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control Lyapunov function are proposed to synchronize these two different fuzzy chaotic
systems and speed up the convergence of errors. By using this new model, the numbers
of fuzzy rules of chaotic systems can be reduced from 2" to 2 x N and only 2 subsystems
are needed, where N is the number of nonlinear terms. The fuzzy systems become much
simpler. In addition, through the new fuzzy model, the new fuzzy systems are much
New control Lyapunov function simpler than T—S fuzzy systems (.when nonlipear systems are complicf‘ated) and'can be used
New pragmatical adaptive method to any other kind of application in fuzzy logic control or fuzzy modeling. Mathieu-Van der
Mathieu-Van der Pol system Pol system (which is called M-V system in this paper) and Quantum cellular neural
networks nanosystem (which is called Q-CNN system in this paper) are used for illustra-
tions in numerical simulation results to show the effectiveness and feasibility of our new
adaptive approach and new control Lyapunov function. The T-S fuzzy modeling and tradi-
tional adaptive control are also given in Appendices B and C for comparison.

© 2014 Elsevier Inc. All rights reserved.
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1. Introduction

In the last few years, synchronization in chaotic dynamical systems has received a great deal of interest among scientists
from various fields [1-8]. The phenomenon of synchronization of two chaotic systems is fundamental in science and has a
wealth of applications in technology. More and more applications of chaos synchronization were proposed. There are many
control techniques to synchronize chaotic systems, such as linear and nonlinear error feedback control [9,10], active control
[11,12], backstepping control method [13-15], impulsive control [16,17] and sliding mode control [18-20].

Most of those control techniques mentioned above are based on the exact knowledge of the system structure and
parameters. But in practice, some or all of the system parameters are uncertain. Moreover, these parameters change from
time to time. A lot of works have proceeded to solve this problem by adaptive synchronization [21-24]. In current scheme
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of adaptive synchronization, traditional Lyapunov stability theorem and Barbalat lemma are used to prove that the error vec-
tor approaches zero as time approaches infinity, but the question that why those estimated parameters also approach the
uncertain values remains no answer. In this article, pragmatical asymptotically stability theorem and an assumption of equal
probability for ergodic initial conditions [25,26] are used to prove strictly that those estimated parameters approach the
uncertain values. Moreover, traditional adaptive chaos synchronization in general is limited for the same system. In this
paper, two different chaotic systems are synchronized by using adaptive control law based on pragmatical asymptotically
stability theorem.

In recent years, fuzzy logic [27-30] has received much attention from the control theorists as a powerful tool for the non-
linear control. Among various kinds of fuzzy methods, Takagi-Sugeno fuzzy system is widely accepted as a tool for design
and analysis of fuzzy control system [31-40]. Although this powerful model can simulate any real chaotic system, its number
of fuzzy rules is based on the number of nonlinear terms. It means that if there are N nonlinear terms in a chaotic system,
there will be 2" fuzzy rules in its fuzzy model, and then there will be 2" linear system to simulate only one chaotic system.
Therefore when there are lots of nonlinear terms in a chaotic system, the problem is going to be more complicated. As a
result, this paper provides a new fuzzy model to model a chaotic system with lots of nonlinear terms. By using this new fuzzy
model, it becomes much simpler to synchronize two different chaotic systems with different number of nonlinear terms.

The layout of the rest of the paper is as follows. In Section 2, the theory of new fuzzy model is introduced. In Section 3,
new fuzzy model of two chaotic systems are proposed. In Section 4, new Mathieu-Van der Pol system and Quantum cellular
neural networks nanosystem, two simulation examples, are given for synchronization. In Section 5, conclusions are given.
Pragmatical asymptotically stability theorem is enclosed in Appendix A, T-S fuzzy modeling and other kind of traditional
adaptive control are discussed in Appendix B.

2. New fuzzy model theory

In system analysis and design, it is important to select an appropriate model representing a real system. As an expression
model of a real plant, the fuzzy implications and the fuzzy reasoning method suggested by Takagi and Sugeno are tradition-
ally used. The new fuzzy model is also described by fuzzy IF-THEN rules. The core of the new fuzzy model is to express each
nonlinear equation in two linear sub-equations by fuzzy IF-THEN rules and then take all the first linear sub-equations to
form one linear subsystem and all the second linear sub-equations to form another linear subsystem. The overall fuzzy mod-
el of the system is achieved by fuzzy blending of this two linear subsystem models. Consider a continuous-time nonlinear
dynamic system as follows:

Equation i:

rule 1:
IF Z,‘(t) is Mi
THEN x;(t) = Aux(t) + Biu(t)
rule 2 :
IF z;(t) is Mp,
THEN x;(t) = Appx(t) + Bpu(t) (2.1)

X(t) = [x1(),%(8), .. Xa(0)]
[Ll1 (t)a u2(t)7 [REE} un(t)]T
i=1,2,...,n (n is the number of nonlinear terms). M;,M;; are fuzzy sets, A;,B; are column vectors and
X;(t) = Ayx(t) + Byu(t), j = 1,2, is the output from the first and the second IF-THEN rules. Given a pair of (x(t), u(t)) and take
all the first linear sub-equations to form one linear subsystem and all the second linear sub-equations to form another linear
subsystem, the final output of the fuzzy system is inferred as follows:

M1 7" [Anx(t) + Biyu(t) My, 7" [Anx(t) + Brau(t)

. MZ] Az]X(t) + Bzﬂi(t) M22 Azzx(t) —+ Bzzu(t)
x0=| : o | (22)

I~
—~

=
=

Il

Mj AﬂX(f) + Biy ll(t) M, A,‘zX(t) -+ B,-zu(t)

Note that:
for each equation i:

2
> M) = 1
Jj=1

Mijj(zi(t)) =0, i=1,2,...,nandj=1,2



460 S.-Y. Li et al./ Information Sciences 277 (2014) 458-480

Via the new fuzzy model, the final form of the fuzzy model becomes very simple. The new model provides a much more
convenient approach for fuzzy model research and fuzzy application. The simulation results of complicated chaotic systems
are discussed in next section.

3. New fuzzy model of chaotic systems
New fuzzy models of Q-CNN system and M-V system are shown in this section.
3.1. Fuzzy modeling of Q-CNN system

Quantum-CNN system is [29]:

X1 =-2a14/1 —x2sinx,

X = Wi (X1 — X3) + 204 \/%7 COS X
1

X3 =—2ay4/1 — X% sinx,

Xy =Wy (X3 — X1) + 20, ﬁ COS X4
where a;,a;,w; and w, are the parameters. When a; =6.8,a, =4.3,w; =4.7 and w, =3.9 and initial states is
(0.1,0.5,0.1,0.5), the system is chaotic as shown in Fig. 1.
Step of fuzzy modeling:
Step 1:
Assume that /1 — x2 sinx, € [-Z;,Z;] and Z; > 0, then the first equation of (3.1) can be exactly represented by new fuzzy
model as following:

(3.1)

Rule 1: IF /1 —x2sinx, is My;, THEN X%, = —2a:Z; (3.2)
Rule 2: IF /1 —x2sinx, is My, THEN % = 2a,Z; (3.3)
where
1 +/1 = xZsinx, 1 +/1 —x%sinx,
M;; =3 (1 +Z:>, My =3 (1 727:

and Z; = 0.8. My; and M, are fuzzy sets of the first equation of (3.1) and My, + My, = 1.

- ; ; : ; ; \
0.8 06 0.4 -0.2 1] 02 0.4 06

Fig. 1. Chaotic behavior of quantum cellular neural networks nano system.
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Step 2:
Assume that cosx,/y/1 — x3 € [~Z,,Z,] and Z, > 0, then the second equation of (3.1) can be exactly represented by new
fuzzy model as following:

Rule 1: IF cosx,/\/1 —x% is My;, THEN X, = —wq (X1 — X3) + 2a1%:1Z> (3.4)
Rule 2: IF cosx,/y/1—x3is My, THEN X, = —w;(x1 — X3) — 2a1x1Z> (3.5)

where

1 CoSXy/\/1—x2 1 CosXy/1/1—x2
M21—2(1+ZZ s M22:§ 1—272

and Z, = 1.6. M; and M, are fuzzy sets of the second equation of (3.1) and My, + My, = 1.

Step 3:

Assume that (/1 —x%sinx, € [-Z3,Z5] and Z3 > 0, then the third equation of (3.1) can be exactly represented by new
fuzzy model as following:

Rule 1: IF /1 —x2sinx, is M3;, THEN X3 = —2a,Z5 (3.6)
Rule 2 : IF /1 —x2sinx, is M3, THEN X3 = 20,75 (3.7)
where
1 1 —x2sinxy 1 1 —x2sinxy
ATt CE T
3 3

and Z3 = 0.5. M3; and M3, are fuzzy sets of the third equation of (3.1) and M3; + M3, = 1.

Step 4:

Assume that cosxs/\/1 —x% € [-Z4,Z4) and Z, > 0, then the fourth equation of (3.1) can be exactly represented by new
fuzzy model as following:

Rule 1: IF cosxs/y/1—x%is My, THEN X5 = —Ws(x3 — X1) + 202X3Z4 (3.8)
Rule 2: IF cosxs/y/1—x%is My, THEN X4 = —W;(x3 —X1) — 202X3Z,4 (3.9)

where

1 CoSXs/y/1 — X3 1 €0SXs/4/1 — X2
M41=2(1+Z4 ) M42=§ 17274

and Z, = 1.3. M4; and My, are fuzzy sets of the fourth equation of (3.1) and My + Mg, = 1.

Here, we call (3.2), (3.4), (3.6) and (3.8) the first liner subsystem under the fuzzy rules and (3.3), (3.5), (3.7) and (3.9) the
second liner subsystem under the fuzzy rules.

The first linear subsystem is

X = —2a1Z,
):<2 = —Wi(X1 — X3) + 201X1Z, (3.10)
X3 = —20,73
Xy = Wy (X3 — X1) + 2a3X3Z4)
The second linear subsystem is
X1 = 2a41Z,
>:<2 = —Wi (X1 — X3) — 201X1Z; (3.11)
X3 = 20,73
Xg = —Wy(X3 — X1) — 2a3X3Z,)

The final output of the fuzzy Quantum-CNN system is inferred as follows and the chaotic behavior of fuzzy system is
shown in Fig. 2.
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Fig. 2. Chaotic behavior of fuzzy quantum cellular neural networks nano system.
. T T
X1 M]] —2(1121 M]z 2(1]21
5{2 _ Mz] —Wq (X] — X3) + 2(1]X1Zz n M22 —Wq (X] — X3) — 2(11X1Zz (3 12)
).(3 M3] 720223 M32 2(1223
X4 My —W (X3 — X1) + 20,X3Z4 My, —Wy(X3 — X1) — 2a2X3Z4

The T-S fuzzy model of Q-CNN system is also discussed in Appendix B for comparison which chaotic behaviors are shown
in Fig. 3. Comparing Figs. 1-3, obviously, via using new fuzzy model, not only the number of fuzzy rules in Quantum-CNN

system can be reduced from 2* to 2 x 4, but also the simulation results are perfectly the same to the original chaotic behavior
of the Quantum-CNN system.

i ; ; ‘ J ‘ :
08 -06 -0.4 0.2 u] 0.2 0.4 06

Fig. 3. Chaotic behavior of T-S fuzzy Q-CNN system.



S.-Y. Li et al./Information Sciences 277 (2014) 458-480 463
3.2. Fuzzy modeling of M-V system

For M-V system:

yi=Y,
Y2 =—(a-+bys)y: - (@-+bys)yi -y, +dys (3.13)
Y3 =Y,

Va =—eys +f(Vs —V3Ya) + &N

where q, b, ¢, d, e, f, g are the parameters. This system exhibits chaos as shown in Fig. 3 when the parameters of system are
a=10,b=3,c=04,d=70,e=1,f =5,g = 0.1 and the initial states of system are (¥;¢,¥20,Y30,Y40) = (0.1,-0.5,0.1, -0.5).
Step of fuzzy modeling:
Before modeling, the right hand side of second equation of (3.13) can be divided into part A, —(a + by;)y; — ¢y, + dy;, and
part B, —(a + by)y3, i.e. y, = A+ B, where A and B are the index of these two parts.

Step 1:
Assume that y, € [-W;,W;] and W; > 0O:
Rule 1: IF y; is Naz1, THEN A= —(a+ by;)W; —cy, +dy; (3.14)
Rule 2 : IF y; is Naz2, THEN A= (a+ by;)W; —cy, +dy; (3.15)
where

1 1
Nz :§<1+‘X/—11>, N2, :§< —‘X/—l)

and W; = 6. Ngy; and Ny, are fuzzy sets of the second equation of (3.11) and Nap1 + Nax» = 1.
Assume that y3 € [-W,,W;] and W, > 0:

Rule 1: IF ¥3 is Ngy1, THEN B = —(a+ by;)W, (3.16)
Rule 2 : IF y3 is Ngpp, THEN B = (a+ by;)W, (3.17)

where

1 3 1 3
N :i(l +‘3\}/—12>7 N2 :§< —‘X/—12>
and W, = 140. Ng,; and Npy, are fuzzy sets of the second equation of (3.13) and Npp; + N = 1.
The second equation of (3.13) can be exactly represented by new fuzzy model as following:

Rule 1: IF Y1 is Nao1 and IF y? is N321, THEN Yz = NAZ]A + Np1B (318)
Rule 2 : IF W is NA22 and IF y% is Ngzz, THEN yz = NA22A + NgzzB (319)
Step 2:

Assume that y;y, € [-W3, Ws5] and W, > 0, then the fourth equation of (3.13) can be exactly represented by new fuzzy
model as following:

Rule 1: IF y3y, is Na1, THEN y4 = —ey; +f(ys — Way3) + 80 (3.20)
Rule 2: IF y3y, is Nap, THEN y4 = —ey; +f(y, + Wsy3) + 8y (3.21)
where
_1 Y3Ya _1 Y34
N 7§<1+W2 ) N427§ 1_W2

and W, = 1.6. N4; and Ny, are fuzzy set of the fourth equation of (3.13) and N4; + N4 = 1.

Here, we call (3.18) and (3.20) the first liner subsystems under the fuzzy rules and (3.19) and (3.21) the second liner sub-
systems under the fuzzy rules:

The first linear subsystem is

=y
V2 = Naxi(=(a+ by;)W1 — ¢y, +dy) + Npa1 (—(a + by;)W») (322)
V3=Ya '

Va=—ey; +f(ys —Wsy3) + gy

The second linear subsystem is
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=y
Y2 = Npaa((a+ bys )Wy — ¢y, +dys) + Nia((a + bys)Ws) (3.23)
V3=Y4
Va = —eys +f(ys + Wsys3) + gy
The final output of the new Mathieu-Van der Pol system is inferred as follows:
» Nu1' Ty, 1
yz _ Nz] NAZ](*(a‘Fbyg)Wl ny2+dy)+N321 (7(a+by3)wz
V3 N3t | | Vs
Va Ny _T—e}’3 +f(Va —Wsys) + &y . (3.24)
Ni27' [¥2 1
N Nj Naza((a + by;)W1 — ¢y, +dys) 4+ Nexa((a + by; )W,
N3 2
Ny | L—eys +f(ys +Wsys) + 8y J

where Ni; = Nj; = N3; = N33 = 0.5 and N,; = Ny, = 1. The chaotic behavior of fuzzy systems is shown in Fig. 5.

The T-S fuzzy model of M-V system is also discussed in Appendix B for comparison which chaotic behaviors are shown in
Fig. 6. Comparing Figs. 4-6, obviously, via using the new fuzzy model, the number of fuzzy rules in new M-V system can be
reduced from 2° to 2 x 3 and the simulation results are perfectly the same to the original chaotic behavior of the M-V
system.

4. Pragmatical adaptive synchronization of different fuzzy chaoticsystems via new adaptive approach

In this section, there are two cases in numerical simulation results, where Quantum-CNN system is chosen as master
system, and new Mathieu-Van der Pol system is regarded as slave system. In Case I, the new adaptive control law is used
to control the membership function of slave system to trace the membership function of master system. In Case II, adaptive
synchronization of the slave system and master system with all unknown parameters is achieved via the new adaptive
control law.

Unlike traditional Lyapunov function - quadratic from, a new control Lyapunov function is proposed as follow:

V(e) = exp(ke'e) — 1 (4.1)

Fig. 4. Chaotic behavior of new Mathieu-Van der Pol system.
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25

Fig. 6. Chaotic behavior of T-S fuzzy M-V system.

where e is the error dynamics. By designing the different forms of error states and parameters in this new control Lyapunov
function, the errors of all unknown parameters are decayed exponentially and much more efficient to achieve the objective
values.

Furthermore, in order to show the much better performance of our new strategy in adaptive synchronization of mismatch
in parameters, the simulation results in Case Il by using traditional adaptive method are also given for comparison in Appen-
dix C.

Case I: Synchronization of different fuzzy chaotic systems with different numbers of fuzzy rules.

In order to achieve synchronization, the new fuzzy Mathieu-Van der Pol slave system (3.18) is expanded to a new form as
follow:
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W Nu 1" [y, +un ]
V2| | Na Nap1(—(a+ by;)W1 — ¢y, +dy) + Npp1 (—(a + by; )W +
3| | Ns Va+ Uz

Va Nat | L—eys +f(ys — Wsys) +gy1 +ua J

(4.2)
Ni2 1" [y +un

Ny, Naz2((a + by;)W1 — ¢y, + dys) + Npxa((a + by; )W + U,
N3 Y+ Uz
Ny | L—eys +f(Vs + Wsys) + 81 + gy d

where

Nn:ﬁ] ><0.5+Q1 XS]], N12:ﬁ2><0.5+éz x S12
Not =Py x 14 Q1 xS, Nyp=Pyx1+Q2xSn
N31 :ﬁ1 ><0.5+@1 ><S31, N32:ﬁ2><0.5+@2 ><S32

5 1 Y3Ya A 5 1 Y3Ya A
Ny =Py x=(1+%=2 Sst;, Np=Pyx=[(1-=22 S
41 1><2<+W2 +Q1 xSy, Ny 2% 5 W, + Q2 x Sp
\ivherefl , 1327 0, and Q, are estimated parameters and (1310, ﬁzo, @107 on) = (1,1,0,0), the goals of the estimated parameters
Pand Q are0and 1. S;,i = 1—4 and j = 1, 2 are the fuzzy membership functions of the master system, here S; = M;,i = 1—4
andj=1,2.

The synchronizing processes are divided into two steps: (1) Using the first linear subsystem of the slave system in Eq.
(4.2) to trace the trajectory of the first linear subsystem of the master system in (3.12). (2) Using the second linear subsystem
of the slave system in Eq. (4.2) to trace the trajectory of the first linear subsystem of the master system in (3.12):

Step1: The error and error dynamics in first linear subsystem are

61 =X1—-W
€ =X2—Y,
€3 =X3 Y3
€4 =X4 — Y4

e1 =X —Y1 =-2a1Z1 — (y, + Un)
€ =X — Y2 = —Wi(X1 —X3) +2a1x:1Z;
—(Na21(—(a+ by; )Wy — ¢y, + dy)
+Np21(—(a + by;)W3) + uq2) (4.3)
€3 =X3 — Y3 = —2ap7Z3 — (Y4 + Us3)
€4 =Xg —Ya = —Wy(X3 — X1) + 20X3Z4
—(—ey3 +f(Va — W3y3) +gyy + U14)

Choose a new control Lyapunov function of the form:

1~, 1=
Vi =exp (k(e? + el +e5+e3)) -1 +5P§ +ZQ§ >0 (4.4)

where k=1.5,P; =P; —P;,Q; =Q,; — Q; and P, = 0,Q, = 1.
Its time derivative through error dynamics (4.4) is
V1 =2k exp (k(e% + E% + e% + ei)) X (E]él + ezéz + E'3é3 + E4é4)
+ ﬁlﬁl + Qlél
=2kexp (k(e? + e} +e3 +e3)) x (e1(—2mZy — (¥, + Ur1))
-+ ez(*Wl (X] — X3) -+ 2a1x122 — (me(f(a + by3)W] —Cy, + dy)
+ Npa1(—(a + by3)W3) + u12)) + e3(—2a:Z3 — (y4 + u13))

(4.5)

+ea(—Wa (X3 — X1) + 2a2%3Z4 — (—€Y5 + f (V4 — Way3) + &1 + Uia))) + PPy + Q1 Q,
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Choose
Py = P, = 2ke; exp (k(e3 + €2 + €2 +e2)) x Py
Q1 = —Qy =2kesexp (k(€? + €3 + €2 +¢€2)) x Q
Uy = —2(1121 -y, + ﬁ% + €1
Uy = —Wi (X1 — X3) + 2a1X1Z2 — (Naz1 (—(a + by3)W1 — ¢y, + dy) 9
+ Npo1(—(a + by;)W3)) + e,
Uiz = —202Z5 — Y, + Q% +e3

Uiy = —Wa(X3 — X1) + 202%3Z4 — (—€Y3 + f (V4 — Ways3) + 84
We obtain

Vi =2kexp (k(e + e +e2+e2)) x (—el —e3 —el —e3) <0 (4.7)

which is negative semi-definite function of e, e,, e3, ey, 131 and Ql. The Lyapunov asymptotical stability theorem is not sat-
isfied. We cannot obtain that common origin of error dynamics (4.3) and parameter dynamics (4.6) is asymptotically stable.
By pragmatical asymptotically stability theorem (see Appendix), D is a 6-manifold, n = 6 and the number of error state vari-
ables p=4. When e =e;=e3=¢,=0 and 131, 61 take arbitrary values, V;=0, so X is of 2 dimensions,
m=n-p=6-4=2m+1 <n is satisfied. According to the pragmatical asymptotically stability theorem, error vector e
approaches zero and the estimated parameters also approach the uncertain parameters. The equilibrium point is pragmat-
ically asymptotically stable. Under the assumption of equal probability, it is actually asymptotically stable.
Step2: The error and error dynamics in second linear subsystem are

e =X1 =Y,
€2=X2—-Y,
€3 =X3 —Y3
€4 =X4—Yy

e =X —y1=2aZ — (¥, +un)
éz = 5(2 —yz = —Wq (X] — X3) — 2(11X1ZZ — (N,m((a + by3)W1 —Cy, + dy)
+N322((a+by3)W2) +U12)

. . . 4.8
€3 =X3 — 3 = 20273 — (V4 + U13) “8)
€4 =X4 —Ya=—Wo(X3 — X1) — 2a2X3Z4
—(—eys +f(ys + Wsys) +8yy + ta)
Choose a new control Lyapunov function of the form:
1~, 1=
VZ:exp(l<(e§+e§+e§+eﬁ))—1+§P§+§Q§>0 (4.9)

where k=1.5,P, =P, — P,,Q, =Q, — Q, and P, = 0,Q, = 1.
Its time derivative through error dynamics (4.4) is
Vy = 2kexp (k(e? +e2 + e +e2)) x (e1é1 + €26 + €33 + e4es) + P,P; + Q2Q,
=2kexp (k(e? + €3 + e +¢€3)) x (e1(2mZ; — (¥, + Ua1))
+ ea(=Wi (X1 —X3) — 2a1%:1Z2 — (Nao2((a + by;)W1 — ¢y, +dy) (4.10)
+ Np2a((a + by;)W2) + u)) + €3(2a2Z3 — (V4 + Uz3))
+es(—Wa(X3 — X1) — 202%3Z4 — (—ey3 + f(V4 + W3y3) + &y
Choose

P, — —D, — 2ke, exp (k(e2 + €2 + €2 +e2)) x P
Q2 = —Qz = 2kesexp (k(€? + €3 + €2 +¢€2)) x Qz
Uy =207 —y, + P} + e
Uy = —W1 (X1 — X3) — 2a1X1Z2 — (Naz2((a + by )Wy — ¢y, + dy) (411)
+ Npxo((a+ bys)W»)) + e,
Ups = 24,75 — Y4 + Q% + €5
Upg = —Wa(X3 — X1) — 202X3Z4 — (—€Y3 + f (V4 + W3Y3) +8V1) +€a
We obtain
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Vy =2kexp (k(e? +e3 + e +e3)) x (—e? —e2 —e2 —e3) <0 (4.12)

which is negative semi-definite function of eq, e;, e3, €4, 132 and éz. The Lyapunov asymptotical stability theorem is not sat-
isfied. We cannot obtain that common origin of error dynamics (4.8) and parameter dynamics (4.11) is asymptotically stable.
By pragmatical asymptotically stability theorem (see Appendix), D is a 6-manifold, n = 6 and the number of error state vari-
ables p=4. When e =e;,=e3=¢,=0 and 132, Qz take arbitrary values, V,=0, so X is of 2 dimensions,
m=n-p=6-4=2m+1 <nis satisfied. According to the pragmatical asymptotically stability theorem, error vector e
approaches zero and the estimated parameters also approach the uncertain parameters. The equilibrium point is pragmat-
ically asymptotically stable. Under the assumption of equal probability, it is actually asymptotically stable. After the steps 1
and 2, the two linear subsystems of the slave system can be synchronized to the two linear subsystems of the master system.
It means that the chaos synchronization for these two fuzzy chaotic systems can be achieved. The simulation results are
shown in Figs. 7 and 8.

Case II: Adaptive synchronization of different fuzzy chaotic systems with all unknown parameters.

In order to achieve synchronization, the new fuzzy Mathieu-Van der Pol system (3.18) is expanded to a new form as
follow:

W Nu 1T [y +un

V2 _ Ny, Na21(=(a+ bys)W1 — €y, + dy) + Npa1 (= (@ + by )W + uag

y3 N31 y4 + U3

Va Nal | —ey; +f(ys — Wsys) + 8y, + Ua . (4.13)

Nip 1T Y2 + Uiz + 26124

Nz | | Naza((@+ bys)Wy — &y, + dys) + Npxa (@ + bys) W + Uz
N3, Y+ Usy + 2073

Naz ] [ —ey; +f(ys + Wsys) + 8y, + Uz

where
Nip =Py x 05+ Q4 xS11, Npz =Py x05+ Q3 xSy
N21:131X1+QIX5217 N22:132><1+Q2><522
N3y =Py x 05+ Qq x S31, Nsp =Py x 0.5+ Q3 x S5,

~ 1 ~ 5 1 o
N41:P1><§<l-§-y‘/3v—yz4>-V-Q1><S417 N42:P2><§<1—yv3v—y;>+Q2><542

k=1.5
0 T T T T T T
B s : |
4 1 I i i i 1 I i i
1] 0.1 02 03 0.4 0s 0.6 07 08 09 1
t
1 T T T T T T
D | | L L | 1 | L L
0 0.1 02 0.3 0.4 05 06 07 08 09 1
t
T | T
i i i i 1 i i
03 0.4 0.5 06 07 0.8 09 1
t
T T T T
I I i i I I I
0 0.1 0.2 03 0.4 05 06 07 0.8 09 1

Fig. 7. Time histories of error of parameters Py, P,, Q; and Q, for Case L.
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k=1.5
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where a,b,¢.d.e.f.g, a,,a
ao—lobo

in (3.12):
(Stepl): The error and error dynamics in first linear subsystem are

€1 =X1 -1

€ =X2—Y,

€3 =X3 —Y3

€4 =2X4—Y4

e =X —y1=—-2aZ; — (y, + un)

ey =Xy — Yo = —Wi(X1 — X3) + 2a1X1Z;,
~(Naz1 (—(@ + by;)W1 — ¢y, +dy)
+Ngo1 (—(@+ bys)Wa) + us,)

€3 =X3 — Y3 = —20p7Z3 — (Y4 + Us3)

€4 =X4 —Ya4=—Wy(X3 —X1) + 202X3Z4
—(—éys +f(J’4 —Wsy3) +8y; + Uia)

Gy, W1, Wy, P17P27Q1 and Q, are estimated parameters

-3,C0 =04, dy =70,89 =1,fo = 5,8 =0.1 and (Pm,on,Qlo on)

Fig. 8. Time histories of error for Case I.

Choose a new control Lyapunov function of the form:

Vi=exp (k(et + 6+ 6+ ) — 1+

where

w; =47w, =39,a=

k~: 15, ?1 = P]

—1313@1 :Ql_él-
(=c—-¢d=d-deée=e—-ef=f-f,g=g—-g& and the
b=c=d

2

=e=f=g=0.

Its time derivative through error dynamics (4.4) is

Gy =0 — 1,0y = a; — 0y,

=W
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and djo = 0,d0 = 0, W10 =0,wy =0,

(1,1,0,0). The goals of the estimated
parameters P and Q are 0 and 1. Sij,i=1—4 and j = 1,2 are the fuzzy membership functions of the master system, here
Sij:Mij,i: 1-4 andj: 1,2.

The synchronizing processes are divided into two steps: (1) Using the first linear subsystem of the slave system in Eq.
(4.13) to trace the trajectory of the first linear subsystem of the master system in (3.12). (2) Using the second linear
subsystem of the slave system in Eq. (4.13) to trace the trajectory of the first linear subsystem of the master system

— Wy, W,
parameters:P; =0,Q; = 1,44 =6.8,a,

(4.14)

(13%+(§%+(1f+a§+\7v%+v”v§+62+BZ+62+&2+é2+f2+§2> >0 (4.15)

=Wy —Wy,d=a—ab=b—b,

—43,
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Vi =2kexp (k(e} + €2 + €3 +e3)) x (€161 + €263 + 363 + €4€4) + Gy + Gally + WiWy + WaW; + da

+bb+ ¢t +dd+ 6 +f + 88+ PPy + Q1Q,
=2kexp (k(e? + €3 + e} +e3)) x (er(—2aZ;

— (Vg + U11)) + e2(—W1 (X1 — X3) + 2a1X1Z;

— (Na21 (—(@+ by;) Wy — ¢y, + dy) + Nizi (— (@ + BY3)W2) + U12)) (4.16)
+ 63(—20223 — (y4 + ulg)) + 6'4(—W2 (X3 — X1) + 2(12X3Z4

—(—€y; +f()’4 — Wsy3) + 8y, +Uu)) + @181 + @y + Wy Wy

+ WoWs + @d + bb + ¢¢ + dd + eé + ff + g8 + P1P; + Q;Q4

Choose

P, = —P, = 2ke; exp (k(e2 + €2 + €2 +e2)) x Py
Q1 = ~Q1 = 2kes exp (k(e + €3 + €2 +¢€2)) x Qs
= —G, = 2ke; exp (k(e? +e%+ei+el)) x

Qe Qe
) =

5

1 :—\;Vl :2kezexp(k(e] +ez+e3+€4 ) ><V~V1

s

) X @
= —a, = 2kesexp (k(e3 + €2 + e} +€2)) x &

)

2)

2 = —Wy = 2keg exp (k(e? + €3 + €2 + €2)) x W,

a=—a=2ke,exp (k(e2 +e2+e}+e2)) xa
b= —b=2keyexp (k(e? + € + e + e2)) x b
¢ =—¢=2keyexp (k(e? + €} + e} +¢€2)) x &
d=—d=2ke, exp (k(e? +e2 + e} +€3)) xd
é=—&=2kesexp (k(e2 +e2 +e2+e2)) xe
f=—f=2kesexp (k(e + €3 +e2+e2)) xf
g=-g=2kesexp (k(e? + el + el +e2)) xg

Uy =—-2a41Z, -y, + (1% + ﬁ% + €1

Uy = —Wq (X] — X3) + 2(11X122 — (NAZ](—(G + by3)W1 —Cy, + dy)

+ Ngoi(—(a+ by;)W,)) + W2 +@ +b* + &+ d* + e,

: 4.17)
U3 = —20,73 — Y, + @ + Q% + €3
Ug = —Wa(X3 — X1) + 202324 — (—€Y3 + f(y4 — W3y3) +81)
WA+ 248 ey
We obtain
Vi =2kexp (k(e? + e +e3+e3)) x (—el —e} — el —ed) <0 (4.18)

which is negative semi-definite function of ey, e,, s, es, @,b,¢,d, é,f, 8, Gy, dz, Wi, W, Py and Q.. The Lyapunov asymptotical
stability theorem is not satisfied. We cannot obtain that common origin of error dynamics (4.14) and parameter dynamics
(4.17) is asymptotically stable. By pragmatical asymptotically stability theorem (see Appendix), D is a 17-manifold, n = 17
and the number of error state variables p = 4. Whene; =e; =e3 =e; =0and a, b C, d e f g, ay,0y, Wy, W, Pl, Q1 take arbi-
trary values, V; = 0, so X is of 13 dimensions, m=n—p =6 —4=13,m+ 1 < n is satisfied. According to the pragmatical
asymptotically stability theorem, error vector e approaches zero and the estimated parameters also approach the uncertain
parameters. The equilibrium point is pragmatically asymptotically stable. Under the assumption of equal probability, it is

actually asymptotically stable.

Step2: The error and error dynamics in second linear subsystem are

e =X1—Y;
e =X2—Y,
3 =X3—Y3

€4 =X4—Yy
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e1 =X —Y1=2mZ1 — (y, + Un)
e =X — Y2 = -Wi(X1 —x3) — 2a1X:Z;
—(Na21((a + by )W, — ¢y, + dy)

e3 =X3 — Y3 =2a2Z5 — (V4 + U13)
€4 =X4—Ys=—-Wa(X3 —X1) —

Choose a new control Lyapunov function o

1
Vo=exp(k(e2+e3+el+e3))—1+5

2
where k—ISPZ—PZ*szQz Q; - Qa @1 = —@y,8; =0y — Gy, Wy =Wy — Wy, Wy=Wy—Wy,d=a—ab=
c—c—cd d-dé=e—e f=f-fg=g—-g and the goal of parameters:P,=0,Q,=1,0, =6.8,a
=47,w, =39, a=b=c=d=e=f=g=0.

+Ng21 (@ + bys)Wa) + )

2(12X3Z4
~(~&ys + (v + Ways) + 8y + Uia)

f the form:

(P3+ Q3+ @+ @+ + W3+ @+ B2+ @+ 2+ &+ [24+82) >0

lts time derivative through error dynamics (4.19) is

V, = 2kexp (k(e? +e3 + e +e3)) x

(161 + €285 + €363 + e4€4)

+ @10y + Gy + Wy Wy + WoW, + Gd + bb + ¢C + dd + ée +ﬁ+g§+1~°2ﬁ2 + ézéz

=2kexp (k(e? + €3 + e} +e3)) x (e
+ea(—wi (X1 —Xx3) —

+ Npz1 (@ + By3)W2) +U12))

+ e3(2a2Z5 — (Y4 + U13)) + €a(—wa(x3

(2a1Zy — (yo +un))

2a1x1Z2 — (Naz1 ((@ + B}’3)W1 -+ Eiy)

_Xl)_

2(12X3Z4

—(—éy; +f(,V4 + Wsys) +8y; +ta)) + @1y + G20y + Wi W

+ WaWs + @ + bb + &€ +dd + e

é+ff+§§+ 132132 + 6262

Choose
Py = P, = 2key exp (k(e} + € + €} + €2)) x P,
62 - 7Q2 = 2kes exp (k(e2 +e2 + €3 +€2)) x Qy
a = —a; = 2ke; exp (k(e? + €2 +e2 +€3)) x &
Gy = — = 2kes exp (k(e2 +e2 +e2 +e2)) x @
Wi = —W; = 2ke; exp (k(e2 + €3 + €2 + €3)) x W,
Wy = —W, = 2kes exp (k(e? + €2 + €2 + €2)) x W,
a=—a=2ke,exp (k(e +e2+e}+e3)) xa
b= _bh— 2key exp (k(e? +e3 + €% +€3)) x
¢ = —C = 2ke, exp (k(e2 +e5+e3+e3)) x
d=—d= 2kes exp (k(e? + 3 + e} +e3)) xd
6= —&=2kegexp (k(e2 +e2 +e} +e3)) x &
f=—f = 2kesexp (k(e? + €3 +e2+e2)) xf
g=-g=2kesexp (k(e} + & + ¢ +€})) x &
Uy =20Z —y, + @ + TD% +é

Uy = —Wq (X] 2a1x122

_x3)_

— (NAZI ((a -+ by3)W1 —Cy, + dy)

+ Np((a+by;) W) + W2 + @ + b + 2 +d? + e,

Uz = 20223 — Y4 -‘ra% + é% +ées3
Ug = —Wy(X3 — X1) —
+ Wi+ P43 ey

We obtain

2a2%3Z4 — (—ey3 +f (V4 + Wsy3) + 2y4)
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(4.19)

(4.20)

b—b,
—43,

(4.21)

(4.22)
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Fig. 9. Time histories of error for Case II.
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Fig. 10. Time histories of error of parameters Py, P», Q; and Q, for Case II-1.
V, =2kexp (k(eF + €5 +e5 +e3)) x (—ef —e3 —ej —e3) <0 (4.18)

which is negative semi-definite function of e, e, e3,e4,a, b,¢, a,é,f,g,dl,dz,\fvl,\?vz, P, and Q,. The Lyapunov asymptotical
stability theorem is not satisfied. We cannot obtain that common origin of error dynamics (4.19) and parameter dynamics
(4.22) is asymptotically stable. By pragmatical asymptotically stability theorem (see Appendix), D is a 17-manifold, n = 17
and the number of error state variables p = 4. When e; = e, = e; = e, = 0 and @, b, ¢,d, &,f, &, Gy, @, Wy, W, P2, Q, take arbi-
trary values, V; = 0, so X is of 13 dimensions, m=n—p =6 —4 =13, m+ 1 < n is satisfied. According to the pragmatical
asymptotically stability theorem, error vector e approaches zero and the estimated parameters also approach the uncertain
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Fig. 11. Time histories of error of parameters for Case I1-4.
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Fig. 12. Time histories of error of parameters for Case II-3.
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parameters. The equilibrium point is pragmatically asymptotically stable. Under the assumption of equal probability, it is
actually asymptotically stable. After the steps 1 and 2, the two linear subsystems of the slave system can be synchronized
to the two linear subsystems of the master system. It means that the chaos synchronization for these two fuzzy chaotic sys-

tems can be achieved. The simulation results are shown in Figs. 9-13.

Comparison:

In order to show the better performance of our new adaptive approach, the simulation results which are derived in
Appendix C are shown in Figs. 14-16.
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Fig. 13. Time histories of error of parameters for Case II-4.
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Fig. 14. Time histories of errors for Case II - traditional method.

(1) Errors of parameters a;,a;, w; and wy:
In Figs. 11 and 15, the errors of parameters via the new adaptive approach are achieved zero points in less than 0.2 s
and the traditional ones are in around 2 s.

(2) Errors of parameters d, b, ¢ and d:
In Figs. 12 and 16, the errors of parameters via the new adaptive approach are achieved zero points in less than 0.025 s
and the traditional ones are in around 0.2 s.

(3) Errors of parameters a,a,, w; and w;:
In Figs. 12 and 16, the errors of parameters via the new adaptive approach are achieved zero points in less than 0.1 s
and the traditional ones are in around 3 s.
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Fig. 16. Time histories of error of parameters for Case II-3 - traditional method.
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As a consequence, it is obvious that adaptive synchronization via our new adaptive approach is much more efficient than

traditional adaptive method.

5. Conclusions

In this paper, a new fuzzy model, a new adaptive approach and a new control Lyapunov function are proposed to effi-
ciently achieve adaptive synchronization of two different fuzzy chaotic systems. There are two main advantages in this arti-
cle: (1) Via the new fuzzy model, the fuzzy equations become a much simpler form and the numbers of fuzzy rules of chaotic
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systems can be reduced from 2" to 2 x N, above all, the chaotic behaviors in simulation results are perfectly similar to ori-
ginal nonlinear system and T-S fuzzy system and (2) through the new adaptive approach, the performance of achieving
adaptive synchronization is hugely improved, especially in errors of parameters. The new fuzzy model and the new adaptive
control scheme presented in this paper are definitely two potential tools and can be used to various kinds of applications in
fuzzy logic control or fuzzy modeling.
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Appendix A. Pragmatical adaptive control scheme

Consider the following chaotic system
x=f(x,A) +u(t) (A1)
where X = [x1,X2, ... ,xn]T € R" denotes a state vector, A = [A1,A,,...,An] € R" is a original coefficient vector, and fis a vector

function, and u(t) = [u;(t), ua(t), ..., u,(t)]" € R" is a control input vector.
The goal system which can be either chaotic or nonchaotic, is

y=g0.B) (*2)

where y = [y, s, .. ,yn}T € R" denotes a state vector, B = [§1,§2, e EP]T € R is a goal coefficient vector, and g is a vector
function. Our goal is to design an adaptive control method and a controller u(t) so that the state vector of the chaotic system
(A.1) asymptotically approaches the state vector of the goal system (A.2).

The chaos control is accomplished in the sense that the limit of the error vector e(t) = [e1, e, ..., e,]" approaches zero:

}im e=0 (A3)
where

e=y—x (A4)
From Eq. (A.4) we have

e=y—x (A.5)

e=g(y,B) —f(x,A) - u(t) (A6)
A Lyapnuov function V(e,;\, E) is chosen as a positive definite function

1R 1 T 1~T~ 1”T”
V(e,A,B)_je e+jA A+§B B (A7)

where A =A — A B=B-— B A and B are two column matrices whose elements are the original coefficients of systems (A.1)
and (A.2) respectlvely, A, B are two column matrices whose elements are the goal coefficients of systems (A.1) and (A.2)
respectively.

Its derivative along any solution of the differential equation system consisting of Eq. (A.6) and update parameter differ-
ential equations for A and B is

Vie) = e'g(y, B) — f(x,A) — u(t)] + AA + BB (A8)

where u(t),ﬁ, and B are chosen so thaty = elCe, C is a diagonal negative definite matrix, and V is a negative semi-definite
function of e and parameter differences A and B. In current scheme of adaptive control of chaotic motion [26-28], traditional
Lyapunov stability theorem and Babalat lemma are used to prove the error vector approaches zero, as time approaches infin-
ity. But the question, why the estimated or given parameters also approach to the uncertain or goal parameters, remains no
answer. By pragmatical asymptotical stability theorem, the question can be answered strictly.

The stability for many problems in real dynamical systems is actual asymptotical stability, although may not be mathe-
matical asymptotical stability. The mathematical asymptotical stability demands that trajectories from all initial states in the
neighborhood of zero solution must approach the origin as t — oc. If there are only a small part or even a few of the initial
states from which the trajectories do not approach the origin as t — oo, the zero solution is not mathematically asymptot-
ically stable. However, when the probability of occurrence of an event is zero, it means the event does not occur actually. If
the probability of occurrence of the event that the trajectries from the initial states are that they do not approach zero when
t — oo, is zero, the stability of zero solution is actual asymptotical stability though it is not mathematical asymptotical sta-
bility. In order to analyze the asymptotical stability of the equilibrium point of such systems, the pragmatical asymptotical
stability theorem is used.
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Let X and Y be two manifolds of dimensions m and n (m < n), respectively, and ¢ be a differentiable map from X to Y, then
@(X) is subset of Lebesque measure O of Y [20]. For an autonomous system

%:f(xh...,xn) (A.9)

where x = [x;,...,x,]" is a state vector, the function f = [f;,...,f,]" is defined on D c R" and ||| < H > 0. Let x = 0 be an equi-
librium point for the system (A.9). Then

f(0)=0 (A.10)

Definition. The equilibrium point for the system (A.9) is pragmatically asymptotically stable provided that with initial
points on C which is a subset of Lebesque measure 0 of D, the behaviors of the corresponding trajectories cannot be
determined, while with initial points on D — C, the corresponding trajectories behave as that agree with traditional
asymptotical stability [18,19].

Theorem. LetV = [x;,...,x,]" : D — R, be positive definite and analytic on D, such that the derivative of V through Eq. (A.9), V, is
negative semi-definite.

Let X be the m-manifold consisted of point set for which Vx » 0, V(x) = 0 and D is a n-manifold. If m + 1 < n, then the
equilibrium point of the system is pragmatically asymptotically stable.

Proof. Since every point of X can be passed by a trajectory of Eq. (A.9), which is one- dimensional, the collection of these
trajectories, C, is a (m + 1)-manifold [22,23]. O

If m + 1 < n, then the collection C is a subset of Lebesque measure 0 of D. By the above definition, the equilibrium point of
the system is pragmatically asymptotically stable.

If an initial point is ergodicly chosen in D, the probability of that the initial point falls on the collection C is zero. Here, equal
probability is assumed for every point chosen as an initial point in the neighborhood of the equilibrium point. Hence, the event that
the initial point is chosen from collection C does not occur actually. Therefore, under the equal probability assumption,
pragmatical asymptotical stability becomes actual asymptotical stability. When the initial point falls on D — C,V(x) < 0,
the corresponding trajectories behave as that agree with traditional asymptotical stability because by the existence and
uniqueness of the solution of initial-value problem, these trajectories never meet C.

In Eq. (A.7) V is a positive definite function of n variables, i.e. p error state variables and n — p = m differences between
unknown and estimated parameters, while V = e’Ce is a negative semi-definite function of n variables. Since the number
of error state variables is always more than one, p >1, m+ 1 < n is always satisfied, by pragmatical asymptotical stability
theorem we have

}Lrl} e=0 (A11)
and the estimated parameters approach the uncertain parameters. The pragmatical adaptive control theorem is obtained.
Therefore, the equilibrium point of the system is pragmatically asymptotically stable. Under the equal probability assumption,
it is actually asymptotically stable for both error state variables and parameter variables.

Appendix B. T-S fuzzy model of chaotic systems
B.1. T-S fuzzy modeling of Q-CNN system

Consider the Quantum-CNN system in Eq. (3.1), if T-S fuzzy model is used for representing local linear models of Quan-
tum-CNN system, there are going to be 16 fuzzy rules, 16 linear subsystems and 64 equations. The process of modeling is
shown as follow:

T-S fuzzy model:

Assume that:

(1) /1 —x3sinx, € [-Z1,Z;] and Z; > 0,
(2) cosxy/\/1 —x3 € [~Z5,Z5] and Z, > 0,

(3) /1 —x%sinxs € [-Z3,Z3] and Z5 > 0,
(4) cosxs/\/1 —x2 € [~Z4,Z4) and Z4 > 0.

Then we have the following T-S fuzzy rules:



478 S.-Y. Li et al./ Information Sciences 277 (2014) 458-480

Rule 1: IF /1 —x2sinx; is My1,cosx5/4/1 — X% is My,
Rule 2: IF /1 —x2sinx, is Mq1,co8x,/4/1 — X% is My,
Rule 3: IF /1 —x2sinx; is My1,cosx5/4/1 — X% is My,
Rule 4: IF /1 —x2sinx, is Mq1,cosx,/4/1 — X% is My,
Rule 5: IF /1 — X2 sinx, is My1,c08X2/4/1 — X2 is My,
Rule 6: IF /1 —x2sinx, is Mq1,co8x,/4/1 — X% is My,
Rule 7: IF /1 — X2 sinx, is My1,c08X2/4/1 — X2 is My,
Rule 8: IF /1 —x2sinx; is Mq1,co8x,/4/1 — X% is My,
Rule 9: IF /1 — X2 sinx, is Mi3,c08X5/4/1 — X2 is My,
Rule 10: IF /1 — x2 sinx; is Mi2,c0sx2/4/1 — %% is My,
Rule 11: IF /1 — X2 sinx, is Mi2,c0sx,/4/1 — x? is My,
Rule 12: IF /1 — xZ sinx; is M12,c0sx2/1/1 — %% is My,
Rule 13: IF /1 — x?sinx, is Mi2,c08x,/4/1 — x? is My,
Rule 14: IF /1 — x2 sinx; is M12,c08x3/1/1 — %% is My,
Rule 15: IF /1 — X2 sinx, is My2,c0sX;/4/1 — X3 is M,
Rule 16: IF /1 — x2 sinx; is Mi2,c08x2/1/1 — %% is M, /1

2sinx, is Ms; and cos;q/ﬂ is My;, THEN X = A;X.
2 sinx, is M3; and cosxdm is Mgy, THEN X = A,X.
2sinxy is Ms, and cosx,//1 — x% is My, THEN X = A3X.
2 sinxy is Ms, and cosxa//1 — X% is My, THEN X = AX.
2sinxy is Ms; and cosxs//1 — x% is My, THEN X = AsX.
2sinxy is Ma; and cosxa//1 — X% is My, THEN X = AgX.
2sinx, is Ms, and cosx,//1 — x2 is My;, THEN X = A;X.
2sinxy is Msp and cosxa//1 — X% is My, THEN X = AgX.
2sinx, is Ms; and cosx,/4/1 — x% is My, THEN X = AgX.
2 sinx, is M3; and cosx;;/ﬂ is Mgy, THEN X = A;oX.
2sinx, is Ms, and cosx,/4/1 — x% is My, THEN X = A;;X.
2 sinx, is M3, and cosx;;/ﬂ is Mgy, THEN X = AppX.
2sinx, is Ms; and cos;q/ﬂ is My;, THEN X = A3X.
2sinx, is M3; and cosxdm is My, THEN X = A;4X.
2sinxy is Ms, and cosx,/4/1 — x% is My, THEN X = A;5X.
2sinx, is M, and cosxs/(/1 — X3 is My, THEN X = A;6X.

(SN IS IS RN U N Y S G RGN PN RN PR R
| | | | | I | | | I | I | I |

R X X R R R X X xR X R XXX
¥) ] | | WS | WS | WS | WS | U ]

|
=
]

Then the final output of the two cells Q-CNN system can be composed by fuzzy linear subsystems mentioned above. It is
obviously an inefficient and complicated work. The final output of the T-S fuzzy Q-CNN system is shown in Fig. 12.

B.2. T-S fuzzy modeling of M-V system

Consider the M-V system in Eq. (3.1), if T-S fuzzy model is used for representing local linear models of M-V system, there
are going to be 8 fuzzy rules, 8 linear subsystems and 32 equations. Here, we ignore the complicated process of T-S fuzzy
modeling and show the final output of the T-S fuzzy M-V system directly in Fig. 13.

Appendix C. Traditional adaptive method

In order to show the efficiency of our new adaptive approach, the traditional adaptive method is given for comparison in
this appendix.

2 25 3 35 4
t
T T
| i i i
2 25 3 35 4
t
T T
i ‘
2 25 3 35 4

Fig. 17. Time histories of error of parameters for Case II-3 - traditional method.
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Case II:
The error and error dynamics are:
e1=X1—)
€ =X—Y,
€3 =X3 — Y3
€4 =X4—Yy

é] :).(1 *_)./] :*2(111/‘1 *X%Sil‘lef‘yz

& =& = Y2 = Wi (X1 —X5) + 201 s €OSXp = (—(@-+ by3)yy — (@ -+ bys)y} — &y, +dys)
1

(C.1)
é3 :X3 —yg :).(3 = —2(12\/1 —x%sinx;; — V4
€4 =Xs — Y4 = —Wa(X3 — X1) + 202 \/%E CoSXq — Y5 +f(Vs — ¥3Va) + 8V
Choose a new control Lyapunov function of the form:
1 Sy iy I T T
Vi=-(el+e3+e+el+ @ +B+W+ Wi+ + P2+ + P+ +f2+8) >0 (C2)

2
where @ =a,—@, G =0 —0, Wi=w;—W, Wy=w,-W, d=a-ab=b-b &t=c-¢d=d-dée=e—¢
f=f—-f,g=g—g and the goal of parameters: a; = 6.8,a, =4.3, w; =4.7,w, =3.9
Its time derivative through error dynamics (C.1) is
Vi = (e161 + €28, + €363 + €484) + Gy + G0y + Wi Wy + WoW, + @ + bb + ¢¢ + dd + éé + ff + gg + P1P1 + Q1 Q4

=e; (—2(11 \/l——‘x‘%Sian — ¥y + ull))

x N ~ N ~ N N
e | Wi () —5) + 281 — 2 cosxp—(—(a+ by3)y, — (@-+ bys)yi — &y, + dy; + o))

\J1—x2
+es3 (—2(12,/1 —x3sinxg — (¥, + u13))

X ~ . ~ ~ A ~ & ~ <
+eq| —Wa(xs —X1) + 20 -8 cosxr(fey3 +f(y4 fy§y4) +8y; + u14)> + 410y + a20; + Wiy
/1 —x2

S+ WyWo + @0 + bb + &6 + dd + 86 + ff + 85

(C.3)
Choose update law of parameters and controllers as:
G=—t=exb i i g
a, = —0a; =e3 XUy B X ~
B i . d:—d:ez x d
W1 = —W1 =€ X Wy B R N
B R ., e=-e=exe
Wy = —Wyp = €4 X Wy . 3 N
(~.1=*(;1=€2><(~1 f=—f=esxf
boboe,xp  E-EexE
U = —2a14/1 - x3sinx, —y, +a +e;
X R ~
Uy = —Wy (X1 — X3) + 20y ———— €0S X, — (—(@ + by;)y,
\/1-x3
—(a+by;)y? — ¢y, +dy;) + WA+ @ + D2+ + P+ ey )

Uz = =204/ 1 — X3 SinXg — y, + G2 + €3

Urg = —Wa(X3 — X1) + 20,

— (Y3 + (Vg — Y3Va) + Y1) + W3 + & + 2 + 32 + e
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We obtain
Vi=(-el-e2—-el-el) <0 (C.5)

According to the pragmatical asymptotically stability theorem, error vector e approaches zero and the estimated param-
eters also approach the uncertain parameters. The equilibrium point is pragmatically asymptotically stable. The simulation
results are shown in Figs. 14-17.
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