs of utilization
of resources.

In this paper we consider such bi-criteria scheduling problems
with the second objective (either maximum machine cost or total
machine cost) to be minimized subject to the constraint that the
first objective (either makespan or total completion time) is at its
minimum.

Many papers have dealt with bi- or multi-objective scheduling
problems and there are several survey papers in this area. T’kindt
and Billaut (2001) and T’kindt and Billaut (2006) presented a re-
view on scheduling problems with various different machine envi-
ronments including single machine, parallel machines, and
flowshop environments. Hoogeveen (2005) paid more attention
to due-date related objectives and scheduling with controllable
processing times. Lei (2009) provided a more recent review. None-
theless, most research initiatives focused on two or more schedul-
ing objectives that are all related to the customers’ perspectives.
Thus, all the objectives are typically functions of the completion
times.

Typical examples are papers that focus on minimizing two tra-
ditional scheduling objectives. Smith (1956) considered a single
machine scheduling problem to minimize the total completion
time subject to the constraint that all jobs should be completed
at their due dates or before. Leung and Young (1989) studied a par-
allel machine scheduling problem to minimize the makespan sub-
ject to the constraint that the total completion time is at its
minimum. Leung and Pinedo (2003) considered a parallel machine
scheduling problem to minimize the total completion time subject
to the constraint that the makespan is at its minimum.

Multi-objective scheduling can be found in many different set-
tings. There are studies on agent scheduling problems that focus on
multiple objectives which agents selfishly optimize; see, for exam-
ple, Agnetis, Mirchandani, Pacciarelli, and Pacifici (2004), Agnetis,
Pacciarelli, and Pacifici (2007), Lee, Choi, Leung, and Pinedo
(2009) and Leung, Pinedo, and Wan (2010). Distributed scheduling
can also lead to multi-objective scheduling problems in which each
job’s objective as well as the overall objective function are opti-
mized at the same time. Several other papers focus on coordination
mechanisms; see, for example, Lee, Leung, and Pinedo (2011) and
Lee, Leung, and Pinedo (2012).

In the scheduling literature, there are two streams of research
that deal with service providers’ objectives. The first and most pop-
ular stream involves a machine activation cost. The number of ma-
chines used is a variable and the overall objective is to minimize
the sum of a traditional scheduling objective (e.g., makespan)
and the cost of activating machines; see, for example, Imreh and
Noga (1999) and Dòsa and He (2004).

Another approach assumes a machine assignment cost. When a
job is scheduled on a machine, a machine assignment cost is in-
curred. In most cases, the objective is either the sum of a scheduling
objective and the total machine assignment cost or a prioritization
of the two objectives; see, for example, Shmoys and Tardos
(1993), Vignier, Sonntag, and Portmann (1999), T’kindt, Billaut,
and Proust (2001), Khuller, Li, and Saha (2010), and Leung, Lee,
and Pinedo (2012). Khuller et al. (2010) considered a problem with
machine activation cost as well as machine assignment cost. Shm-
oys and Tardos (1993) formulated a general bi-objective scheduling
problem with machine assignment costs as a generalized assign-
ment problem. They considered a prioritization of the two objec-
tives and provided an approximation approach by combining a
linear programming algorithm with a rounding technique. Leung
et al. (2012) described a bi-objective scheduling problem to
minimize the scheduling objective and the total machine assign-
ment cost at the same time. The makespan and the total completion
time were considered as scheduling objectives and both non-pre-
emptive and preemptive versions were dealt with. They considered
weighted combinations of the two objectives as well as prioritiza-
tions of the two objectives. They restricted themselves to an analy-
sis of the problems in terms of their time complexity under different
assumptions; they proved NP-hardness for some cases and
presented polynomial time algorithms for other cases.

In this paper, we will follow in our problem formulations the
framework presented in Leung et al. (2012). However, we consider
several aspects that are different. Unlike Leung et al. (2012), we
only focus on a prioritization of objectives, which implies that
we try to optimize one objective first and then try to optimize
the second one with the first one being at its minimum. Also, we
develop approximation algorithms with their worst-case
performance analyses.

In Section 2, we formally describe the problem and introduce
notations. We provide in Section 3 approximation algorithms for
the problem in which the total completion time and maximum
machine cost have to be minimized. We present in Section 4
approximation algorithms for minimizing the makespan and the
total machine cost. We conclude the paper in the last section with
a discussion on future research directions.
2. Problem description

We consider the problem of scheduling n jobs on m identical
machines to minimize at the same time a customers’ objective
and a service providers’ objective. The processing time of job j is
pj. Let Cj denote the completion time of job j. The customers’ objec-
tive is to minimize either the total completion time (

P
Cj) or the

last completion time, commonly referred to as the makespan
(Cmax). In addition, a cost cij is incurred when job j;1 6 j 6 n, is pro-
cessed on machine i;1 6 i 6 m. Let xij ¼ 1 if job j is processed on
machine i and xij ¼ 0 otherwise. Thus, the total machine cost, for
short TMC, is

Pm
i¼1

Pn
j¼1cijxij, and the maximum machine cost, for

short MMC, is maxm
i¼1f

Pn
j¼1cijxijg. The service providers’ objective

is to minimize either TMC or MMC. The goal is to find a schedule
that minimizes either the total completion time or the makespan
in addition to the total machine cost or the maximum machine
cost. We consider in what follows only nonpreemptive scheduling
models. Let M ¼ f1;2; . . . ;mg denote the set of m machines and
J ¼ fJ1; J2; . . . ; Jng denote the set of n jobs.

We consider three types of cost functions:

(i) cij ¼ cj,
(ii) cij ¼ ai þ cj, and

(iii) cij ¼ ai � cj,

where ai is a non-negative integer parameter belonging to machine
i and cj is a non-negative integer parameter belonging to job j. The
first cost function (i) is the case of identical costs; i.e., the process-
ing cost of a job is independent of the machine the job is assigned
to. The second cost function (ii) plays a role when the assignment
of a job to a machine involves an additional setup cost (ai) that is
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machine dependent. The third cost function (iii) plays a role when
one machine operates in a more cost efficient manner than another
machine; i.e., the efficiency factor of machine i is captured by the
factor ai. For cases (ii) and (iii), we can assume, without loss of gen-
erality, that a1 6 a2 6 . . . 6 am. Obviously, (i) is a special case of (ii)
when ai ¼ 0 for all i 2 M and (i) is a special case of (iii) when ai ¼ 1
for all i 2 M. Throughout the paper, we also assume that, for case
(ii) a1 ¼ 0 and for case (iii) a1 ¼ 1.

Basically, the bi-criteria problems we study can be referred to as
LEX (c1; c2). In LEX (c1; c2), the c1 represents the primary objective
and the c2 represents the secondary objective; i.e., the problem is
to minimize objective c2 subject to the constraint that objective
c1 is at its minimum.

Since we consider either
P

Cj or Cmax as the customers’ objec-
tive, and consider either TMC or MMC as the service providers’ (ma-
chines’) objective, we have four possible combinations:
(
P

Cj;MMC), (
P

Cj; TMC), (Cmax, MMC) and (Cmax; TMC). Leung
et al. (2012) already showed that LEX (

P
Cj; TMC) can be solved

optimally in polynomial time. The problem LEX (Cmax;MMC) is
not completely investigated, but a special case of this problem
was considered by Lee, Leung, and Pinedo (2013). In this paper
we will focus on the following two problems:

1. LEX (
P

Cj;MMC); i.e., minimize the maximum machine
cost subject to the constraint that

P
Cj is minimized.

2. LEX (Cmax; TMC); i.e., minimize the total machine cost sub-
ject to the constraint that Cmax is minimized.

The two scheduling problems above can be shown to be unary
NP-hard via a simple reduction from the 3-Partition problem (Gar-
ey & Johnson, 1979). For LEX (Cmax; TMC), the primary objective can
be reduced from the 3-Partition problem. For LEX (

P
Cj;MMC), the

secondary objective can be reduced from 3-Partition.
Because of the computational complexity of the problems, we

are interested in fast heuristics. We say that heuristic A is an
ða; bÞ-approximation for problem LEX (c1; c2) if A produces a sche-
dule where c1ðAÞ 6 a� c�1 and c2ðAÞ 6 b� c�2. Here, c�1 is the opti-
mal value for the first objective, and c�2 is the optimal value for the
second objective provided that the schedule attains the optimal va-
lue (c�1) for the first objective. For example, if A is a ð32 ;2Þ-approx-
imation for LEX (Cmax; TMC), then CmaxðAÞ 6 3

2� C�max and
TMCðAÞ 6 2� TMC�, where TMC� is the optimal value for the total
machine cost provided that the makespan of the schedule is C�max.

Shmoys and Tardos (1993) consider a bi-objective scheduling
problem that is more general than those we consider; they assume
processing times pij (i.e., the processing time depends on the job as
well as on the machine), and assignment costs cij (i.e., the assign-
ment costs depend also on the job as well as on the machine). They
do develop a polynomial time approximation algorithm for this
framework; however, their algorithm has a higher time complexity
than ours. Moreover their algorithm seems to be hard to
implement, since it depends on the solution of a Linear Program,
followed by the solution of a matching problem. We will compare
our results with their results in the conclusion section.

The following notation will be used throughout this paper. Let

pmax ¼maxðp1; . . . ;pnÞ

and

cmax ¼ maxðc1; . . . ; cnÞ:

For a given set of jobs J0, let PðJ0Þ ¼
P

j2J0pj and VðJ0Þ ¼
P

j2J0cj. Let
C�max and

P
C�j be the optimal objective values of the makespan

and the total completion time, respectively. Let TMC� and MMC�

be the optimal objective values of TMC and MMC, respectively,
when the primary objective is at its minimum.
3. Total completion time and maximum machine cost

In this section we consider the problem LEX (
P

Cj;MMC). It is
well-known that the Shortest-Processing-Time first (SPT) rule
yields an optimal schedule for

P
Cj; see Pinedo (2012). The SPT

rule, in its most general form, operates as follows: Let integer k
be such that n ¼ ðk� 1Þmþ ‘ for some integer ‘;1 6 ‘ 6 m. Sort
the jobs in ascending order of their processing times, i.e.,
p1 6 p2 6 . . . 6 pn. We refer to the last m jobs (i.e., jobs
n�mþ 1;n�mþ 2; . . . ;n,) as the rank-k jobs, the second last m
jobs (i.e., jobs n� 2mþ 1; . . . ;n�m) as the rank-(k� 1) jobs, and
so on; the first ‘ jobs (i.e., jobs 1; . . . ; ‘) are the rank-1 jobs. The
rank-1 jobs are assigned first, one job per machine, followed by
the rank-2 jobs, again one job per machine. This process is
repeated until jobs in the last rank (rank-k) are assigned.
Clearly, there may be many different schedules that can be
generated according to this SPT rule and all these sched-
ules have a minimum

P
Cj. A schedule generated by the SPT

rule is referred to as an SPT schedule. While limiting ourselves
to SPT schedules, we try to find for the problem LEX
(
P

Cj;MMC) a ð1; bÞ-approximation algorithm with the smallest
possible b.

In order to guarantee a minimum
P

Cj, we will only consider
SPT schedules. The following procedure to setup ranks will be used
as a subroutine in the algorithms proposed.

Setup Ranks

(1) Sort the jobs in ascending order of their processing time; i.e.,
p1 6 p2 6 � � � 6 pn. Let n ¼ ðk� 1Þmþ ‘, where 1 6 ‘ 6 m.

(2) Assign the last m jobs to set Rk, the second last m jobs to set
Rk�1, and so on. Assign the first ‘ jobs to set R1.

(3) Return hR1;R2; . . . ;Rki.

Note that the Setup Ranks procedure returns a possible
rank composition and there may be a different rank composi-
tion for SPT schedules when there are jobs with equal pro-
cessing times.

3.1. The special case cij ¼ cj

We first consider the cost function cij ¼ cj for all 1 6 i 6 m. We
consider a heuristic, H1, that schedules jobs according to SPT, but
jobs in each rank are judiciously assigned to the machine so as to
minimize the maximum machine cost. For each 1 6 i 6 m, we let
Bi denote the set of jobs assigned to machine i. Below is a descrip-
tion of H1.

Heuristic H1ðJ;MÞ
(1) Call Setup Ranks
(2) Bi :¼ ; for each 1 6 i 6 m.
(3) For r from 1 to k do

(a) Sort the machines in ascending order of their costs; i.e.,

VðBl1 Þ 6 VðBl2 Þ 6 � � � 6 VðBlm Þ.

(b) Let fJi1 ; Ji2 ; . . . ; Jiyg be all the jobs in Rr (i.e., Rr has y jobs)
where the jobs are sorted in descending order of their
costs; i.e., ci1 P ci2 P � � �P ciy .

(c) For each j from 1 to y do
(i) Blj :¼ Blj [ fJij
g.

The analysis of the performance bound for heuristic H1 is sim-
ilar to the analysis of a list scheduling algorithm for the classical
PkCmax problem. Before we prove the bound for heuristic H1, we
need to prove the following lemma.
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Lemma 1. Let Vði; rÞ denote the total cost of jobs assigned to machine
i after assigning the jobs in rank r by heuristic H1. Then, we have

0 6 jVði; rÞ � Vðh; rÞj 6 cmax for 1 6 i; h 6 m:
Proof. We will prove the lemma by induction on r. The base case,
r ¼ 1, is obvious. This is because each of Bi and Bh has at most one
job and thus 0 6 Vði;1Þ 6 cmax and 0 6 Vðh;1Þ 6 cmax. Thus, we have

0 6 jVði;1Þ � Vðh;1Þj 6 cmax:

Assume the lemma is true for all ranks up to r � 1. We want to show
that the lemma is true for rank-r. If Vði; r � 1Þ ¼ Vðh; r � 1Þ, then it
immediately holds that jVði; rÞ � Vðh; rÞj 6 cmax. Otherwise, by sym-
metry, we may assume that Vði; r � 1Þ > Vðh; r � 1Þ. Then, from the
induction hypothesis, we have

0 < Vði; r � 1Þ � Vðh; r � 1Þ 6 cmax:

By heuristic H1, the job assigned to machine h has a cost that is at
least as large as the cost of the job assigned to machine i. Since the
cost of the job assigned to machine h is simply Vðh; rÞ � Vðh; r � 1Þ
and the cost of the job assigned to machine i is simply
Vði; rÞ � Vði; r � 1Þ, we have

Vðh; rÞ � Vðh; r � 1ÞP Vði; rÞ � Vði; r � 1Þ;

and hence

Vði; rÞ � Vðh; rÞ 6 Vði; r � 1Þ � Vðh; r � 1Þ 6 cmax:

Moreover,

Vði;rÞ�Vðh;rÞP Vði;r�1Þ�Vðh;rÞP Vði;r�1Þ�ðVðh;r�1Þ
þcmaxÞP ðVði;r�1Þ�Vðh;r�1ÞÞ�cmax P�cmax;

where the last inequality is due to the fact that
Vði; r � 1Þ > Vðh; r � 1Þ. Therefore, we have

jVði; rÞ � Vðh; rÞj 6 cmax:

By induction, the lemma holds for all r. h
Theorem 1. Heuristic H1 is a (1;2� 1=m)-approximation for the
problem LEX (

P
Cj;MMC) when cij ¼ cj for all 1 6 i 6 m. Moreover,

the bound is tight.
Proof. Since heuristic H1 schedules jobs according to the SPT rule,
it generates an optimal solution for the

P
Cj objective. Consider

now the MMC objective. By Lemma 1, we have

max
i2M
fVði; kÞg �min

i2M
fVði; kÞg 6 cmax 6 MMC�:

There are two cases to consider.

Case 1: mini2MfVði; kÞg 6 m�1
m MMC�.

In this case, we have
max
i2M
fVði; kÞg 6min

i2M
fVði; kÞg þ cmax 6

m� 1
m

MMC� þMMC�

¼ 2� 1
m

� �
MMC�:
Case 2: mini2MfVði; kÞg > m�1
m MMC�.

A lower bound for the total cost on all the machines is
maxi2MfVði; kÞg þ ðm� 1Þ �mini2MfVði; kÞg; i.e., one machine has
the maximum cost and m� 1 machines have the minimum cost.
Thus, we have

max
i2M
fVði; kÞg þ ðm� 1Þ �min

i2M
fVði; kÞg 6

Xm

i¼1

Vði; kÞ 6 m�MMC�;
and hence,

max
i2M
fVði; kÞg 6 m�MMC� � ðm� 1Þ �min

i2M
fVði; kÞg

< m� ðm� 1Þ2

m

( )
MMC� ¼ 2� 1

m

� �
MMC�:

To show that the bound is tight, consider 3m jobs, where the rank-1
jobs all have a processing time of 1 unit, the rank-2 jobs all have a
processing time of 2 units, and the rank-3 jobs all have a processing
time of 3 units. The costs of the rank-1 and rank-2 jobs are
0;1;2; . . . ;m� 1, while the cost of the rank-3 jobs are zero except
one job that has a cost of m. Heuristic H1 will produce a schedule
with MMCðH1Þ ¼ 2m� 1, while the optimal schedule has
MMC� ¼ m. Therefore, the ratio is 2� 1=m. h
3.2. The special case cij ¼ ai þ cj

We now consider the cost function cij ¼ ai þ cj. We propose a
different heuristic, H2, which is slightly more complicated.

First, the Setup Ranks routine is called to obtain a possible rank
composition for the minimum total completion time objective. In a
SPT schedule with k ranks such that n ¼ kðm� 1Þ þ ‘; ‘ machines
have k jobs each and ðm� ‘Þmachines have ðk� 1Þ jobs each. Thus,
the cost at machine i is jBijai þ VðBiÞ where jBij ¼ k or ðk� 1Þ. The
basic idea of heuristic H2 is to construct two schedules – the first
one for jobs in rank 1 and the second one for jobs in ranks
2; . . . ; k – and combine these to create a final schedule.

For the first schedule, the jobs in R1 are sorted in descending or-
der of their costs; i.e., cj1 P cj2 P � � �P cj‘ . Then, for each 1 6 i 6 ‘,
job Jji

is assigned to machine i and Ai is set to be k� ai þ cji . For
each ‘þ 1 6 i 6 m;Ai is set to be ðk� 1Þ � ai. Then, the machines
are sorted in descending order of Ai; i.e., the machines l1; l2; . . . ; lm

are such that

Al1 P Al2 P � � �P Alm :

Now, heuristic H1 is then called to generate the second schedule
with the set of jobs R2 [ R3 [ � � � [ Rk. When heuristic H1 returns,
let Bi be the set of jobs assigned to machine i. Then, the Bi’s are
sorted in an ascending order of the total cost of the jobs in Bi; i.e.,

VðBi1 Þ 6 VðBi2 Þ 6 � � � 6 VðBim Þ:

Finally, for the minimum maximum cost, for each 1 6 h 6 m, the
jobs in Bih are assigned to machine lh. The cost of machine lh is
Alh þ VðBih Þ. Shown below is a description of heuristic H2.

Heuristic H2 ðJ;MÞ
(1) Call Setup Ranks
(2) Let fJj1

; Jj2
; . . . ; Jj‘

g be the jobs in R1, sorted in descending
order of their costs; i.e., cj1 P cj2 P � � �P cj‘ .

(3) Sort the machines in ascending order of ai; i.e.,
a1 6 a2 6 � � � 6 am.

(4) For i from 1 to ‘, assign job Jji
to machine i and let

Ai ¼ k� ai þ cji .
(5) For i from ‘þ 1 to m, let Ai ¼ ðk� 1Þ � ai.
(6) Sort Ai values such that Al1 P Al2 P � � �P Alm .
(7) Call heuristic H1(R2 [ R3 [ � � � [ Rk;M) to schedule jobs in

R2 [ R3 [ � � � [ Rk on m identical machines. When heuristic
H1 returns, let Bi be the set of jobs assigned to machine i
in the schedule produced by heuristic H1.

(8) Sort the Bi in ascending order of VðBiÞ; such that
VðBi1 Þ 6 VðBi2 Þ 6 � � � 6 VðBim Þ.

(9) For each 1 6 h 6 m, assign the jobs in Bih to machine lh and
let the cost of machine lh be Alh þ VðBih Þ.
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Theorem 2. Heuristic H2 is a (1; 2� 1=m)-approximation for the
problem LEX (

P
Cj;MMC) when cij ¼ ai þ cj for all 1 6 i 6 m. More-

over, the bound is tight.
Proof. For each 1 6 i 6 m, let Vi be VðBiÞ for simplicity. Recall that
Bi is the set of jobs scheduled on machine i from R2 [ R3 [ � � � [ Rk.
Thus, the cost of machine i is Ai þ Vi.

We claim that maxi2MfAig 6 MMC� by the following reason. We
consider another set of jobs J0 where all costs of jobs in rank 1 is the
same as the original problem instance and all costs of jobs in ranks
2; . . . ; k become zero. Then, maxi2MfAig is the optimal MMC value
for J0. Obviously, the optimal MMC value for J is greater than or
equal to the optimal MMC value for J0. Therefore,
maxi2MfAig 6 MMC�.

Thus, jAi � Ahj 6 MMC� for 1 6 i; h 6 m. By Lemma 1, we have
jVi � Vhj 6 MMC� for 1 6 i; h 6 m.

Without loss of generality, we may assume that Ai P Ah. Thus,
0 6 Ai � Ah 6 MMC�. Since Ai P Ah, we have Vi 6 Vh, by the nature
of heuristic H2. Thus, we have

ðAi þ ViÞ � ðAh þ VhÞ 6 Ai � Ah 6 MMC�;

and

ðAi þ ViÞ � ðAh þ VhÞP Vi � Vh P �MMC�:

Therefore, we have jðAi þ ViÞ � ðAh þ VhÞj 6 MMC�. We now
consider two cases. Let Ai þ Vi ¼maxl2MfAl þ Vlg and Ah þ Vh ¼
minl2MfAl þ Vlg.

Case 1: Ah þ Vh 6
m�1

m MMC�.
In this case, we have

AiþVi6AhþVhþMMC�6
m�1

m
MMC� þMMC� ¼ 2� 1

m

� �
MMC�:

Case 2: Ah þ Vh >
m�1

m MMC�.
In this case, we have

Ai þ Vi þ ðm� 1ÞðAh þ VhÞ 6
X
l2M

ðAl þ VlÞ 6 m�MMC�:

Therefore, we have

Ai þ Vi 6 m�MMC� � ðm� 1ÞðAh þ VhÞ < m� ðm� 1Þ2

m

( )
MMC�

¼ 2� 1
m

� �
MMC�:

The set of jobs achieving a tight bound in Theorem 1 can be used to
show the tight bound for this theorem as well. Simply let ai ¼ 0 for
all i. h
3.3. The special case cij ¼ ai � cj

We now consider the cost function cij ¼ ai � cj. Recall that we
assume that a1 ¼ 1 and ai 6 aiþ1 for i ¼ 1; . . . ;m� 1. We can
assume that n ¼ km; otherwise without changing the problem
structure we can add dn=mem� n dummy jobs with zero process-
ing times and zero costs.

We consider the third heuristic, H3, which is similar to heuristic
H1. Again, jobs are ordered according to the SPT rule, rank by rank.
Jobs within the same rank are assigned to machines as follows:
Jobs are considered in descending order of their cost cj. When job
j is being assigned, we consider all the eligible machines and assign
job j to that machine i that results in the smallest total cost on ma-
chine i. After job j is assigned to machine i, machine i becomes inel-
igible until we deal with the jobs in the next rank. The heuristic is
described as follows.
Heuristic H3(J;M)
(1) Call Setup Ranks
(2) Bi :¼ ; for each 1 6 i 6 m.
(3) For r from 1 to k do
(a) Let M0 ¼ f1;2; . . . ;mg be the eligible machines.

(b) Let Ri ¼ fJi1 ; Ji2 ; . . . ; Jimg, sorted in descending order of

their cost; i.e., ci1 P ci2 P � � �P cim .
(c) For each j from 1 to m do
(i) l :¼ arg minf2M0 fVðBf Þ þ af � cijg, with ties broken by

choosing the machine with a larger af .

(ii) Bl :¼ Bl [ fJij
g.

(iii) M0 :¼ M0 n flg.

Even though heuristic H3 looks reasonable, its theoretical
bound may be poor. We can derive a lower bound of the ratio from
the literature. Cho and Sahni (1980) considered a list scheduling
algorithm for a uniform parallel machine scheduling problem to
minimize the makespan. They showed that the worst case perfor-
mance ratio of the list scheduling algorithm is at least Oðlog mÞ by
presenting a problem instance. We can construct a problem in-
stance from the prohlem instance in Cho and Sahni (1980) and
show that the approximation ratio of heuristic H3, for problem
LEX (

P
Cj;MMC) when cij ¼ ai � cj for all 1 6 i 6 m, is at least

(1, Oðlog mÞ). However, we will prove an unbounded approxima-
tion ratio of heuristic H3 in the following theorem.

Theorem 3. The approximation ratio of heuristic H3, for problem LEX
(
P

Cj;MMC) when cij ¼ ai � cj for all 1 6 i 6 m, is at least (1;OðamÞ).
Proof. Since heuristic H3 schedules jobs according to SPT, it gener-
ates an optimal solution for the

P
Cj objective. Thus, we will prove

the lower bound of MMCðH3Þ=MMC� by providing an example.
Consider two machines and four jobs. The four jobs have

identical processing times, say 1 unit. Their costs are:
c1 ¼ c2 ¼ 1; c3 ¼ c4 ¼ a, where a� 1. For machine 1, a1 ¼ 1 and
for machine 2, a2 ¼ a.

Suppose the algorithm puts jobs 1 and 2 in the first rank, and
jobs 3 and 4 in the second rank, then VðB1Þ ¼ VðB2Þ ¼ aþ 1. In this
case, we have MMCðH3Þ ¼ aðaþ 1Þ.

On the other hand, the optimal solution puts jobs 1 and 3 in the
first rank, and jobs 2 and 4 in the second rank. Then we assign the
job with the smallest cost in each rank to machine 2. In this case,
we have jobs 1 and 2 in machine 2, and jobs 3 and 4 in machine 1.
We have MMC� ¼ 2a.

The approximation ratio is aðaþ 1Þ=ð2aÞ = ðaþ 1Þ=2, which
approaches infinity when a gets large. This completes the proof.
h

Since heuristic H3 does not have a constant approximation ra-
tio, we consider a special case of LEX (

P
Cj;MMC) where

cij ¼ ai � cj; a1 ¼ � � � ¼ am�1 ¼ 1 and am P 1. This setting implies
that there is only one inefficient machine. For this special case,
we present an approximation algorithm with a constant ratio.

The basic idea is that we consider two cases for the am value
separately. When am is not so large, we just use heuristic H1 and
modify the schedule. When am is large, we need to assign jobs with
small costs to machine m within the structure of SPT schedules.
However, if we fix ranks by Setup Ranks like heuristics H1, H2
and H3, it might be impossible to assign jobs with small costs to
machine m. Therefore, we first consider a procedure to assign a
job from each rank to machine m to minimize the total cost of jobs
assigned to machine m among all possible rank compositions. The
algorithm can be described as follows:
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Minimum Cost for Machine m
(1) Call Setup Ranks
(2) Construct a weighted bipartite graph G ¼ ðU1 [ U2; E; wÞ

where

(a) U1 ¼ fjjJj 2 Jg;U2 ¼ f1; . . . ; kþ 1g
(b) E1 ¼ fðl; mÞjminj2Rmfpjg 6 pl 6 maxj2Rmfpjgforl 2 U1;

m 2 U2 n fkþ 1gg,
E2 ¼ fðl; kþ 1Þjl 2 U1g and
E ¼ E1 [ E2.

(c) wl;m ¼ cl for l 2 U1; m 2 U2 n fkþ 1g.

(3) Solve the following transportation problem on G and obtain

an optimal solution y�l;m.
minimize
X
ðl;mÞ2E1

wl;myl;m

subject to
X

m:ðl;mÞ2E

yl;m ¼ 1 for l 2 U1

X
l:ðl;mÞ2E1

yl;m ¼ 1 for m 2 U2 n fkþ 1g
X

l:ðl;kþ1Þ2E2

yl;kþ1 ¼ n� k

yl;m 2 f0;1g for ðl; mÞ 2 E
amVðB
(4) Job Jl is scheduled on rank m of machine m if and only if
y�l;m ¼ 1 for ðl; mÞ 2 E1.

Instead of solving the mathematical program described above
through a transportation algorithm, we will solve it by an
alternative procedure that will significantly reduce the running
time. This alternative procedure is described in the Appendix. Its
running time is Oðn log nÞ.

Note that VðBiÞ is the sum of cj values of the jobs assigned to
machine i. The cost of machine i is VðBiÞ for i ¼ 1; . . . ;m� 1 and
is amVðBmÞ for i ¼ m and thus

MMC ¼maxfmaxfVðBiÞji 2 f1; . . . ;m� 1gg; amVðBmÞg:

Now, we are ready to present an algorithm with a constant ratio for
LEX (

P
Cj;MMC) where cij ¼ ai � cj; a1 ¼ � � � ¼ am�1 ¼ 1 and am P 1.

Heuristic H4
(1) If am P 2,
max
i2Mnfmg
(a) Call Minimum Cost for Machine m. Let J0 be the set of
jobs scheduled on machine m.

(b) Apply H1ðJ n J0;M n fmgÞ for the schedule of the remain-
ing jobs on machines 1; . . . ;m� 1.
(2) If 1 6 am < 2,
maxf

(a) Apply H1(J;M) and obtain Bi for i 2 M.
(b) Let h :¼ arg minfVðBiÞji 2 Mg. Swap Bm and Bh.
i2M

max
i2M
f

Theorem 4. Heuristic H4 is a ð1;2� 1
2ðm�1ÞÞ-approximation for

problem LEX (
P

Cj;MMC) when cij ¼ ai � cj; a1 ¼ � � � ¼ am�1 ¼ 1 and
am P 1.
Proof. Case 1. Suppose that am P 2. We consider two sub-cases: (i)
MMC is determined at machine m, and (ii) MMC is determined at
machine i, for i – m.

(i) If MMC is determined by machine m, by the property of the
schedule by Minimum Cost for Machine m, the current
schedule is optimal.

(ii) Suppose that MMC is determined by a machine that is not
machine m. By Lemma 1, jVðBiÞ � VðBhÞj 6 cmax for
i;h 2 M n fmg.
If

min
i2Mnfmg

fVðBiÞg 6 1� 1
2ðm� 1Þ

� �
MMC�;

then

max
i2Mnfmg

fVðBiÞg 6 min
i2Mnfmg

fVðBiÞg þ cmax 6 2� 1
2ðm� 1Þ

� �
MMC�:

If

min
i2Mnfmg

fVðBiÞg > 1� 1
2ðm� 1Þ

� �
MMC�;

then by the lower bound for MMC�, we have MMC� P VðJÞ=
ðm� 1þ 1=amÞ. We consider the following relationship:

max
i2Mnfmg

fVðBiÞg þ ðm� 2Þ min
i2Mnfmg

fVðBiÞg 6 VðJÞ

6 ðm� 1þ 1=amÞMMC�:

Thus, we have

max
i2Mnfmg

fVðBiÞg < ðm� 1þ 1=amÞMMC�

� ðm� 2Þ 1� 1
2ðm� 1Þ

� �
MMC� ¼ 3

2
þ 1

am
� 1

2ðm� 1Þ

� �
MMC�

6 2� 1
2ðm� 1Þ

� �
MMC�:

Case 2. Suppose that 1 6 am < 2. We again consider two subcases:
(i) MMC is determined by machine m, and (ii) MMC is determined
by machine i, for i – m.

(i) Suppose that MMC is determined at machine m. If
VðBmÞ > 1

m ðm� 1þ 1
am
ÞMMC�, then

P
i2MVðBiÞ > ðm� 1þ 1

am
Þ MMC�,

which is a contradiction. If VðBmÞ 6 1
m ðm� 1þ 1

am
ÞMMC�, then we

have
mÞ6
am

m
m�1þ 1

am

� �
MMC� ¼ amð1�

1
m
Þþ 1

m

� �
MMC�

6 2� 1
m

� �
MMC�:
(ii) Suppose that MMC is determined at a machine that is not
machine m. By Lemma 1, jVðBiÞ � VðBhÞj 6 cmax for i;h 2 M.
If VðBmÞ 6 1� 1

m

� �
MMC�, then
fVðBiÞg 6 VðBmÞ þ cmax 6 2� 1
m

� �
MMC�:
If VðBmÞ > 1� 1
m

� �
MMC�, then consider the relationship
VðBiÞg þ ðm� 1ÞVðBmÞ 6 VðJÞ 6 ðm� 1þ 1=amÞMMC�:
Thus, we have
VðBiÞg6 ðm�1þ1=amÞMMC� �ðm�1Þ 1� 1
m

� �
MMC�

¼ 1
am
þm�1

m

� �
MMC�6 2� 1

m

� �
MMC�:
Note that 2� 1
m 6 2� 1

2ðm�1Þ for m P 2. The proof is complete. h
4. Makespan and total machine cost

In this section we consider the problem LEX (Cmax; TMC). For the
cost function cij ¼ cj, this problem is equivalent to the problem
PjjCmax, for which many heuristics have been proposed and
analyzed. Therefore, we will not consider this special case here.
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On both cost functions cij ¼ ai þ cj and cij ¼ ai � cj, we will ob-
tain an upper bound of the optimal makespan by the following
steps. We first order the n jobs on the m machines according to
the Largest-Processing-Time (LPT) rule, ignoring the cost of the
jobs. The LPT rule schedules the jobs in descending order of their
processing times. The next job will be assigned to the machine that
finishes the earliest. The makespan of the LPT schedule is denoted
by L and is used as an upper bound for the optimal makespan. It is
well known that L 6 ð43� 1

3mÞC
�
max, where C�max is the optimal make-

span; see Graham (1969).
Since the primary objective, the makespan, is hard to optimize,

we may consider using LPT to optimize the primary objective.
Unfortunately, such an algorithm can perform very poorly with re-
gard to the secondary objective for both cost functions cij ¼ ai þ cj

and cij ¼ ai � cj.
For the cost function cij ¼ ai þ cj, we consider an example with

two machines having a1 ¼ 0 and a2 ¼ a > 0 and n jobs, where n
is even and n P 6. The job information is as follows:
p1 ¼ p2 ¼ 1=2 and p3 ¼ � � � ¼ pn ¼ 1=ðn� 2Þ and c1 ¼ � � � ¼ cn ¼ 0.
Obviously, C�max ¼ 1. In the LPT schedule, jobs J1 and J2 are sched-
uled on different machines and the remaining jobs are evenly
scheduled on both machines. Thus, TMCðLPTÞ ¼ n=2� a. However,
in the optimal schedule, jobs J1 and J2 are scheduled on machine 2
and the other jobs are scheduled on machine 1. Thus, TMC� ¼ 2� a.
Therefore, TMCðLPTÞ=TMC� ¼ OðnÞ.

For the cost function cij ¼ ai � cj, we consider an example with
two machines having a1 ¼ 1 and a2 ¼ a > 1 and n jobs, where n
is even and n P 6. The job information is as follows:
p1 ¼ p2 ¼ 1=2 and p3 ¼ � � � ¼ pn ¼ 1=ðn� 2Þ and c1 ¼ c2 ¼ c=2 and
c3 ¼ � � � ¼ cn ¼ 0. Obviously, C�max ¼ 1. In the LPT schedule, jobs J1

and J2 are scheduled on different machines and the remaining jobs
are evenly scheduled on both machines. Thus,
TMCðLPTÞ ¼ c

2 ð1þ aÞ. However, in the optimal schedule, jobs J1

and J2 are scheduled on machine 1 and the other jobs are sched-
uled on machine 2. Thus, TMC� ¼ c. Since

TMCðLPTÞ
TMC�

¼ 1þ a
2

and a can be arbitrarily large, TMCðLPTÞ=TMC� is unbounded. There-
fore, we need to design an algorithm that considers both objectives
simultaneously.

4.1. The special case cij ¼ ai þ cj

For the cost function cij ¼ ai þ cj, we propose a fast heuristic,
heuristic H5, which works as follows. Let the makespan of the
LPT schedule be L. Then the jobs are sorted in ascending order of
their processing times; i.e., p1 6 p2 6 � � � 6 pn. The jobs are sched-
uled on the machines, starting with the first machine. Specifically,
the first k jobs are scheduled on machine 1, where k is the smallest
index such that the total processing time of the first k jobs is larger
than L. We then delete the k jobs and machine 1 from consider-
ation, and repeat the process on machine 2. This process is re-
peated until all jobs have been scheduled. Shown below is a
description of heuristic H5.

Heuristic H5(J;M)
(1) Disregarding the cost of the jobs, schedule the n jobs on the

m machines according to LPT. Let L denote the makespan of
the LPT schedule.

(2) Sort the jobs in ascending order of their processing times. Let
J ¼ ðJ1; J2; . . . ; JnÞ be a list of the n jobs such that p1 6 p2 6

� � � 6 pn.
(3) Set i ¼ 1.
(4) If the total processing time of the jobs in J is less than or
equal to L, then schedule all jobs in J on machine i and stop.

(5) Let k be the smallest integer such that the total processing
time of the first k jobs is larger than or equal to L.

(6) Assign the first k jobs on machine i.
(7) Delete the first k jobs from J.
(8) i :¼ iþ 1.
(9) Goto Step 4.

Let Bi and B�i be the sets of jobs assigned to machine i in the
schedule generated by heuristic H5 and in the optimal schedule,
respectively. Let B ¼ hB1; B2; . . . ;Bmi and B� ¼ hB�1;B

�
2; . . . ;B�mi. With

this notation, we will prove a lemma that is instrumental in
proving Theorem 5.

Lemma 2. Let Bi be the set of jobs assigned to machine i in the
schedule generated by heuristic H5. Then, we havePi

h¼1PðBhÞP minfi� L;
Pn

j¼1pjg for all i 2 M.
Proof. If PðBhÞP L for all h;h ¼ 1; . . . ; i, then we havePi
h¼1PðBhÞP i� L. Otherwise, there is a machine f such that

PðBf Þ < L for 1 6 f 6 i. This means that all n jobs have been sched-
uled on machines 1;2; . . . ; f . Thus, we have

Pi
h¼1PðBhÞ ¼

Pn
j¼1pj.

h

We are now ready to prove Theorem 5.

Theorem 5. Heuristic H5 is a (ð73� 1
3mÞ,1)-approximation for problem

LEX (Cmax; TMC) when cij ¼ ai þ cj.
Proof. First, we want to show that heuristic H5 would be able to
schedule all the jobs on m machines so that each machine finishes
by time Lþ pmax. Suppose not. Then there is a job that cannot be
scheduled on any machine such that it completes by time
Lþ pmax. Since pj 6 pmax for all j, no machine becomes available
before time L when this job is being considered for scheduling. This
means that the total processing time of all the jobs that have been
scheduled so far is more than mL. This is impossible since L P C�max.
By the result of Graham (1969), we have

C�max 6 L 6
4
3
� 1

3m

� �
C�max:

Furthermore, we have pmax 6 C�max. Therefore, we have

CmaxðH5Þ 6 7
3
� 1

3m

� �
C�max:

We now consider the TMC objective. We will show that
TMCðH5Þ 6 TMC�, where TMC� is the optimal total machine cost
among all schedules with makespan equal to C�max.

Let ni ¼ jBij and n�i ¼ jB
�
i j. Note that

P
i2Mni ¼

P
i2Mn�i ¼ n. Let S

and S� be the schedule produced by heuristic H5 and the optimal

schedule, respectively. In schedule S, the smallest
Pi

h¼1nh jobs,
with respect to processing times, are scheduled on machines

1; . . . ; i. Suppose that, in schedule S�;
Pi

h¼1n�h >
Pi

h¼1nh. Then,

obviously, we have
Pi

h¼1PðB�hÞ >
Pi

h¼1PðBhÞ. By Lemma 2, we havePi
h¼1PðBhÞP i� L or

Pi
h¼1PðBhÞ ¼

Pn
j¼1pj for all i 2 M.

If
Pi

h¼1PðBhÞP i� L, then we have

Xi

h¼1

PðB�hÞ >
Xi

h¼1

PðBhÞP i� L P i� C�max;

which contradicts the fact that C�max is the optimal makespan.
If
Pi

h¼1PðBhÞ ¼
Pn

j¼1pj, then
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Xi

h¼1

PðB�hÞ >
Xi

h¼1

PðBhÞ ¼
Xn

j¼1

pj;

which again leads to a contradiction. Thus, we have

Xi

h¼1

nh P
Xi

h¼1

n�h

for all i 2 M. Now, TMCðH5Þ ¼
P

i2Mni � ai þ
Pn

j¼1cj. Since
Pn

j¼1cj is a
constant independent of the assignment, we will show thatP

i2Mni � ai 6
P

i2Mn�i � ai, and hence TMCðH5Þ 6 TMC�.
Let �ai ¼ ai � ai�1 for all i 2 M, where a0 ¼ 0. Since ai P ai�1, we

have �ai P 0 for all i 2 M.
X
i2M

niai¼n1�a1þn2ð�a1þ �a2Þþ �� �þnm

Xm

h¼1

�ah

 !

¼ðn1þn2þ���þnmÞ�a1

þðn2þ�� �þnmÞ�a2þ���þnm�am

¼n�a1þðn�n1Þ�a2

þðn�n1�n2Þ�a3þðn�n1�n2��� ��nm�1Þ�am

¼nð�a1þ�a2þ���þ�amÞ�
Xm�1

i¼1

Xi

h¼1

nh

 !
�aiþ1

( )
:

Since nð�a1 þ �a2 þ � � � þ �amÞ is a constant,
Pi

h¼1nh P
Pi

h¼1n�h for all

i 2 M and �ai P 0 for all i 2 M, we have TMCðH5Þ 6 TMC�. h
4.2. The special case cij ¼ ai � cj

We now consider the cost function cij ¼ ai � cj. We propose a
heuristic, heuristic H6, which works as follows. Like in heuristic
H5, let the makespan of the LPT schedule be L. We then sort the
jobs in descending order of the ratio cj

pj
; i.e., c1

p1
P c2

p2
P � � �P cn

pn
. Jobs

are now assigned to the machines, starting with the first machine.
The first k jobs will be assigned to machine 1, where k is the small-
est index such that the total processing time of the first k jobs is
larger than L. These k jobs and machine 1 will be deleted from
consideration, and we proceed to schedule jobs on machine 2. This
process is iterated until all jobs are assigned. Below is a description
of heuristic H6.

Heuristic H6(J;M)
(1) Disregarding the cost of the jobs, schedule the n jobs on the

m machines by the LPT rule. Let L denote the makespan of
this schedule.

(2) Sort the jobs in descending order of the ratios cj

pj
. Let

J ¼ ðJ1; J2; . . . ; JnÞ be a list of the n jobs such that
c1
p1

P c2
p2

P � � �P cn
pn

.

(3) Set i ¼ 1.
(4) If the total processing time of the jobs in J is less than or

equal to L then assign all jobs in J to machine i and stop.
(5) Let k be the smallest integer such that the total processing

time of the first k jobs is greater than or equal to L.
(6) Assign the first k jobs to machine i.
(7) Delete the first k jobs from J.
(8) i :¼ iþ 1.
(9) Goto Step 4.

In the proof of Theorem 6, we will assume that the jobs have
been sorted in descending order of cj

pj
(i.e., c1

p1
P c2

p2
P � � �P cn

pn
). Let

Bi and B�i be the sets of jobs assigned to machine i in the schedule
generated by heuristic H6 and in the optimal schedule, respec-
tively. Thus, TMCðH6Þ ¼

Pm
i¼1ai � VðBiÞ and TMC� ¼

Pm
i¼1ai � VðB�i Þ.
Theorem 6. Heuristic H6 is a (ð73� 1
3mÞ,1)-approximation for the

problem LEX (Cmax; TMC) when cij ¼ ai � cj for all 1 6 i 6 m.

Proof. Similar to the proof of Theorem 5, we can show that heuris-
tic H6 must be able to schedule the n jobs on the m machines so
that each machine finishes by time Lþ pmax. Since
L 6 ð43� 1

3mÞC
�
max and pmax 6 C�max, we have CmaxðH6Þ 6 ð73� 1

3mÞC
�
max.

We now show that TMCðH6Þ 6 TMC�, where TMC� is the optimal
total machine cost among all schedules with a makespan of C�max.

The ratio cj=pj is the cost per unit processing time. Let kj ¼ cj=pj

for each 1 6 j 6 n; hence cj ¼ kj � pj. We have k1 P k2 P � � �P kn.
Since heuristic H6 schedules jobs on each machine with total
processing time larger than L and since L P C�max, we have for each
1 6 i 6 m,

Xi

h¼1

PðBhÞP
Xi

h¼1

PðB�hÞ:

Now,

Xi

h¼1

VðBhÞ ¼
X

j2ðB1[���[BhÞ
cj ¼

X
j2ðB1[���[BhÞ

kj � pj:

Since heuristic H6 schedules the jobs in ascending order of the in-
dexes (and hence larger kj values) and since

Pi
h¼1PðBhÞPPi

h¼1PðB�hÞ, we have

Xi

h¼1

VðBhÞP
Xi

h¼1

VðB�hÞ:

Let �ai ¼ ai � ai�1 for all i 2 M, where a0 ¼ 0 and a1 ¼ 1. Since
ai P ai�1, we have �ai P 0 for all i 2 M.

X
i2M

ai � VðBiÞ ¼ VðB1Þ�a1 þ VðB2Þð�a1 þ �a2Þ þ � � � þ VðBmÞ
Xm

h¼1

�ah

 !

¼ ðVðJÞÞ�a1 þ ðVðJÞ � VðB1ÞÞ�a2 þ � � � þ VðBmÞ�am

¼ VðJÞð�a1 þ �a2 þ � � � þ �amÞ �
Xm�1

i¼1

Xi

h¼1

VðBhÞ
 !

�aiþ1

( )
:

Since VðJÞð�a1 þ �a2 þ � � � þ �amÞ is a constant,
Pi

h¼1VðBhÞP
Pi

h¼1VðB�hÞ
for all i 2 M, and �ai P 0 for all i 2 M, we have TMCðH6Þ 6 TMC�. h

In heuristics H5 and H6, we calculate an upper bound for the
optimal makespan by using LPT and thus have a competitive ratio
of ð1þ 4

3� 1
3m ;1Þ for our problems. However, if we use a better

approximation algorithm for the makespan with a worst-case per-
formance ratio of q, we can have a ð1þ q;1Þ-approximation algo-
rithm. For example, if we compute an upper bound by MULTIFIT,
we have a ð1þ 13=11;1Þ-approximation algorithm because the
worst-case performance ratio of MULTIFIT is 13/11 by Yue (1990).

The MULTIFIT algorithm is an approximation algorithm for
PjjCmax, which operates as follows. First, it computes a lower bound
(LB) and an upper bound (UB) for C�max. An obvious lower bound is

LB ¼ max pmax;

Pn

j¼1
pj

m

� �
, and an obvious upper bound is

UB ¼ 2� LB. It then conducts a binary search in the interval
[LB;UB]. For each value C obtained in the binary search (i.e.,
C ¼ LBþUB

2 ), it tries to schedulle the jobs by the First-Fit-Decreasing
(FFD) rule so that no job completes after time C. If it is successful
in scheduling all n jobs, then it sets UB to be C; otherwise, it sets
LB to be C. This process is iterated until UB ¼ LBþ 1. Now, if all jobs
can be scheduled by the FFD rule so that no job completes after
time LB, then it returns LB; otherwise, it returns UB.

Shmoys and Tardos (1993) considered the following scheduling
problem: job j on machine i requires a processing time pij and



Table 1
Comparisons of heuristics and approximation algorithms.

Problem cij Our paper Shmoys and Tardos (1993)

Alg. Ratio Ratio

LEXð
P

Cj ;MMCÞ cj H1 ð1;2� 1
mÞ ð1;2Þ

ai þ cj H2 ð1;2� 1
mÞ

ai � cj H3 (1, unbounded)
ai � cj ; �ay H4 ð1;2� 1

2ðm�1ÞÞ

LEXðCmax; TMCÞ ai þ cj H5 ð1þ qz;1Þ ð1þ qz;1Þ
ai � cj H6 ð1þ qz;1Þ

� �ay : a1 ¼ � � � ¼ am�1 ¼ 1; am > 1.
� qz: an approximation ratio for the parallel machine scheduling problem to minimize the makespan.
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incurs a cost cij. Assume T is given as an upper bound of the make-
span, what is the machine-job assignment that minimizes the total
assignment cost? They modeled this as the following linear pro-
gram. Given T and C, for any t P T , integer solutions to the linear
program, LP (T;C : t), have a one-to-one correspondence with
schedules that have a cost of at most C and a makespan of at most
T. The LP (T;C : t) problem can be formulated as follows:

Xm

i¼1

Xn

j¼1

cijxij 6 C;

Xm

i¼1

xij ¼ 1 for j ¼ 1; . . . ;n;

Xn

j¼1

pijxij 6 T for i ¼ 1; . . . ;m;

xij P 0 for i ¼ 1; . . . ;m ; j ¼ 1; . . . ; n;

xij ¼ 0 if pij > t; i ¼ 1; . . . ;m; j ¼ 1; . . . ;n;

They proved that if LP (T; C : t) has a feasible solution, then there ex-
ists a schedule that has a makespan of at most T þ t and a cost of at
most C. They also provided an algorithm that converts a feasible
solution to LP (T;C : t) into the required schedule.

We can apply their result to our problem LEX (Cmax; TMC). Note
that in our problem pij ¼ pj and cij ¼ ai þ cj or cij ¼ ai � cj, which
implies that the model in Shmoys and Tardos (1993) is more gen-
eral than ours. According to the above result, we can get an
ð1þ q;1Þ approximation algorithm by the following procedure
where q is an approximation ratio of any approximation algorithm
for minimizing the makespan in an environment with identical
machines in parallel.

Step 1. Apply an approximation algorithm for minimizing the
makespan with identical machines in parallel and obtain the
makespan T 0. (For example, when LPT is applied, we have T 0 such
that C�max 6 T 0 6 ð43� 1

3mÞC
�
max).

Step 2. Regard C as a variable, solve LP (T 0;C : pmax) with the
objective C to be minimized and get an optimal value C0.

Step 3. Convert an optimal solution to LP (T 0;C0 : pmax) into a fea-
sible solution.

Since T 0 P C�max and we allow split jobs to multiple machines in
a linear program solution, we have C0 6 TMC�. Furthermore,
pmax 6 C�max and T 0 6 qC�max. The optimal solution from Step 2 is fea-
sible to LP (T 0;C0 : pmax), and thus, we can get a schedule with a
makespan of at most T 0 þ pmax and cost at most C0, which implies
we have a ð1þ q;1Þ -approximation algorithm for LEX (Cmax; TMC).

However, to find such an approximation, it is necessary to apply
two procedures (which determine the overall time complexity),
namely, a linear programming algorithm in order to obtain a frac-
tional matching solution (in Step 2) and a weighted bipartite
matching algorithm for the rounding (in Step 3). This LP is consid-
ered a fractional packing problem and thus can be solved in
Oðmn2 log nÞ; the weighted bipartite graph has OðnÞ nodes and
OðnÞ edges and thus the weighted bipartitie matching can be
solved in Oðn2 log nÞ. Therefore, the overall time complexity is
Oðmn2 log nÞ.

The proposed algorithms for our problem LEX (Cmax; TMC) are in
both cases (i.e., cij ¼ ai þ cj and cij ¼ ai � cj) much simpler and eas-
ier to implement; their time complexity is Oðn log nÞ.

5. Conclusions

We consider bi-criteria scheduling problems where customers’
objectives as well as service providers’ objectives have to be opti-
mized at the same time. As a customers’ objective, we consider
either the total completion time or the makespan and as a service
providers’ objective, we consider either the total assignment cost
or the maximum assignment cost. The primary objective is the cus-
tomers’ objective and the secondary objective is the service provid-
ers’ objective. For three machine assignment cost functions
(cij ¼ cj; cij ¼ ai þ cj, and cij ¼ ai � cj), we provide ða; bÞ-approxima-
tion algorithms.

Our models are all special cases of the more general model con-
sidered by Shmoys and Tardos (1993), who did provide a polyno-
mial time approximation algorithm that is applicable to all
models within their framework. However, their approximation
scheme is clearly computationally slower than those we propose
and it does not provide any intuitive insights into the respective
problems. Our schemes are based on prioritization and are there-
fore more intuitive and easier to implement (see Table 1). All the
heuristics proposed in this paper run in Oðn log nÞ, whereas the
algorithm developed by Shmoys and Tardos runs in Oðmn2 log nÞ.
Our worst case approximation ratios are in three cases better than
the ratio in Shmoys and Tardos; in two other cases they are the
same and in one case we were not able to determine a bounded
worst case approximation ratio.

We have considered only traditional scheduling objectives that
are functions of completion times as the primary objective. How-
ever, considering MMC or TMC as the primary objective may lead
to different approximation ratios. We have only considered cases
where either a ¼ 1 or b ¼ 1. Finding an ða; bÞ-approximation algo-
rithm for a > 1 and b > 1 may be a very promising research topic.

Appendix A. Procedure for solving minimum cost for machine
m problem

For SPT schedules, we sort the jobs in non-decreasing order of
their processing times and in case of a tie we sort the jobs in
non-decreasing order of their costs. When there are jobs with iden-
tical processing times, those jobs may be eligible to multiple con-
secutive ranks. Thus, we define Fr0 ;r00 to be the set of jobs that can be



Fig. 1. A shortest path problem to solve Minimum Cost for Machine m.
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scheduled in rank r for r0 6 r 6 r00. Since the number of jobs in Fr0 ;r00

that can be scheduled on machine m in ranks ½r0; r00� is at most
r00 � r0 þ 1, we can define Fr0 ;r00 to be the set of (r00 � r0 þ 1) jobs with
minimum costs from Fr0 ;r00 . Now, the problem is to select and assign
jobs from Fr0 ;r00 to rank r for r0 6 r 6 r00 such that each rank has ex-
actly one job and the total cost of assigned jobs is minimum.

If r00 P r0 þ 2, then ranks r0 þ 1; r0 þ 2; . . . ; r00 � 1 must be filled
by jobs in Fr0 ;r00 . So, we can assign ðr00 � r0 � 1Þ jobs to those ranks
first and redefine the problem by taking off those ranks along with
the scheduled jobs. Thus, without loss of generality, we can say
that r00 ¼ r0 or r00 ¼ r0 þ 1. Moreover, Fr;r has at most one job and
Fr;rþ1 has at most two jobs. The number of possible ðr0; r00Þ pairs
for Fr0 ;r00 is bounded by kþ ðk� 1Þ ¼ 2k� 1 and the number of jobs
in Fr0 ;r00 is bounded by kþ 2ð2k� 1Þ ¼ 5k� 2.

In order to describe the subsequent steps, we use following
notation.

� Let c1ðFr;rÞ be the cost of the job in Fr;r if jFr;r j ¼ 1 and 1
otherwise.
� Let c1ðFr;rþ1Þ be the cost of the job with the lower cost in Fr;rþ1 if
jFr;rþ1jP 1 and 1 otherwise.
� Let c2ðFr;rþ1Þ be the cost of the job with the higher cost in Fr;rþ1 if
jFr;rþ1j ¼ 2 and 1 otherwise.

We define the following shortest path problem from a source
node ð0;0Þ to the destination node ðkþ 1; kþ 1Þ in a layered graph
(See Fig. 1).

Nodes are defined as follows:

� Node (0, 0) is a dummy source node.
� Node (kþ 1; kþ 1) is a dummy destination node.
� Node ðr; r þ 1Þ denotes that rank r is assigned from a job in Fr;rþ1

for r ¼ 1; . . . ; k� 1.
� Node ðr; rÞ denotes that rank r is assigned from a job in Fr;r for

r ¼ 1; . . . ; k.
� Node ðr; r � 1Þ denotes that rank r is assigned from a job in Fr�1;r

for r ¼ 2; . . . ; k.

The arcs and their costs are defined as follows:

� ðk; kÞ and ðkþ 1; kþ 1Þ are connected and the arc cost is 0.
� ðk; k� 1Þ and ðkþ 1; kþ 1Þ are connected and the arc cost is 0.
� ðr � 1; rÞ and ðr; r þ 1Þ are connected and the arc cost is c1ðFr;rþ1Þ.
� ðr � 1; r � 1Þ and ðr; r þ 1Þ are connected and the arc cost is

c1ðFr;rþ1Þ.
� ðr � 1; r � 2Þ and ðr; r þ 1Þ are connected and the arc cost is
c1ðFr;rþ1Þ.
� ðr � 1; rÞ and ðr; rÞ are connected and the arc cost is c1ðFr;rÞ.
� ðr � 1; r � 1Þ and ðr; rÞ are connected and the arc cost is c1ðFr;rÞ.
� ðr � 1; r � 2Þ and ðr; rÞ are connected and the arc cost is c1ðFr;rÞ.
� ðr � 1; rÞ and ðr; r � 1Þ are connected and the arc cost is c2ðFr�1;rÞ.
� ðr � 1; r � 1Þ and ðr; r � 1Þ are connected and the arc cost is

c1ðFr�1;rÞ.
� ðr � 1; r � 2Þ and ðr; r � 1Þ are connected and the arc cost is

c1ðFr�1;rÞ.

From the arcs of a shortest path, we can construct an optimal
solution.

Now, consider the running time of the proposed algorithm. It
takes Oðn log nÞ time to sort the jobs. It takes OðnÞ time to construct
Fr0 ;r00 and Fr0 ;r00 . As for the shortest path problem, the number of arcs
is less than 9k ¼ OðkÞ 6 OðnÞ and a shortest path can be obtained in
OðnÞ time. Therefore, the proposed algorithm can be implemented
in Oðn log nÞ time.
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