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This paper proposes a new variable step-size sign algorithm (VSSA) for unknown channel
estimation or system identification, and applies this algorithm to an environment
containing two-component Gaussian mixture observation noise. The step size is adjusted
using the gradient-based weighted average of the sign algorithm. The proposed scheme
exhibits a fast convergence rate and low misadjustment error, and provides robustness in
environments with heavy-tailed impulsive interference.

& 2014 Elsevier B.V. All rights reserved.
1. Introduction

In recent years, the variable step-size (VSS) techniques
have been adopted in the least-mean-square (LMS) algo-
rithm for improving the convergence rate [1–9]. A VSS
technique was proposed in [4] by applying the squared
instantaneous error to control the step size. A variable
step-size LMS (VSLMS) algorithm using the weighted
average of the gradient vector was proposed in [5] and a
variable step size normalized version (VSSNLMS) was
proposed in [6]. A modified version of [4] using the noise
resilient variable step size was presented in [7]. A quotient
form LMS algorithm of filtered version of the quadratic
error for system identification application was proposed in
[8]. The LMS algorithm, which is applied to the sparse
channel estimation, using an l1-norm penalty to the cost
function was proposed in [9]. The channel estimation
is done by an adaptive filter, the weight vector of which
is wi ¼ ½w0;i;…;wN�1;i�T with a tap length of N, and is
Li),
.edu.tw (B.-F. Wu).
updated based on the error ei, which is given by

ei ¼ di�wT
i xi ð1Þ

and

di ¼ yiþni ¼wT
optxiþni; ð2Þ

where ðUÞT , di, xi, yi, ni, and wopt denote the vector
transpose operator, the desired signal, the input signal
vector xi ¼ ½xi;…; xi�Nþ1�T , the output of the unknown
system, the system noise, and the optimal Wiener weight,
respectively, at time index i. The algorithm for updating
the weight of the LMS adaptive filter with a fixed step size
μ is given as wiþ1 ¼wiþμeixi, where eixi is the gradient
vector. This is because the cost function using ð1=2Þe2i is
minimized according to the weights. The mathematical
formulas used in these VSLMS algorithms to update the
step size μi are summarized in Table 1. A common problem
in these algorithms is that their convergence performance
can be degraded by the presence of heavy-tailed impulsive
interference. Because the energy of the instantaneous
error is used as the cost function of the LMS algorithm
[1–9] and the error signal is sensitive to impulsive noise,
this will make these LMS-type algorithms prone to
considerable degradation in several practical applications.
Furthermore, because the error signal is used as an
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Table 1
Summary and complexity of the step-size updates of some existing VSLMS algorithms.

Algorithm Update equations of the step size The number of mults (adds)

VSS [4] μi ¼ αμi�1þγe2i 2Nþ4 (2Nþ1)

VSLMS [5] p̂i ¼ βp̂i�1þei�1xi�1

μi ¼ μi�1þγeixT
i p̂i

(
5Nþ3 (4N)

VSSNLMS [6] p̂i ¼ βp̂i�1 þð1�βÞ xi

jjxi jj2
ei

μi ¼ μsjjp̂ijj2 jjxijj2 s2n
Ns2x

þjjp̂ijj2
� �.

8<
: 6Nþ6 (5N�1)

Proposed p̂i ¼ βp̂i�1þð1�βÞsgnðeiÞxi

μi ¼ αμi�1þγsjjp̂ijj2
(

5Nþ2 (4N)

Note: the parameters represented by the same symbols in different algorithms are not necessarily related. The complexities of various algorithms include
computation of the filter output and updates of the tap weights and step-size parameters (mults and adds denote the multiplications and additions, respectively).

Table 2
Summary and complexity of the step-size updates of some existing variable step-size sign algorithms.

Algorithm Update equations of the step size The number of mults (adds)

DSA [13]
rðeiÞ ¼

sgnðeiÞ; jeijrτ

L sgnðeiÞ; jeij4τ

(

μi ¼ μrðeiÞ

8>><
>>:

2Nþ1 (2N)

NRMN [14] λi ¼ 2erfc½jdij=ŝd;i�
ŝd;i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N�Kw �1o
T
i Toi

q
μi ¼ 2A

½2λi þ½1� λi �
ffiffiffiffiffiffi
2=π

p
ðs2

b
þs2η Þ � 1=2 �Ns2x

8>>>><
>>>>:

Greater than 3N�Kwþ4 (3N�Kwþ2)

APSA [15] μi ¼ μ=
ffiffiffiffiffiffiffiffiffiffiffiffi
jjxijj2

p
3N (3N�1)

MVSS-APSA [16] βi ¼ λβi�1þð1�λÞjei�1j

μi ¼ αμiþð1�αÞmin jjei� 1 j�βi jffiffiffiffiffiffiffiffiffiffiffiffiffi
jjxi� 1 jj2

p ; μi�1

� �8><
>:

3Nþ4 (3Nþ2)

Proposed p̂i ¼ βp̂i�1þð1�βÞ sgnðeiÞxi

μi ¼ αμi�1þγsjjp̂ijj2
(

5Nþ2 (4N)

Note: the parameters of T and oi in the NRMN algorithm [14] are set according to T¼Diag[1, …, 1, 0, …, 0] and oi¼Ο([di, …, di�Nþ1]T). The oi contains the
most recent samples of di, ordered from the smallest to the largest absolute value (Ο(.) denotes this ordering).
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estimate of the step size, gradient-based algorithms are
also sensitive to impulsive noise.

The sign algorithm (SA) [1–3,10–17], is now receiving
attention in the adaptive filtering area because of the
simplicity of its implementation. This algorithm can per-
form efficiently in the presence of impulsive interference.
SA is more suitable for this application than LMS because it
has a lower computational requirement and is resistant to
the presence of impulsive interference. Based on the
advantages of SA, several studies have used adaptive
algorithms to reduce the detrimental effects of impulse
noise. A robust mixed norm (RMN) algorithm using the
weighted averaging of the l1 and l2 norms of error was
proposed in [11] and its normalized version (NRMN) was
introduced in [14]. A dual sign algorithm (DSA) operates
between two sign algorithms with a large step-size para-
meter for increasing the convergence speed and a small
one for reducing the steady-state error [12,13]. An affine
projection sign algorithm (APSA) [15] using an
l1-norm optimization criterion has been proposed without
involving any matrix inversion to achieve robustness
against impulsive noise. A modified variable step-size
APSA (MVSS-APSA) was proposed in [16] in order to obtain
a fast convergence rate and small misalignment error
when compared to APSA. A similar MVSS-APSA method
applied to a subband adaptive filter was proposed in [17].
In [18], a variable sign-sign Wilcoxon algorithm was
developed for the system identification application and
performs efficiently in the presence of impulsive noise.
The mathematical formulas used in these sign algorithms
for updating the step size are summarized in Table 2.

This paper proposes a new framework based on scaling in
the conventional SA cost function, using a critical factor γ to
γjeij (γ40); hence, its gradient vector is γ sgnðeiÞxi and
weight update is wiþ1 ¼wiþγ sgnðeiÞxi. Similar to the step
size, the parameter γ determines the convergence time and
level of misadjustment of the algorithm. When the conver-
gence speed of the SA is enhanced using a large step size, the
convergence performance exhibits a substantial chattering
phenomenon. The loss of information in the sign error
signals occurs because they provide only positive or negative
polarities, similar to a switching mode with a substantial
chattering phenomenon in a control effect. To overcome this
disadvantage, γ can be treated as a variable instead of a fixed
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value, thus compensating for the loss of information in the
sign error signals. Therefore, the algorithm can converge
quickly by maintaining γ as a large value in the early stages of
the adaptive process and using a small γ value at the steady
state to ensure accurate convergence. Therefore, estimating a
smooth sign gradient vector, p̂i, using a weighted average
with a smoothing factor β (0oβo1) was proposed so that

p̂i ¼ βp̂i�1þð1�βÞsgnðeiÞxi: ð3Þ
When using γs J p̂i J2 (γs40) instead of γ in the recursive
operation, the proposed variable step-size sign algorithm
(VSSA) becomes

μi ¼ αμi�1þγs J p̂i J
2; ð4Þ

wiþ1 ¼wiþμi sgnðeiÞxi; ð5Þ
where jjU jj2 denotes the squared Euclidean norm operation.

The behavior in (3) and (4) corresponds to low-pass
filtering, which effectively reduces the noise content. The
gradient vector can be regarded as a criterion of optimal
performance because it always points in the direction of
the greatest rate of decrease during the adaptive process
toward the bottom of the error performance surface. Thus,
based on these advantages, the most favorable option is to
apply the weighted average of the sign gradient vector in (3)
and the recursive operation in (4) to determine the step size
of the adaptive algorithm. The simulation results show that
the proposed VSSA achieved faster convergence, a lower
misadjustment error, and lower complexity than did the
gradient-based VSLMS. In addition, it provided robustness in
environments exhibiting heavy-tailed impulsive interference.

2. Derivation and analysis of proposed algorithm

2.1. Modification for impulse noise

The convergence behavior of (5) has been studied in
[1–3,10], and is based on Gaussian inputs and independent
additive Gaussian observation noise. To extend this to a two-
component Gaussian mixture for the observation noise,
similar assumptions are used in the convergence analysis.
The input signal is white noise, with a zero mean and
variance s2x . Therefore, the autocorrelation matrix of the input
signals is R¼ EðxixT

i Þ ¼ s2x I. Consider that a contaminated
Gaussian impulse noise ni [12] is defined as follows:

ni ¼ biþωiηi; ð6Þ
where bi and ηi are each zero-mean, independent, white
Gaussian sequences with variances s2b and s2η ¼ Ks2b (K⪢1);
EðJ p̂i J
2Þ ¼ ð1�βÞ2 ∑

i

k ¼ 1
∑
i

m ¼ 1
βi�kβi�mE½sgnðekÞsgnðemÞxT

kxm�

¼ ð1�βÞ2 ∑
i

k ¼ 1
kam

∑
i

m ¼ 1
ma k

βi�kβi�m2
π
EðekemxT

kxmÞ
se;kse;m

þ ∑
i

k ¼ 1
k ¼ m

β2ð

2
4

� ð1�βÞ2 ∑
i

k ¼ 1
kam

∑
i

m ¼ 1
ma k

β2i�k�m2
π

1�prffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2bþtrðRKkÞ

q þ ffiffiffiffi
½ðK

q
2
64

8><
>:
ωi is a Bernoulli random process, an independent sequence
of zeros and ones with Pr[ωi¼1]¼pr and Pr[ωi¼0]¼1 � pr.
Thus, the probability density function (pdf) of ni is given by

pni ðniÞ ¼ ð1�prÞNð0;s2bÞþprNð0; ðKþ1Þs2bÞ; ð7Þ

s2n ¼ Eðn2
i Þ ¼ s2bþprs

2
η ¼ ð1�prÞs2bþpr½ðKþ1Þs2b � ð8Þ

If pr¼0 or 1, then ni is a zero-mean Gaussian random
variable.

2.2. Mean and mean-squared behavior

Let vi ¼wi�wopt, and Ki ¼ EðvivTi Þ denotes the second
moment matrix of vi. Eq. (2) can be inserted into (1),
therefore, the error can be further represented as

ei ¼ ni�vTi xi ð9Þ
Taking the expectation in (1) and conditioned on vi yields a
mean squared error (MSE) of

Eðe2i jviÞ � Eðe2i Þ ¼ s2e;i ð10Þ
Substituting (9) in (5), taking the expectation, and

using the condition in which μi is statistically independent
of xi, vi, and ei, the weight error vector of VSSA satisfies

Eðviþ1Þ ¼ EðviÞþEðμiÞE½sgnðeiÞxi� ð11Þ
The second moment Ki of the weight error vector can be
evaluated recursively as

Kiþ1 ¼KiþEðμiÞE½sgnðeiÞðvixT
i þxivTi Þ�þEðμ2i ÞR ð12Þ

According to Appendix A, The weight-error vector and the
second moment Ki can be obtained as follows from (11)
and (12), respectively:

Eðviþ1Þ ¼ I�EðμiÞ
ffiffiffi
2
π

r
1�prffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2bþtrðRKiÞ
q þ prffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½ðKþ1Þs2b �þtrðRKiÞ
q

2
64

3
75R

8><
>:

9>=
>;EðviÞ;

ð13Þ

Kiþ1 ¼Ki�EðμiÞ
ffiffiffi
2
π

r
ðKiRþRKiÞ

� 1�prffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2bþtrðRKiÞ

q þ prffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðKþ1Þs2b �þtrðRKiÞ

q
8><
>:

9>=
>;þEðμ2i ÞR

ð14Þ
Assuming the initial condition p̂0 ¼ 0 and using the
expectation of the squared norm of (3), the following is
obtained using Lemma 1
i�kÞE Jxk J2
� �35

prffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
þ1Þs2b �þtrðRKkÞ

3
75



� 1�prffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2bþtrðRKmÞ

q þ prffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðKþ1Þs2b �þtrðRKmÞ

q
2
64

3
75�EðvTkxkxT

kxmxT
mvmÞþ ∑

i

k ¼ 1
k ¼ m

β2ði�kÞEðJxk J2Þ
9=
;; ð15Þ
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where se;k and se;m are the standard deviations of the error
sequences. Note that the last line on the right-hand side
of (15) corresponds to the effect of impulsive noise.
Similarly, the expectation of the recursion in (4) can be
obtained as follows:

EðμiÞ ¼ γs ∑
i

k ¼ 1
αi�kEðJ p̂k J

2Þ ð16Þ

Eqs. (13)–(16) show the transient behavior of the VSSA.
To analyze the steady-state performance, the following
standard assumptions were made: (1) the white Gaussian
noise ni is statistically stationary, and is uncorrelated and
independent of the input signal xi with a distribution of
Nð0; s2x Þ and (2) when the step size is small at the steady
state, the excess error simultaneously converges to a value
much smaller than the value of the noise signal; therefore,
ei � ni. For the time-index s, the system is assumed to be at
the steady state when iZs, and the error signals are
assumed to be uncorrelated when kam, (15) is

lim
i-1

EðJ p̂i J
2Þ � ð1�βÞ2 ∑

i

k ¼ s
β2ði�kÞNs2x : ð17Þ

Hence, when i-1, (17) can be further simplified as

EðJ p̂1 J2Þ � 1�β

1þβ
Ns2x : ð18Þ

Following the same procedure, when i-1, and by sub-
stituting (18) into (16), (16) can be simplified as

Eðμ1Þ � γs
1�α

U
1�β

1þβ
UNs2x : ð19Þ

Using (10), based on the Gaussian assumption in [12],
allows showing s2e;i as a mixture of two Gaussian variables
with parameters pr and 1�pr and their respective var-
iances ðKþ1Þs2bþtrðRKiÞ and s2bþtrðRKiÞ. Because input xi
is white (R¼ s2x I), using Lemma 1 in Appendix A and the
standard assumption in [1–3,10,12], the MSE in (10) is
derived as follows:

s2e;i ¼ ð1�prÞs2bþpr ½ðKþ1Þs2b�þs2x trðKiÞ: ð20Þ
Observing the MSE given in (20), it is only necessary to
study a recursion for ki¼tr(Ki). Taking the trace of both
sides of (14) yields

kiþ1 ¼ ki�EðμiÞs2x
ffiffiffi
8
π

r
1�prffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2bþs2xki

q þ prffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðKþ1Þs2b �þs2xki

q
8><
>:

9>=
>;kiþEðμ2i ÞNs2x :

ð21Þ
Assuming the adaptive filter has converged when i-1,
the following is obtained

1�prffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2bþs2xk1

q þ prffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðKþ1Þs2b�þs2xk1

q
8><
>:

9>=
>;k1 ¼

ffiffiffi
π
8

r
Eðμ1ÞN: ð22Þ
Assuming s2xk15s2b when the system has converged to a
steady state and its step size is sufficiently small, (22) can
be approximated as

k1 �
ffiffiffi
π
8

r
Eðμ1ÞN 1�pr

sb
þ prffiffiffiffiffiffiffiffiffiffiffi

Kþ1
p

sb

� ��1

: ð23Þ

The excess MSE (EMSE) defined as ξexcess ¼ trðRK1Þ ¼
s2xk1 is

ξexcess �
ffiffiffi
π
8

r
Eðμ1ÞNs2x

1�pr
sb

þ prffiffiffiffiffiffiffiffiffiffiffi
Kþ1

p
sb

� ��1

: ð24Þ

Hence, with the EMSE in (24), the VSSA produces a lower
impact on the impulsive interference than does the LMS
algorithm (shown in Appendix B). Substituting (19) into
(24), the EMSE for the proposed VSSA becomes

ξexcess �
ffiffiffi
π
8

r
N2s4x

γsð1�βÞ
ð1�αÞð1þβÞ

	 

1�pr
sb

þ prffiffiffiffiffiffiffiffiffiffiffi
Kþ1

p
sb

� ��1

:

ð25Þ

According to [1–3,10], to guarantee the stability of the
MSE, α, β, and γs can be determined by

0oEðμ1Þ � γs
1�α

U
1�β

1þβ
UNs2x o

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π
2fð1�prÞs2bþpr ðKþ1Þs2b

� �gq
Ns2x

;

ð26Þ

0oγso
ð1�αÞð1þβÞ
ð1�βÞN2s4x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π
2
fð1�prÞs2bþpr ðKþ1Þs2b

� �gr
: ð27Þ

Because K⪢1, the right-hand side of (25) becomes

1�pr
sb

þ prffiffiffiffiffiffiffiffiffiffiffi
Kþ1

p
sb

� ��1

¼ sb 1�prþ
prffiffiffiffiffiffiffiffiffiffiffi
Kþ1

p
� ��1

� sbð1�prÞ�1:

ð28Þ

In most cases, (28) can be simplified to sb when prr0:1.
Hence, the EMSE in (25) can be further simplified as

ξexcess �
ffiffiffi
π
8

r
N2s4x

γsð1�βÞ
ð1�αÞð1þβÞ

	 

sb; prr0:1: ð29Þ

It can be observed in (29) that the EMSE for the proposed
VSSA depends on the standard deviation of the system
noise and the variance of the input vector when prr0:1.
The heavy-tailed impulsive noise s2η ð ¼ Ks2bÞ can be com-
pletely neglected. In addition, the proposed algorithm also
performed well when verified with pr¼0.5 (not shown
here). When using the EMSE, (25) can be determined



Table 3
Simulation parameters of the variable step-size sign algorithms for the channel estimation problem.

Algorithm Parameters SNR¼10 dB

White Gaussian inputs Third-order inputs First-order inputs

SA μ 0.00002 0.00006 0.000227
DSA [13] μ, τ, L 0.00002, 1, 16 0.00006, 1, 16 0.000227, 1, 16
NRMN [14] A, Kw 0.001, 5 0.001, 5 0.001, 5
APSA [15] μ 0.00015 0.00025 0.00035
MVSS-APSA [16] α, β, μ0 0.99, 0.9999999, 0.5 0.99, 0.9999999, 0.5 0.99, 0.9999999, 0.5
Proposed α, β, γs 0.99, 0.9999, 0.00016 0.99, 0.9999, 0.00137 0.99, 0.9999, 0.0203
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Fig. 1. Comparison of the EMSE for various adaptive sign algorithms
(white Gaussian inputs, 10 dB SNR, and no impulsive noise (pr ¼ 0)).
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according to pr as follows:

ξexcess �

ffiffiπ
8

p
N2s4x

γsð1�βÞ
ð1�αÞð1þβÞ

h i
sb; pr ¼ 0

ffiffiπ
8

p
N2s4x

γsð1�βÞ
ð1�αÞð1þβÞ
h i

1�pr
sb

þ prffiffiffiffiffiffiffiffi
Kþ1

p
sb

� ��1
; 0opro1ffiffiπ

8

p
N2s4x

γsð1�βÞ
ð1�αÞð1þβÞ
h i

ð ffiffiffiffiffiffiffiffiffiffiffi
Kþ1

p
sbÞ; pr ¼ 1

8>>>>><
>>>>>:

ð30Þ
3. Simulation results and discussion

The performance of the proposed algorithm was eval-
uated by carrying out computer simulations in a channel
estimation scenario, using an adaptive filter with a length
of 25 taps (the same as that of the unknown channel) to
demonstrate the validity of the analysis. The input signal
was obtained through three Gaussian distributed signals
by directly passing a white zero-mean Gaussian random
sequence (white Gaussian inputs) or filtering the same
Gaussian random sequence through a third-order low-
pass filter (third-order inputs) G1ðzÞ ¼ 0:44=ð1�1:5z�1þ
z�2�0:25z�3Þ or a first-order system G2ðzÞ ¼ 1=
ð1�0:9z�1Þ (first-order inputs). The desired signal was
generated by adding the contaminated Gaussian impulsive
noise to the output of the system. The impulse response of
the system was normalized as wT

optwopt ¼ 1, and the input
signal was scaled so that the output power was s2y ¼ 1. The
measurement noise bi was added to yi such that SNR¼
10 dB and 0 dB according to the calculation of the signal-
to-noise ratio (SNR) [SNR ¼ 10log10ðs2y=s2bÞ]. A strong
impulsive interference with the Bernoulli-Gaussian distri-
bution (ωiηi), where ηi was a white Gaussian random
sequence in which s2η ¼ 100;000s2y when SNR¼10 dB and
0 dB, and ωi was a Bernoulli process with the probability of
Pr[ωi¼1]¼pr, was also added to yi. The results obtained in
this study were averaged from over 200 independent
trials. The simulation parameters of the various sign
algorithms are shown in Table 3, according to the original
papers. Although the studies of the step size for NRMN
[14], APSA [15], and MVSS-APSA [16] had been carried out,
there were no general guidelines for the selection of the
step size in these proposed methods. Manual adjustment
of each parameter was needed to achieve good perfor-
mance. The input signals were generated using direct
white Gaussian inputs, G1(z), and G2(z) for Figs. 1–3,
Figs. 4 and 5, and Figs. 6 and 7, respectively, when
SNR¼10 dB. For SNR¼0 dB, the performance comparison
of the EMSE curves is similar to the case of SNR¼10 dB, so
we only show the comparison with white Gaussian inputs
(Fig. 8).

Fig. 1 shows a comparison of the EMSE curves of the
proposed algorithm with those of other adaptive sign
algorithms at a 10 dB SNR, without impulsive noise
(pr¼0). The theoretical value of the steady-state EMSE is
also included. The proposed VSSA converged faster with
the same steady-state error compared with SA using a
fixed step size of μ¼0.00002, DSA [13], NRMN [14], and
APSA [15] using one projection order. Although MVSS-
APSA [16] (also using one projection order) had a higher
initial convergence speed, the proposed VSSA showed a
lower steady-state error. Because MVSS-APSA starts with a
large step size, it converges fast initially. It should be noted
that the theoretical value of the steady-state EMSE is
slightly biased from the simulation results because of the
approximations and assumptions made in the steady-state
performance analysis. Fig. 2 shows the step size of the
proposed algorithm in (a), the estimates of jjp̂ijj2 with
impulsive noise of pr¼0 in (b), and the estimates of jjp̂ijj2
with pr¼0.1 in (c). Estimates of jjp̂ijj2 and the step size
were close to their respective theoretical values of the
steady state according to (18) and (19), which are repre-
sented by a dashed line. Fig. 3 shows a comparison of the
EMSE curves of the proposed VSSA with those of other
adaptive sign algorithms at a 10 dB SNR, with impulsive
noise of pr¼0.1. Moreover, the change in the coefficient
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values (all multiplied by �1) was abrupt when the
channel was changed. As observed in Fig. 3, the proposed
method converged quickly and had a low misadjustment
error. The proposed VSSA performed well and was robust
to the heavy-tailed impulsive interference. Figs. 4 and 5
(third-order inputs) and Figs. 6 and 7 (first-order inputs)
are the simulated results, with a different input signal
generated by G1(z) and G2(z). Similar result to that shown
in Fig. 1 (10 dB SNR) is observed in Fig. 8 (0 dB SNR). In
Fig. 8, DSA used μ¼0.00002, τ¼3, and L¼8; NRMN used
A¼0.0007 and Kw¼5; the step size of APSA was set
to μ¼0.0003 (using one projection order); MVSS-APSA
used α¼0.99, λ¼0.9999999, μ0¼0.5, and one projection
order; the proposed VSSA used α¼0.99, β¼0.9999, and
γs¼0.0005. These parameters were chosen to obtain the
best performance and to achieve the same steady-state
error for each of the compared algorithms. The proposed
VSSA performed well at a 10 dB or 0 dB SNR, with heavy-
tailed impulsive noises.

Methods using the technique based on the weighted
average of the gradient vector were introduced in [5,6].
The gradient vector is initially large and converges into a
small value at the steady state, so it can be used as a
performance index for convergence. However, this leads to
a performance degradation of the LMS-type algorithms
[5,6] when impulsive interference is present (see Appen-
dix B). Similarly, the experimental results in [4] are
sensitive to high-level noise because the instantaneous
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error value is used and could, therefore, be contaminated
by the noise.

The performance of DSA [13] is determined by the
values of transition thresholds and selection of two step-
size parameters. It is similar to the hard-switching from
one step size to another. The step size always maintains a
large value when the heavy-tailed impulsive interference
exists and this will lead to performance degradation. The
cost function of NRMN [14] minimized according to a
convex mixture of the first and second error norms, is
mainly controlled by a time varying mixing parameter. If
the parameter estimate tends to a large value, the NRMN
algorithm is similar to the LMS algorithm and this will
make the algorithm prone to considerable degradation in
the presence of heavy-tailed impulsive noise. When the
parameter estimate is a small value, NRMN will be similar
to SA and hence converge slow. Although APSA [15] could
speed up under colored input conditions, it is practically
similar to SA and this makes its convergence speed lower
in Gaussian input environments. In [16], when compared
to APSA, the MVSS-APSA algorithm is derived based on the
minimization of mean-square deviation to calculate the
optimum step size and to ensure an improved perfor-
mance in terms of convergence rate and misalignment.
However, MVSS-APSA uses a decreasing property rule to
control the step size. It always chooses the minimum value
between the adjacent step sizes, so tracking capability will
be degraded when the channel is changed.

From a robustness perspective, an approach to improv-
ing the performance of the family of LMS algorithms to
examine the step size is using the squared norm of the
sign gradient vector to enhance the dynamic range of the
step size between the maximum and minimum allowable
values of μ instead of using a fixed value. The squared
norm of the sign gradient vector can cover the overall
tracking process during adaptation, providing tracking
capability when the channel is changed because the
proposed VSSA uses instantaneous gradient vectors, and
always points in the direction of the greatest rate of
decrease during the adaptive process toward the bottom
of the error performance surface. Furthermore, the recur-
sive operation in (3) and (4), when applying the smoothing
factors of α and β, is similar to low-pass filtering, which
effectively reduces the noise content. This ensures that the
proposed algorithm not only enhances the convergence
rate and reduces the complexity, but also exhibits a low



Y.-P. Li et al. / Signal Processing 102 (2014) 304–312 311
misadjustment error, and is robust against strong impul-
sive disturbances. The simulation results demonstrate that
the proposed method performs well and is robust in low
SNR, high impulsive interference, and colored input con-
ditions. Regarding the complexity of various adaptive
schemes (Tables 1 and 2), the proposed approach requires
5Nþ2 multiplications and 4N additions per filter output
for computing.
4. Conclusion

This paper introduces a new algorithm, known as VSSA,
which uses the squared Euclidean norm of the sign
gradient vector's weighted-averaging as a criterion for
the convergence performance. The proposed VSSA com-
bines the benefits of the gradient-based algorithm and SA.
The gradient-based algorithm makes the proposed algo-
rithm converge fast with colored input signals and simul-
taneously the SA guarantees its robustness against
impulsive interference. Analyses and computer simula-
tions confirm that the proposed algorithm improves the
performance of conventional SA by offering a fast conver-
gence rate, a lower misadjustment error, and a lower
complexity when compared to other gradient-based
VSLMS algorithms. The proposed algorithm also exhibits
high robustness against strong impulsive interferences.
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Appendix A. Proof of (13) and (14)

The following lemma is needed to verify (13) and (14):

Lemma 1. Let u1 and u2 be jointly Gaussian zero-mean
random variables with variances s21 and s22, and let y¼ u2þn
and n with the pdf given in (7) be independent of u1 and u2.
Let z1 ¼ u2þh1 and z2 ¼ u2þh2, where h1 with variance
s2h1 ¼ s2b and h2 with s2h2 ¼ ðKþ1Þs2b , be zero-mean Gaussian
variables independent of u1 and u2. Therefore,

E½sgnðyÞu1� ¼ ∑
2

k ¼ 1
εkE½sgnðzkÞu1�; ðA:1Þ

where ε1¼1 � pr and ε2¼pr. Using (12), the second
moment Ki of the weight error vector in (13) is necessary
to calculate E½sgnðeiÞvixT

i � and E½sgnðeiÞxivTi �. Thus,
E½sgnðeiÞvixT

i � can be written as

E½sgnðeiÞvixT
i � ¼ EfE½sgnðeiÞvixT

i jvi�g ðA:2Þ

Furthermore, using Price's theorem [19] and Refs. [1–3,10,12],
the following result is obtained

E sgnðeiÞxT
i

� �¼
ffiffiffi
2
π

r
1
se;i

EðxT
i eiÞ ðA:3Þ
Using Lemma 1 and (A1)–(A3), E½sgnðeiÞvixT
i jvi� can be

written as

E sgnðeiÞvixT
i jvi

� �¼ vi

ffiffiffi
2
π

r
∑
2
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where ei ¼ �vTi xiþni and ek;i ¼ �vT

i xiþhk;i [k¼1, 2 and h1,i
with variance s2h1 ¼ s2b and h2,i with s2h2 ¼ ðKþ1Þs2b]. Taking
the expectation with respect to vi and with E½xT

i eijvi� ¼
�vTi R, the following is obtained

E sgnðeiÞvixT
i

� �¼ �
ffiffiffi
2
π

r
KiR

1�prffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2bþtrðRKiÞ

q þ prffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðKþ1Þs2bþtrðRKiÞ

q
8><
>:

9>=
>;
ðA:5Þ

E½sgnðeiÞxivTi � can be derived using the same procedure:

E sgnðeiÞxivT
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Hence, we have
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Similarly, (11) can be derived as

Eðviþ1Þ ¼ EðviÞþEðμiÞE sgnðeiÞxi½ �
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Appendix B. Derivation of excess MSE for LMS algorithm

In this appendix, the LMS algorithm using a fixed step
size of μ was derived based on the two-component
Gaussian mixture observation noise given in (7) and (8).
According to the standard assumptions used in [1–4,
7–10,12], the weight-error vector and its second moment
Ki can be evaluated recursively as

Eðviþ1Þ ¼ ½I�μR�EðviÞ ðB:1Þ
and

Kiþ1 ¼Ki�μðRKiþKiRÞþμ2½2RKiRþRtrðRKiÞ�þμ2s2nR

ðB:2Þ
Observing the MSE given in (20), it is only necessary to
study a recursion for ki¼tr(Ki). Taking the trace of both
sides of (B.2) yields

kiþ1 ¼ ki�2μs2xkiþμ2ðNþ2Þs4xkiþμ2Ns2xs
2
n ðB:3Þ
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By substituting (8) into (B.3), assuming the adaptive filter
has converged when i-1, the following is obtained:

k1 ¼ μN
2�μs2x ðNþ2Þfð1�prÞs2bþpr ðKþ1Þs2b

� �g ðB:4Þ

The EMSE [defined as ξexcess ¼ trðRK1Þ ¼ s2xk1 and with
R¼ s2x I] is

ξexcess ¼
μNs2x

2�μs2x ðNþ2Þfð1�prÞs2bþpr ðKþ1Þs2b
� �g ðB:5Þ

It can be observed in (B.5) that the EMSE for the LMS
algorithm depends on the power of the impulsive noise
and the input power. Hence, the LMS that uses the energy
of the instantaneous error as its cost function is sensitive
to impulsive noise, making it prone to substantial degra-
dation in several practical applications.
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