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This paper proposes a new variable step-size sign algorithm (VSSA) for unknown channel
estimation or system identification, and applies this algorithm to an environment
containing two-component Gaussian mixture observation noise. The step size is adjusted
using the gradient-based weighted average of the sign algorithm. The proposed scheme
exhibits a fast convergence rate and low misadjustment error, and provides robustness in
environments with heavy-tailed impulsive interference.
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1. Introduction

In recent years, the variable step-size (VSS) techniques
have been adopted in the least-mean-square (LMS) algo-
rithm for improving the convergence rate [1-9]. A VSS
technique was proposed in [4] by applying the squared
instantaneous error to control the step size. A variable
step-size LMS (VSLMS) algorithm using the weighted
average of the gradient vector was proposed in [5] and a
variable step size normalized version (VSSNLMS) was
proposed in [6]. A modified version of [4] using the noise
resilient variable step size was presented in [7]. A quotient
form LMS algorithm of filtered version of the quadratic
error for system identification application was proposed in
[8]. The LMS algorithm, which is applied to the sparse
channel estimation, using an [;-norm penalty to the cost
function was proposed in [9]. The channel estimation
is done by an adaptive filter, the weight vector of which
is w;=[wp;,....,wy_1;]" with a tap length of N, and is
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updated based on the error e;, which is given by

e,-:d,-—wiTxl- (1)
and
di = Y;+ i = WopXi+ 1, 2)

where ()T, d;, x;, yi, m, and W, denote the vector
transpose operator, the desired signal, the input signal
vector X;=[x;,....X;_n.1]', the output of the unknown
system, the system noise, and the optimal Wiener weight,
respectively, at time index i. The algorithm for updating
the weight of the LMS adaptive filter with a fixed step size
u is given as w;, 1 = W;+ue;X;, where ex; is the gradient
vector. This is because the cost function using (1/2)e? is
minimized according to the weights. The mathematical
formulas used in these VSLMS algorithms to update the
step size p; are summarized in Table 1. A common problem
in these algorithms is that their convergence performance
can be degraded by the presence of heavy-tailed impulsive
interference. Because the energy of the instantaneous
error is used as the cost function of the LMS algorithm
[1-9] and the error signal is sensitive to impulsive noise,
this will make these LMS-type algorithms prone to
considerable degradation in several practical applications.
Furthermore, because the error signal is used as an
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Summary and complexity of the step-size updates of some existing VSLMS algorithms.
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Algorithm Update equations of the step size The number of mults (adds)
VSS [4] i = api_1+ye? 2N+4 (2N+1)
VSLMS [5] Pi=/Pi_1+ei1Xiy 5N+3 (4N)

Hi = Hi_1+7eX]P;

N N X .
VSSNLMS [6] Pi=/Pi1 + (=Pt 6N+6 (5N—1)

i = sl 1Byl 2 /11112 (7 11111 )
Proposed Pi=/pi_1+(1 iﬂ)sgn(ei)xi 5N+2 (4N)

pi = api_q +yslDil

Note: the parameters represented by the same symbols in different algorithms are not necessarily related. The complexities of various algorithms include
computation of the filter output and updates of the tap weights and step-size parameters (mults and adds denote the multiplications and additions, respectively).

Table 2

Summary and complexity of the step-size updates of some existing variable step-size sign algorithms.

Algorithm Update equations of the step size The number of mults (adds)
DSA [13] sgn(e;),lejl <t 2N+1 (ZN)
@) =19 L sgn(en, lej| > «
i =pr(e;)
NRMN [14] i = 2erfc(|d;|/G4,] Greater than 3N—K,,+4 (3N—K,,+2)
Gai =\ /WO{TOI'
o 24
M 2 1= a0/2a( ) NG
APSA [15] i = /TR 3N (3N-1)

MVSS-APSA [16] Bi=2pi 1 +(1=Dlei_1

llei 1l —pil

3N+4 (3N+2)

ui=aui+(1-a) min(m- /"i—l)

Proposed i =pD;_1+(1-p) sgn(enx;
Wi =opti_q +7;Hf’i”2

5N+2 (4N)

Note: the parameters of T and o; in the NRMN algorithm [14] are set according to T=Diag[1, ..., 1,0, ..., 0] and 0;=0([d,, ..

., di_n+1]"). The o; contains the

most recent samples of d;, ordered from the smallest to the largest absolute value (O(.) denotes this ordering).

estimate of the step size, gradient-based algorithms are
also sensitive to impulsive noise.

The sign algorithm (SA) [1-3,10-17], is now receiving
attention in the adaptive filtering area because of the
simplicity of its implementation. This algorithm can per-
form efficiently in the presence of impulsive interference.
SA is more suitable for this application than LMS because it
has a lower computational requirement and is resistant to
the presence of impulsive interference. Based on the
advantages of SA, several studies have used adaptive
algorithms to reduce the detrimental effects of impulse
noise. A robust mixed norm (RMN) algorithm using the
weighted averaging of the [; and [, norms of error was
proposed in [11] and its normalized version (NRMN) was
introduced in [14]. A dual sign algorithm (DSA) operates
between two sign algorithms with a large step-size para-
meter for increasing the convergence speed and a small
one for reducing the steady-state error [12,13]. An affine
projection sign algorithm (APSA) [15] wusing an
l;-norm optimization criterion has been proposed without
involving any matrix inversion to achieve robustness
against impulsive noise. A modified variable step-size

APSA (MVSS-APSA) was proposed in [16] in order to obtain
a fast convergence rate and small misalignment error
when compared to APSA. A similar MVSS-APSA method
applied to a subband adaptive filter was proposed in [17].
In [18], a variable sign-sign Wilcoxon algorithm was
developed for the system identification application and
performs efficiently in the presence of impulsive noise.
The mathematical formulas used in these sign algorithms
for updating the step size are summarized in Table 2.
This paper proposes a new framework based on scaling in
the conventional SA cost function, using a critical factor y to
rleil (y>0); hence, its gradient vector is y sgn(e;)X; and
weight update is w;, ; = w;+y sgn(e;)X;. Similar to the step
size, the parameter y determines the convergence time and
level of misadjustment of the algorithm. When the conver-
gence speed of the SA is enhanced using a large step size, the
convergence performance exhibits a substantial chattering
phenomenon. The loss of information in the sign error
signals occurs because they provide only positive or negative
polarities, similar to a switching mode with a substantial
chattering phenomenon in a control effect. To overcome this
disadvantage, y can be treated as a variable instead of a fixed
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value, thus compensating for the loss of information in the
sign error signals. Therefore, the algorithm can converge
quickly by maintaining y as a large value in the early stages of
the adaptive process and using a small y value at the steady
state to ensure accurate convergence. Therefore, estimating a
smooth sign gradient vector, p;, using a weighted average
with a smoothing factor g (0 < < 1) was proposed so that

Pi =/Pi_1 +(1-p)sgn(e)x;. 3

When using 7,lIp; 1% (ys>0) instead of y in the recursive
operation, the proposed variable step-size sign algorithm
(VSSA) becomes

wi=api 1+ P12, “4)

Wi, 1= W;+pu; SgN(ex;, (5)

where || - ||> denotes the squared Euclidean norm operation.

The behavior in (3) and (4) corresponds to low-pass
filtering, which effectively reduces the noise content. The
gradient vector can be regarded as a criterion of optimal
performance because it always points in the direction of
the greatest rate of decrease during the adaptive process
toward the bottom of the error performance surface. Thus,
based on these advantages, the most favorable option is to
apply the weighted average of the sign gradient vector in (3)
and the recursive operation in (4) to determine the step size
of the adaptive algorithm. The simulation results show that
the proposed VSSA achieved faster convergence, a lower
misadjustment error, and lower complexity than did the
gradient-based VSLMS. In addition, it provided robustness in
environments exhibiting heavy-tailed impulsive interference.

2. Derivation and analysis of proposed algorithm
2.1. Modification for impulse noise

The convergence behavior of (5) has been studied in
[1-3,10], and is based on Gaussian inputs and independent
additive Gaussian observation noise. To extend this to a two-
component Gaussian mixture for the observation noise,
similar assumptions are used in the convergence analysis.
The input signal is white noise, with a zero mean and
variance o2. Therefore, the autocorrelation matrix of the input
signals is R=E(X;X) =02l Consider that a contaminated
Gaussian impulse noise n; [12] is defined as follows:

n; = b+ wm;, (6)

where b; and »; are each zero-mean, independent, white
Gaussian sequences with variances ¢ and o2 =Ko} (K>1);

BB =(1-p7 ¥ 3 p~* " Eisgniegsgn(en xixn]

2 E(exemX[Xm)  J

w; is a Bernoulli random process, an independent sequence
of zeros and ones with Prlw;=1]=p, and Prlw;=0]=1 — p,.
Thus, the probability density function (pdf) of n; is given by

Py () = (1=p,N(O, 63)+p,N(O, (K + 1)ap), (7)

o2 =En?) = o +p,o? = (1-p)op+p (K +1)cP) ®)

If p.=0 or 1, then n; is a zero-mean Gaussian random
variable.

2.2. Mean and mean-squared behavior

Let V; = W; —Wop, and K; =E(v;v]) denotes the second
moment matrix of v, Eq. (2) can be inserted into (1),
therefore, the error can be further represented as

e =n;—Vvlx; 9)

Taking the expectation in (1) and conditioned on v; yields a
mean squared error (MSE) of

E(e? vy ~ E(e}) = o2, (10)
Substituting (9) in (5), taking the expectation, and

using the condition in which g; is statistically independent
of x;, v;, and e;, the weight error vector of VSSA satisfies

E(viy1) = E(vi)+E(u)E[sgn(e;)x] an

The second moment K; of the weight error vector can be
evaluated recursively as

Ki 1 = Ki+E(u)E[sgn(e;)(vix] +x;v])]+Eu{)R (12)

According to Appendix A, The weight-error vector and the
second moment K; can be obtained as follows from (11)
and (12), respectively:

E(Wi )= 1—E<ui>\ﬁ L/ S Pr R VEV)),
n \/o§+tr<m(,-) \/[(K+l)a§]+tr(RKf)

(13)
2
K1 =Ki— Egul-)\/;(l(,-R+RK,»)
By S ) T Pr +EGAR
\/ o2 +tr(RK;) \/ [(K+1)02]+ tr(RK))
(14)

Assuming the initial condition p,=0 and using the
expectation of the squared norm of (3), the following is
obtained using Lemma 1

BPAPE(I1x,112)
1
m

Pr

i
—(1-p)2 i— Kk gi—m% +
CNEET T e
i . _
%(1_[})2 Z Z/jZI—k—mg 1 Pr +
1

33

#m

~x

= n \/ag 1 tr(RKy)

\/ [(K+1)02]+ tr(RK,)
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1 —Dr + Dr

\/ 62 +tr(RKn) \/ [(K+1)02]+ tr(RKyy)

where o, and o, are the standard deviations of the error
sequences. Note that the last line on the right-hand side
of (15) corresponds to the effect of impulsive noise.
Similarly, the expectation of the recursion in (4) can be
obtained as follows:

E(u) =75 Zl: a = KECI Py 11%) (16)
k=1

Eqgs. (13)-(16) show the transient behavior of the VSSA.
To analyze the steady-state performance, the following
standard assumptions were made: (1) the white Gaussian
noise n; is statistically stationary, and is uncorrelated and
independent of the input signal x; with a distribution of
N(0,42) and (2) when the step size is small at the steady
state, the excess error simultaneously converges to a value
much smaller than the value of the noise signal; therefore,
e; ~ n;. For the time-index s, the system is assumed to be at
the steady state when i>s, and the error signals are
assumed to be uncorrelated when k # m, (15) is

HimE(py12)~ (1-p? % p2-PN2. (17)
1—-00 k=s
Hence, when i— oo, (17) can be further simplified as
) 1-p
2\ ~ 2
E(Ipo 1)~ 1 +ﬂNaX. (18)

Following the same procedure, when i— oo, and by sub-
stituting (18) into (16), (16) can be simplified as

o~ Us 1-p 2

B~ 125 7 Nt a9
Using (10), based on the Gaussian assumption in [12],
allows showing ¢2; as a mixture of two Gaussian variables
with parameters p, and 1—p, and their respective var-
iances (K+1)o2 +tr(RK;) and o7 +tr(RK;). Because input x;
is white (R = ¢2I), using Lemma 1 in Appendix A and the
standard assumption in [1-3,10,12], the MSE in (10) is
derived as follows:

o;=(1=pp)op+ P [(K+ D)ol + ortr(Ky). (20)

Observing the MSE given in (20), it is only necessary to
study a recursion for k;=tr(K;). Taking the trace of both
sides of (14) yields

ki1 = ki—E(uj)a? \/g L Dr ki +E(u?)No?.
T \/o’%—kr)ﬁki \/[(I(+1)r)'§]+o')2<k,v
21

Assuming the adaptive filter has converged when i— oo,
the following is obtained

1=p Pr kw=\/EE(/4m)N. 22)
\/Ji—ko',z(kw \/[(K+1)<ri]—0-o')2<kDC 8

k=m

i .
XE(VEXXEXmXD Vi) + Y A2 RE(IIx, | 2)}, (15)
k=1

Assuming 2k, < o2 when the system has converged to a
steady state and its step size is sufficiently small, (22) can
be approximated as

1-p p )”
Koo ~ 1 | SE(u. )N rpPr ) 23
K \/; (Hoo) < o + R+ 1oy (23)

The excess MSE (EMSE) defined as &eycess = tr(RK,) =
o1
o5k is

-1
~ E 2 1 —Pr br
excess ~ \/;E(ﬂoo)NUx < . +«/m0'b> . (24)

Hence, with the EMSE in (24), the VSSA produces a lower
impact on the impulsive interference than does the LMS
algorithm (shown in Appendix B). Substituting (19) into
(24), the EMSE for the proposed VSSA becomes

o [in2oa[_1s(1=P) }(1—1% Pr )7l
Sexcess \/gN Ox |:(] —a)(1+p) ap +\/K-I—'l()'b ’
(25)

According to [1-3,10], to guarantee the stability of the
MSE, «, , and y; can be determined by

e 1-p o VHA=POR+p (Kt Daf])

0<B)~3-0 755 No?

(26)

A-a0)d+p)

(1—p)N?c4 \/g{(l —pot+p. [(K+1)oZ]). Q7

O<ys<

Because K>1, the right-hand side of (25) becomes

<1—Pr+ Pr )71:ab<1_p+ Pr )71%0'1,(]—[7)71
oy K+ VK1 wo

(28)

In most cases, (28) can be simplified to ¢, when p, <0.1.
Hence, the EMSE in (25) can be further simplified as

1-5
Eexcess ~ \/gNZU;} {%} op, Pr= 0.1. (29)

It can be observed in (29) that the EMSE for the proposed
VSSA depends on the standard deviation of the system
noise and the variance of the input vector when p, <0.1.
The heavy-tailed impulsive noise o7 (=Ko}) can be com-
pletely neglected. In addition, the proposed algorithm also
performed well when verified with p,=0.5 (not shown
here). When using the EMSE, (25) can be determined
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Simulation parameters of the variable step-size sign algorithms for the channel estimation problem.

Algorithm Parameters SNR=10 dB
White Gaussian inputs Third-order inputs First-order inputs
SA ;« 0.00002 0.00006 0.000227
DSA [13] L 0.00002, 1, 16 0.00006, 1, 16 0.000227, 1,16
NRMN [14] A Ky 0.001, 5 0.001, 5 0.001, 5
APSA [15] u 0.00015 0.00025 0.00035
MVSS-APSA [16] a, B, po 0.99, 0.9999999, 0.5 0.99, 0.9999999, 0.5 0.99, 0.9999999, 0.5
Proposed a, pvs 0.99, 0.9999, 0.00016 0.99, 0.9999, 0.00137 0.99, 0.9999, 0.0203
O w w w w w measurement noise b; was added to y; such that SNR=
sl T J@)u=000002,5A 22;’5;’:%‘33‘;2 sa 10 dB and 0 dB according to the calculation of the signal-
\, T fORPsAnE (c)NRMN [14] to-noise ratio (SNR) [SNR = 10log;o(s2/03)]. A strong
10 \ . ~ (d) APSA [15] U . . . . o . . -
s o ~ (6) MVSS-APSA [16] 1mpulswe interference with the Berr}oulll Gau.ssmn distri
@ -15 j N () Proposed |l bution (ww;), where »; was a white Gaussian random
= ﬁ h (c) NRVN [14]™_ sequence in which ¢2 = 100,000s2 when SNR=10 dB and
w -20 ,\ . i n . y . .y
g \ L ®)DSAMY 0 dB, and w; was a Bernoulli process with the probability of
w .25 AN O J Prlw;=1]=p,, was also added to y;. The results obtained in
» N (€) MVSS-APSA [16] ™.
§ - S G this study were averaged from over 200 independent
g 80y . ) trials. The simulation parameters of the various sign
35+ \"“\,”\ IR 1 algorithms are shown in Table 3, according to the original
20 () Proposed T T papers. Although the studies of the step size for NRMN
broposed (neoretca) [14], APSA [15], and MVSS-APSA [16] had been carried out,

0 1 2 3 4 5 6 7 8 9 10

Number of iterations x 10*

Fig. 1. Comparison of the EMSE for various adaptive sign algorithms
(white Gaussian inputs, 10 dB SNR, and no impulsive noise (p, = 0)).

according to p, as follows:

\/_Nz 4[m]gb’pr:0

2 (1 1-p, L\~
Lexcess ~ { VAN 4[(11((1)(1/2&] (5_17}7_'_\/!%0) »0<pr<1
2 1
ViN“o 4{(14;)(1/1)/;)]@1(‘*‘101;) pr=1
(30)

3. Simulation results and discussion

The performance of the proposed algorithm was eval-
uated by carrying out computer simulations in a channel
estimation scenario, using an adaptive filter with a length
of 25 taps (the same as that of the unknown channel) to
demonstrate the validity of the analysis. The input signal
was obtained through three Gaussian distributed signals
by directly passing a white zero-mean Gaussian random
sequence (white Gaussian inputs) or filtering the same
Gaussian random sequence through a third-order low-
pass filter (third-order inputs) G;(z)=0.44/(1-1.5z"1+

-2_.025z73) or a first-order system Gy(z)=1/
(1-0.9z~ 1) (first-order inputs). The desired signal was
generated by adding the contaminated Gaussian impulsive
noise to the output of the system. The impulse response of
the system was normalized as wgptwopt =1, and the input
signal was scaled so that the output power was a}z, =1.The

there were no general guidelines for the selection of the
step size in these proposed methods. Manual adjustment
of each parameter was needed to achieve good perfor-
mance. The input signals were generated using direct
white Gaussian inputs, G¢(z), and G,(z) for Figs. 1-3,
Figs. 4 and 5, and Figs. 6 and 7, respectively, when
SNR=10 dB. For SNR=0 dB, the performance comparison
of the EMSE curves is similar to the case of SNR=10 dB, so
we only show the comparison with white Gaussian inputs
(Fig. 8).

Fig. 1 shows a comparison of the EMSE curves of the
proposed algorithm with those of other adaptive sign
algorithms at a 10dB SNR, without impulsive noise
(pr=0). The theoretical value of the steady-state EMSE is
also included. The proposed VSSA converged faster with
the same steady-state error compared with SA using a
fixed step size of x=0.00002, DSA [13], NRMN |[14], and
APSA [15] using one projection order. Although MVSS-
APSA [16] (also using one projection order) had a higher
initial convergence speed, the proposed VSSA showed a
lower steady-state error. Because MVSS-APSA starts with a
large step size, it converges fast initially. It should be noted
that the theoretical value of the steady-state EMSE is
slightly biased from the simulation results because of the
approximations and assumptions made in the steady-state
performance analysis. Fig. 2 shows the step size of the
proposed algorithm in (a), the estimates of ||p;||> with
impulsive noise of p,=0 in (b), and the estimates of ||p;||?
with p,=0.1 in (c). Estimates of ||p;||*> and the step size
were close to their respective theoretical values of the
steady state according to (18) and (19), which are repre-
sented by a dashed line. Fig. 3 shows a comparison of the
EMSE curves of the proposed VSSA with those of other
adaptive sign algorithms at a 10 dB SNR, with impulsive
noise of p,=0.1. Moreover, the change in the coefficient
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x 107
10 T T
9 Elw] (pr=0) E[w], pr=0
‘» —_———— .
2 51 Theoretical value at steady state Theoretical
»
E=====S=== = = = = = == =
0 1 2 3 4 5 6 7 8 9 10
Number of iterations x 10*
0.06 T T T
21 (e
0.04 E[llpill°] (pr=0) ElllpilI], pr=0 | |
0.02 Theoretical value at steady state T 77~ Theoretical
0 Y Y Y Y . . Y
0 1 2 3 4 5 6 7 8 9 10
Number of iterations x 10*
01 T T T
Elllpi[] (pr=0.1) Ellip,lI°], pr=0.1
0.0 Theoretical value at steady state Theoretical Il
0 == T =T T ——=—== T — ~T
0 2 4 6 8 10 12 14 16 18
Number of iterations x 10%

Fig. 2. (a) Estimates of the step size for the proposed method. (b) Estimates of ||p;||* with p, = 0 for the proposed method and with p, = 0.1 in (c) when the
channel is changed. The dashed lines indicate the theoretical ||p;||* and y; at the steady state (white Gaussian inputs at 10 dB SNR).

10 T T T T T T T T

(d) APSA [15]

(a) u=0.00002, SA

Excess MSE (dB)

Proposed (theoretical)
1 N h

0 2 4 6 8 10 12 14 16 18
x 10*

Number of iterations

Fig. 3. Comparison of the EMSE for various adaptive sign algorithms
(white Gaussian inputs, 10 dB SNR, and with impulsive noise of p,=0.1).

values (all multiplied by —1) was abrupt when the
channel was changed. As observed in Fig. 3, the proposed
method converged quickly and had a low misadjustment
error. The proposed VSSA performed well and was robust
to the heavy-tailed impulsive interference. Figs. 4 and 5
(third-order inputs) and Figs. 6 and 7 (first-order inputs)
are the simulated results, with a different input signal
generated by G1(z) and G»(z). Similar result to that shown
in Fig. 1 (10 dB SNR) is observed in Fig. 8 (0 dB SNR). In
Fig. 8, DSA used x=0.00002, r=3, and L=8; NRMN used
A=0.0007 and K,,=5; the step size of APSA was set
to ©=0.0003 (using one projection order); MVSS-APSA
used @=0.99, 1=0.9999999, ,=0.5, and one projection
order; the proposed VSSA used «=0.99, $=0.9999, and

0 f— T T T T T T
N (a) 4=0.00006, SA (a) 1=0.00006, SA
-5+ N (b) DSA [13]
\ () APSA [15] (c) NRMN [14]
-10 (] () NRMN [14] — (d) APSA[15]
\ N\ (6) MVSS-APSA [16]
—_ \ J—
o -15 J\ \ (b) DSA [13] (f) Proposed
) \
% -20 | \\\ (e) MVSS-APSA [16] B
= \\N \
§ 25+ . |
S
[$] X
X 30} N o 1
\ N
351 N\ N\ I
(f) Proposed AN N
-40 s it
Proposed (theoretical)
45 ! | L L L L
0 1 2 3 4 5 6 7

Number of iterations x 10*

Fig. 4. Comparison of the EMSE for various adaptive sign algorithms
(third-order inputs, 10 dB SNR, and no impulsive noise (p,=0)).

7s=0.0005. These parameters were chosen to obtain the
best performance and to achieve the same steady-state
error for each of the compared algorithms. The proposed
VSSA performed well at a 10 dB or 0 dB SNR, with heavy-
tailed impulsive noises.

Methods using the technique based on the weighted
average of the gradient vector were introduced in [5,6].
The gradient vector is initially large and converges into a
small value at the steady state, so it can be used as a
performance index for convergence. However, this leads to
a performance degradation of the LMS-type algorithms
[5,6] when impulsive interference is present (see Appen-
dix B). Similarly, the experimental results in [4] are
sensitive to high-level noise because the instantaneous
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10 . . . . .

(a) 1=0.00002, SA

(d) APSA [15]

(e) MVSS-APSA [16]
(b) DSA [13]

Excess MSE (dB)

i (f) Proposed X
40 F = 3

Proposed (theoretical)
I !

0 2 4 6 8 10 12
Number of iterations x 10*

Fig. 5. Comparison of the EMSE for various adaptive sign algorithms
(third-order inputs, 10 dB SNR, and with impulsive noise of p,=0.1).
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error value is used and could, therefore, be contaminated
by the noise.

The performance of DSA [13] is determined by the
values of transition thresholds and selection of two step-
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Fig. 8. Comparison of the EMSE for various adaptive sign algorithms
(white Gaussian inputs, 0 dB SNR, and no impulsive noise (p,=0)).

size parameters. It is similar to the hard-switching from
one step size to another. The step size always maintains a
large value when the heavy-tailed impulsive interference
exists and this will lead to performance degradation. The
cost function of NRMN [14] minimized according to a
convex mixture of the first and second error norms, is
mainly controlled by a time varying mixing parameter. If
the parameter estimate tends to a large value, the NRMN
algorithm is similar to the LMS algorithm and this will
make the algorithm prone to considerable degradation in
the presence of heavy-tailed impulsive noise. When the
parameter estimate is a small value, NRMN will be similar
to SA and hence converge slow. Although APSA [15] could
speed up under colored input conditions, it is practically
similar to SA and this makes its convergence speed lower
in Gaussian input environments. In [16], when compared
to APSA, the MVSS-APSA algorithm is derived based on the
minimization of mean-square deviation to calculate the
optimum step size and to ensure an improved perfor-
mance in terms of convergence rate and misalignment.
However, MVSS-APSA uses a decreasing property rule to
control the step size. It always chooses the minimum value
between the adjacent step sizes, so tracking capability will
be degraded when the channel is changed.

From a robustness perspective, an approach to improv-
ing the performance of the family of LMS algorithms to
examine the step size is using the squared norm of the
sign gradient vector to enhance the dynamic range of the
step size between the maximum and minimum allowable
values of u instead of using a fixed value. The squared
norm of the sign gradient vector can cover the overall
tracking process during adaptation, providing tracking
capability when the channel is changed because the
proposed VSSA uses instantaneous gradient vectors, and
always points in the direction of the greatest rate of
decrease during the adaptive process toward the bottom
of the error performance surface. Furthermore, the recur-
sive operation in (3) and (4), when applying the smoothing
factors of a and g, is similar to low-pass filtering, which
effectively reduces the noise content. This ensures that the
proposed algorithm not only enhances the convergence
rate and reduces the complexity, but also exhibits a low
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misadjustment error, and is robust against strong impul-
sive disturbances. The simulation results demonstrate that
the proposed method performs well and is robust in low
SNR, high impulsive interference, and colored input con-
ditions. Regarding the complexity of various adaptive
schemes (Tables 1 and 2), the proposed approach requires
5N+2 multiplications and 4N additions per filter output
for computing.

4. Conclusion

This paper introduces a new algorithm, known as VSSA,
which uses the squared Euclidean norm of the sign
gradient vector's weighted-averaging as a criterion for
the convergence performance. The proposed VSSA com-
bines the benefits of the gradient-based algorithm and SA.
The gradient-based algorithm makes the proposed algo-
rithm converge fast with colored input signals and simul-
taneously the SA guarantees its robustness against
impulsive interference. Analyses and computer simula-
tions confirm that the proposed algorithm improves the
performance of conventional SA by offering a fast conver-
gence rate, a lower misadjustment error, and a lower
complexity when compared to other gradient-based
VSLMS algorithms. The proposed algorithm also exhibits
high robustness against strong impulsive interferences.
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Appendix A. Proof of (13) and (14)

The following lemma is needed to verify (13) and (14):

Lemma 1. Let u; and u, be jointly Gaussian zero-mean
random variables with variances o3 and ¢3, and let y = uy +n
and n with the pdf given in (7) be independent of u; and us.
Let zy =uy+hy and z, =u,+h,, where hy with variance
op, =03 and hy with o = (K+1)a3, be zero-mean Gaussian
variables independent of u, and u,. Therefore,

2
E[sgn(ui]l= Y exE[sgn(zp)uq], (A1)

where e1=1 — p, and e;=p,. Using (12), the second
moment K; of the weight error vector in (13) is necessary
to calculate E[sgn(e)v;x!] and E[sgn(e)x;v]]. Thus,
E[sgn(e;)v;ix[] can be written as

E[sgn(e;)vix] ] = E(E[sgn(e)vix{ |vi]} (A2)
Furthermore, using Price's theorem [19] and Refs. [1-3,10,12],

the following result is obtained

E[sgn(e)x]] = \/% %E(X,Te,») (A3)

Using Lemma 1 and (A1)-(A3), E[sgn(ei)v,-xﬂv,-] can be
written as

€k

2
X

T
E[sgn(e)vix; [vi] =vi\/=
T'=10e.i

2
; E(xey.|vi)

:Vi\/Z L /I (X,'T€1,i\Vi)+$ Ex[eylvy) ¢,
T \/o?+tr(RK;) \/(K+1)o? +tr(RK;)
(A.4)
where e; = —vIX;+n; and e; = —vIx;+hy; [k=1,2 and hy;
with variance of = o7 and hy; with o} = (K+1)s}]. Taking

the expectation with respect to v; and with E[x7e;|v;]=
—VIR, the following is obtained

E[sgn(e)vix!] = — \/ZK,'R 1-p, . b
T | o RK) /(K4 T)0} + r(RK)

(A5)
E[sgn(e;)x;v7] can be derived using the same procedure:
E[sgn(e)xvl] = — \/ERK,- 1=pr f Pr
n \/atz,-!—tr(Rl(,v) \/(1<+1 )o? +tr(RK)

(A.6)
Hence, we have

E[sgn(e)(vix! +x;v])]

=-— \/Z(KiR-k—RKi) Ly S Py
§ Vo2 HRK) /I + 1)o] + tr(RK))

(A7)

Similarly, (11) can be derived as
E(viy1) = E(v))+E(u)E[sgn(e)x]

- '_E(”f)\ﬁ L br R VEvy
|\ foR+rRK) \/I(K+1)o7]+ tr(RI)

(A.8)

Appendix B. Derivation of excess MSE for LMS algorithm

In this appendix, the LMS algorithm using a fixed step
size of u was derived based on the two-component
Gaussian mixture observation noise given in (7) and (8).
According to the standard assumptions used in [1-4,
7-10,12], the weight-error vector and its second moment
K; can be evaluated recursively as

E(viy1)=[I—uRIE(V) (B.1)

and

Ki ;1 = Ki — u(RK; + KR) -+ 4*[2RK;R + Rtr(RK)] + 4* 2R
(B.2)

Observing the MSE given in (20), it is only necessary to
study a recursion for k;=tr(K;). Taking the trace of both
sides of (B.2) yields

Kiy1=ki—2uc2ki+p>(N+2)atki +u>No2 o> (B.3)
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By substituting (8) into (B.3), assuming the adaptive filter
has converged when i— oo, the following is obtained:

_ uN

T 2—ua2(N+2)
The EMSE [defined as &exeess = tI(RK) = o2k, and with
R=72I] is

Koo {(1=ppop+p, [(K+1)o?]} (B4)

Eorcens = pNog
excess — 2 _llo'%(N'f‘ 2)

It can be observed in (B.5) that the EMSE for the LMS
algorithm depends on the power of the impulsive noise
and the input power. Hence, the LMS that uses the energy
of the instantaneous error as its cost function is sensitive
to impulsive noise, making it prone to substantial degra-
dation in several practical applications.

{(1=p)aj +p,[(K+Dop]) (B.5)
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