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a b s t r a c t

In this study, a novel procedure combining computational intelligence and statistical methodologies is
proposed to improve the accuracy of minimum-variance optimal hedge ratio (OHR) estimation over
various hedging horizons. The time series of financial asset returns are clustered hierarchically using
a growing hierarchical self-organizing map (GHSOM) based on the dynamic behaviors of market
fluctuation extracted by measurement of variances, covariance, price spread, and their first and second
differences. Instead of using original observations, observations with similar patterns in the same cluster
and weighted by a resample process are collected to estimate the OHR. Four stock market indexes and
related futures contracts, including Taiwan Weighted Index (TWI), Standard & Poor's 500 Index (S&P 500),
Financial Times Stock Exchange 100 Index (FTSE 100), and NIKKEI 255 Index, are adopted in empirical
experiments to investigate the correlation between hedging horizon and performance. Results of the
experiments demonstrate that the proposed approach can significantly improve OHR decisions for mid-term
and long-term hedging compared with traditional ordinary least squares and naïve models.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Hedging has been of interest to both academicians and practi-
tioners with the emergence of financial derivatives markets, which is
carried out by establishing the position of a derivative instrument to
offset exposure to price fluctuations opposite to that of underlying
assets to minimize exposure to unwanted risk. To achieve this, the
hedger determines a hedge ratio, i.e. the amount of futures contracts
to buy or sell for each unit of the underlying asset on which he bears
price risk. Therefore, an investor's hedging decisions heavily depend
on the models which are capable with the dynamic evolution of the
pairwise correlations between futures and spot markets and give
appropriate estimates of these hedge ratios.

In the existing literature, the most widely used hedging strategy is
to adopt the minimum-variance hedge ratio [1]. The optimal hedge
ratio (OHR) is suggested to be obtained by simply regressing the spot
market return on the futures market return using ordinary least
squares (OLS) under the criterion of minimum variance [2]. However,
these approaches obtained the classical time-invariant OHR which

appears inappropriate with the time-varying nature of many financial
markets. Improvements were made to capture time-varying features,
such as by adopting dynamic hedging strategies based on the bivariate
generalized autoregressive conditional heteroskedasticity (GARCH)
framework [45–49] or the stochastic volatility (SV) model [5,50].
Although these studies were successful in capturing time-varying
features, some concerns are raised when considering the long hedging
horizon [3,4], and the distribution of data [6,7].

More recently, other approaches based on non-parametric mod-
els have been proposed to avoid undue restrictions. Apart from the
classical statistics methodology, Markov regime switching (MRS) [8],
Kalman Filter [9], wavelet analysis [10–12], and particle swarm opti-
mization (PSO) [13] were adopted as analysis tools or as a new
approach to hedge ratio research. Although some of these models are
more burdensome in computing, the accuracy of results have been
improved and better hedging performance is obtained. However,
rather limited research efforts have been devoted to improve the
classic OLS-based method as written in the textbook using inter-
disciplinary skill and knowledge across classic statistics and compu-
tational time series cluster technique [59–61].

In this paper, we address the issue of bivariate time series from
the OHR estimation perspective, and investigate the feasibility of
OHR estimating using pattern recognition technique to collect similar
data samples for variance and covariance estimation. In contrast to
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classical OHR estimation under the minimum-variance framework,
a two-phase model, which conserves the classic minimum-variance
theoretical framework but avoids the complex restrictions and
assumption of the OLS-based approach, is proposed based on
growing hierarchical self-organizing map (GHSOM). The goal of the
first phase is to recognize the data samples which have similar
pattern. We suggest some features which represent the dynamic
behaviors of bivariate variance–covariance structure for similarity
measurement using GHSOM. In the second phase, we suggest
replacing the raw data samples of the bivariate time series with
the similar ones via the proposed data resampling and weight
process in order to modify the distribution of the raw data.

This paper is organized in five main sections. Literature review of
the recent development on the relevant methods of estimating the
hedge ratio and time series clustering technique is described in
Section 2. The proposed model for OHR decision making is described
in Section 3. Section 4 presents the experiments, and discusses the
empirical test results. The concluding remarks and suggestion for
future works are provided in Section 5.

2. Literature review of related work

2.1. Minimum variance hedge

The basic concept of hedging involves the elimination of
fluctuations in the value of a spot position by tracking futures
contracts that are opposite to the position held by the spot market.
For a long position in the spot market, the return of a hedged
portfolio is given by

ΔHP ¼ΔS�rΔF ð1Þ

where ΔHP is the change in the value of the hedge portfolio; ΔS
and ΔF are the changes in the spot and futures prices, i.e. the
returns, respectively; and r is the hedge ratio. OHR is the value of
r that maximizes the expected utility of the investor; it is defined
as the expected return and risk of the hedged portfolio. The
expected return of futures is 0 when the futures price follows a
martingale; hence, the futures position will not affect the expected
return of the portfolio.

The risk of the hedge portfolio is defined by its variance in the
mean–variance framework. Therefore, OHR is simply the value of
r that minimizes the variance of Eq. (1), which is given by

∂VarðΔHPÞ
∂r

¼ 2r � VarðΔFÞ�2CovðΔS;ΔFÞ ¼ 0 ð2Þ

where VarðΔFÞ is the variance of the futures return and
CovðΔS; ΔFÞ is the covariance between the spot return and the
futures return. OHR is determined by solving Eq. (2):

rn ¼ CovðΔS;ΔFÞ
VarðΔFÞ ð3Þ

The OHR given by Eq. (3) can be estimated by regressing the
spot return on the futures return using OLS, which corresponds to
conventional or classical OHR.

Hedging performance is typically evaluated by hedging effective-
ness (HE). The degree of hedging effectiveness is measured by the
percentage reduction in the variance of portfolio after hedging [3].
The variance of hedge portfolio with estimated OHR can be
expressed as

Varhedged ¼ VarðΔHPÞ ¼ VarðΔSt�rΔFtÞ ð4Þ

where r is the OHR. Therefore, HE can be expressed as

HE¼ Varun�hedged�Varhedged
Varunhedged

� 100%¼ VarðΔSÞ�VarðΔHPÞ
VarðΔSÞ

�100%¼ 1�VarðΔHPÞ
VarðΔSÞ

� �
� 100% ð5Þ

The value of HE can be used to evaluate the model of OHR
estimation. A higher HE represents better OHR estimation, and
vice versa.

2.2. Models for estimating the OHR

The simplest approach suggested to minimize portfolio risk is
naïve hedge, which sets the hedge ratio equal to 1 over the whole
hedging horizon. The correlation between spot and futures prices is
assumed to be perfect, but it challenges the fact that the spot and
futures prices are naturally stochastic and time variant. In order to
accurately recognize the correlation between futures and spot prices,
the static OLS hedge which uses the OLS coefficient of a regression of
spot return on futures return is proposed [1]. However, it considers
the joint distribution of spot and futures return as constant, and
hence leads to suboptimal hedging decisions in periods of high basis
volatility.

Recently, numerous works have focused on improving hedging
performance using the dynamics in the joint distribution of returns
and the time-varying nature of OHRs. Optimal hedge ratios are
estimated using the family of GARCH models proposed by Engle
[63], Engle and Kroner [64], and Bollerslev [65,66]. Various GARCH
models are studied in literature to investigate hedge ratio and hedging
performance, including bivariate GARCH model with diagonal vech
parameterization for commodity futures contracts [69], bivariate
constant-correlation GARCH (CC-GARCH) model for foreign currency
futures [45] and stock index futures [67], GARCH model with Baba–
Engle–Kraft–Kroner (BEKK) parameterization for interest-rate futures
[70], augmented GARCHmodel for the freight futures market [71], and
orthogonal GARCH and CC-GARCH for the electricity futures market
[68]. Although, these improvement models can capture the dynamic
behavior of a time series for OHR estimation, these approaches do not
work robustly when dealing with the OHR decisions over different
hedging horizons. Only a few studies consider different hedging
horizons for hedge ratio estimation [3–6,12,47,51,52], but the relation-
ship between hedging horizons and hedge ratio still needed to be
investigated using other methods.

Hedge horizons are often crucially important for making hedge
ratio decision, because investors, such as regulators and speculative
investors, as well as individuals and institutions participating in the
financial markets have different behaviors with various hedging
horizon length. However, three problems occurred in incorporating
the hedging horizon in OHR estimation. First, the long-horizon OHR
estimator based on a handful independent observations generated
from long-horizon return series is unreliable [3]. This is because the
frequency of data must match the hedging horizon (e.g., weekly or
monthly data must be used to estimate the hedge ratio where the
hedging horizon is one week or one month, respectively). Low data
frequency would result in a substantial reduction in sample size [4].
Second, the assumption for the error term of the GARCH/SV model
would lead to inaccurate results when estimating the multiperiod
hedge ratio [5]. Third, the assumption for the underlying data-
generating process, such as a unit root process, is unsuitable when
the assumed condition does not hold true, as evidenced in many
commodities markets [6].

The weight of observations in OHR estimating is another issue.
Due to the conditional distribution of most financial asset returns
tend to vary over time, most OLS-based approaches adopt a rolling
window scheme to obtain recent information for estimating the
variance and covariance of spot and futures returns. However,
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rolling window estimators use an equally weighted moving
average of past squared returns and their cross products. Observa-
tions have equal weight in the variance–covariance matrix
estimator of the arbitrarily defined estimation period, but they
have zero weight beyond the estimation period. GARCH class
models are successful in capturing time-varying features for
estimating conditional variance–covariance matrices, but they
place too much weight on extreme observations when the
distribution of data is leptokurtic and fat-tailed [7].

2.3. Cluster analysis for time series

Clustering financial time series is a new approach to analyze the
dynamic behavior of time series, and to forecast any future tendency
of the time series for purposes of decision making. Many financial
problems have been studied based on cluster analysis via computa-
tional intelligence approach instead of the conventional approach.
Dose and Cincotti [62] use a stochastic-optimization technique based
on time series cluster analysis for index tracking and enhanced index
tracking problems. Pattarin et al. [15] propose a classification algo-
rithm for mutual funds style analysis, which combines different
statistical techniques and exploits information readily available at
low cost. In their analysis, time series of past returns is used to retrieve
synthetic and informative description of contexts characterized by
high degrees of complexity, which is useful in identifying the styles of
mutual funds. Gafiychuk et al. [16] use the self-organizing methods to
investigate the time series data of the Dow Jones index. Basalto et al.
[17] use a novel clustering procedure, which is applied to the financial
time series of the Dow Jones industrial average (DJIA) index to find
companies that share similar behaviors. The techniques proposed
could extract relevant information from raw market data and yield
meaningful hints as to the mutual time evolution of stocks. Karandikar
et al. [18] develop a volatility clustering model to forecast value at risk
(VaR). The feasibility and benefits of the model are demonstrated in an
electricity price return series. Zhu [19] proposed a new model based
on cluster analysis for oil futures price forecasting. This model is
demonstrated using the historical data from NYMEX market, and
shows that the proposed model can effectively and stably improve the
precision of oil futures price forecasting. Focardi and Fabozzi [20]
adopt a clustering-based methodology to determine optimal tracking
portfolio to track indexes. Papanastassiou [21] discuss classification
and clustering of financial time series data based on a parametric
GARCH (1,1) representation to assess their riskiness.

In spite of the prevalence of numerous clustering algorithms,
including their success in a number of different application domains,
clustering remains challengeable. The methods of data processing,
feature extraction, similarity measurement, and topology of cluster
construction are different when dealing with different data. For time
series data, features extractionmethods are organized by past research
into three groups [53] working directly with the data either in the
time or frequency domain; working indirectly with features extracted
from the raw data; and working indirectly with models built from raw
data. Defining an appropriate similarity measure and objective func-
tion is also an issue of choosing clustering algorithm. Nevertheless,
Jain [54] emphasizes that “there is no best clustering algorithm”when
comparing the results of different clustering algorithms.

Clustering time series offers two benefits, one is that clustering
can avoid the improper assumption and restriction of data, and the
other is that data objects with similar dynamic behavior in their
evolution over time are pooled and can thus help in data modeling.
Gershenfeld et al. [22] propose a cluster-weighted model for time
series analysis, which is a simple special case of the general theory of
probabilistic networks but one that can handle most of the limita-
tions of practical data sets without unduly constraining either data
or user. They show that nonlinear, non-stationary, non-Gaussian,
and discontinuous signals can be described by expanding the

probabilistic dependence of the future depending on past relation-
ships of local models. Fruhwirth-Schnatter and Kaufmann [23]
propose to pool multiple time series into several groups using
finite-mixture models. Within a panel of time series, only those that
display “similar” dynamic properties are pooled to estimate the
parameters of the generating process. They estimate the groups of
time series simultaneously with group-specific model parameters
using Bayesian Markov chain Monte Carlo simulation methods. They
document the efficiency gains in estimation, and forecasting is
realized relative to the overall pooling of the time series. D'Urso
and Maharaj [24] suggest that time series often display dynamic
behavior in their evolution over time, which should be taken into
account when attempting to cluster the time series. They proposed
a fuzzy clustering approach based on autocorrelation functions
to determine and represent the underlying structure in the given
time series.

2.4. Growing hierarchical self-organizing map

Recently, growing hierarchical self-organizing map (GHSOM) is
used for cluster analysis and is presently the best available analysis
tool in many research fields [31–33]. Extended from the Kohonen's
self-organizing feature map (SOM) [30], which is an unsupervised
neural network that organizes a topological map, GHSOM has
a hierarchical architecture of multiple layers. Each layer comprises
several independent clusters representing the growing SOM [14]. SOM
has shown the ability of pattern discovery [25,26] and prediction [27–
29] for time series data. The resulting map shows the natural
relationships among patterns given in the network. However, the
number of clusters, which describes the topology of the SOM, needs to
be determined in advance. Moreover, the topology of the SOM lacks
the ability to represent hierarchical relations of the data. Unlike
traditional cluster analysis techniques, a GHSOM need not determine
the number of clusters in advance. When applying GHSOM algorithm,
time series data with similar patterns are clustered together. If the
similarity of data in the same cluster is below a certain threshold, data
are clustered once again by breadth or depth, thus expanding the SOM
clusters. The topology of the clusters is automatically determined by
the characteristics of the input data during the unsupervised training
process, and related with the threshold setting for width and depth
expansion. In this study, GHSOM is used for the time series analysis to
estimate the clustered-based variance and covariance, which have not
been studied in detail.

3. Methodology

3.1. Procedure of the proposed model

The conventional approach to OHR estimation is simply to regress
the spot and futures series. The basic operating steps are shown in
Fig. 1. The first step is to collect the market price of spots and futures
as original data. Next, the original price series is sampled so it
coincides with the hedging horizon and then transformed into a
return series by differencing. Finally, these data are used to estimate
variance and covariance using OLS to obtain the OHR.

In this study, two modifications of the conventional approach are
proposed based on the philosophy that data with similar dynamic
behaviors may appear in the future with higher probability than
dissimilar ones, as shown in the top part of Fig. 1. The original
composition of data for OHR estimation is modified by the selected
data with a similar pattern, which is performed in two phases. Phase
I is clustering time series and Phase II is modifying the probability
distribution. The objective of Phase I is to identify higher probability
data, which would occur in the next hedging horizon based on the
whole data set, and ignore lower probability data. In Phase II, the
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data composed by the higher probability data are expected to be
more approximate to the normal distribution than the original data,
suggesting decreased inaccuracy caused by leptokurtic and fat-tailed
distributions.

3.2. Data transformation

The original data for OHR estimation gathered from the financial
market are the daily closing (or settlement) prices of spot and
futures. The price series are then be transformed to return series
by differencing the price series. We consider continuously com-
pounded data and magnify the scale by multiplying by 100 to avoid a
small scale. The return series is expressed as the price change:

ΔSt ;ΔFt ¼ lnðPt=Pt�1Þ100 ð6Þ
where ΔS and ΔF are price changes of spot and futures, respectively;
P is the price series; and t refers to the present time.

These return series are then divided into two parts, in-sample
estimating period and out-of-sampling testing period. The hedge
portfolio in this study is adjusts every hedging horizon according
to the latest estimated OHR until the out-of-sample testing period
is due. A rolling window scheme is applied to achieve the dynamic
hedging strategy. The rolling windows scheme estimates the OHR
at time t according to the conditioning on the time t�1 data set,
which is exhibited in Fig. 2. Herein, h denotes the hedging horizon
while e is the in-sample estimating period. The length of the
rolling window is eþh. OHR is estimated based on the observa-
tions in the in-sample estimating period, from t�e to t, then used
for hedging from t to tþh. Next, the window is rolled one hedging
horizon ahead in order to reestimate the OHR based on the
observations from tþh�e to tþh. Then, we use the new OHR
for the next hedging horizon, from tþh to tþ2h. OHR is reesti-
mated every h day, and then used to adjust the hedging portfolio
until the out-of-sample testing period is due.

3.3. Extracting the feature of dynamic behaviors

The dynamic behaviors exist in financial time series, and these
dynamic behaviors are helpful for time series forecasting [23,24].
In this study, variance, covariance, price spread, and their first and
second differencing are adopted as the features representing the
dynamic behavior of time series for clustering. Although, most
research adopted the original price or return series and their deriva-
tive technique indices, that exists certain dependency, are adopted as
the features for financial market prediction and can obtain well
performance [55]. These features extracted from single variable
time series are hardly to present the behavior patterns of bivariate
time series. Consequently, we adopt variance and covariance for

consideration of the volatility cluster behavior [56] and the joint
distribution of bivariate time series. Price spread that critically
influences the OHR [57] is also adopted. Furthermore, the indepen-
dence variables represent the first and second moment which ,similar
to the physical concepts of potential energy (price spread), momen-
tum (first-order differencing)), and activation force (second-order
differencing) [23] [58], are adopted. These features are calculated
using the data one in the most recent hedging horizons, denoted by h,
as follows:

VarðΔStÞ ¼ Var½ΔSt�h;…;ΔSt � ð7Þ

VarðΔFtÞ ¼ Var½ΔFt�h;…;ΔFt � ð8Þ

CovðΔSt ;ΔFtÞ ¼ Cov
ΔSt�h;…;ΔSt
ΔFt�h;…;ΔFt

" #
ð9Þ

SpreadðSt ; FtÞ ¼ ½Ft�h�St�h;…; Ft�St � ð10Þ
The first and second order difference of these features

are shown as

X0
t ¼

Xt�Xt�1

Xt�1
ð11Þ

X″
t ¼

X0
t�X0

t�1

X0
t�1

ð12Þ

where X represents the functions of Var, Cov, and Sperad. Twelve
vectors of variable are eligible to represent the dynamic behavior
of an observation and are used as the input matrix of variables for
GHSOM (Table 1).

3.4. Clustering by GHSOM

Each observation can extract a feature vector from the data from
the previous hedging horizon. The feature vectors of the observations
in the estimation interval include input matrix of GHSOM for OHR
estimation. The GHSOM algorithm in this study is implemented in
MATLAB [35]. When using the GHSOM, the result network topology is
adjusted by the presetting parameters, including breadth of map,
depth of GHSOM and threshold of cluster capacity, to fit the require-
ment of analyzer. If the group size of cluster exceeds the threshold, the
data will be clustered once again by breadth or depth, hence
expanding the SOM clusters. To emphasize the hierarchical relation-
ship of the clusters and to avoid data from being too concentrated on
some clusters, the parameters of bread, depth, and threshold are
respectively set as 0.001, 0.8, and 100, after several trials based on our
experiment data.

Fig. 1. The cluster-based approach.
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The features vector extracted from the historical time series,
which are processed by min-max normalization between �1 and 1,
are feed into to the GHSOM, and the hierarchically clustered data are
given. Fig. 3 illustrates two important relations of these hierarchical
clusters. First, the number of data samples in each cluster is different.
Clusters in the upper layers of the hierarchical architecture contain
more data samples than those in the lower layers. Secondly, the
hierarchical architecture also represents the degree of similarity. Any
sample can be identified on the cluster based on the layer it belongs
to. The host cluster in the lowest layer contains the least data but has
the highest similarity with the forecasting data. In addition, similarity
with data is decreased in the upper layer clusters.

To estimate the OHR for the next hedging horizon, the features
of dynamic behaviors are extracted from the data in one hedge
horizon ahead for each sample data in estimating period. After
being hierarchically clustered, a group of similar data samples are
collected by the cluster they belongs to in each layer.

3.5. Data resampling and weighting

Data samples with similar behavior may occur more frequently
in the future and should be more emphasized than the dissimilar
ones. However, when data are grouped by cluster analysis, the
original data are divided into several groups, with each group only
containing partial data. The number of similar data samples is far

less than the original data. Reducing sample size causes inaccuracy
when OLS for OHR estimation is employed [4]. To overcome this
problem, we propose to adopt -in cluster resampling, which has
been used for solving sample-reduced problems [36,37]. Moreover,
the architecture of hierarchical cluster is very similar to the
hierarchical stratified resampling scheme, in which the observa-
tions are divided into several groups according to their properties.
Consequently, we expand the sample size by randomly replicating
the similar data samples in the cluster for each layer until the
sample size reaches the same population size of the estimation
period. The more similar data will be replicated more frequently,
thus increasing the occurrence probability in the whole popula-
tion. As the results, the sample size is expanded to the original
sample size of estimating period by multiplying the layer of the
hierarchical architecture. The pseudo code for data resampling and

Fig. 2. The rolling windows scheme.

Table 1
Features of the observation.

Dynamic behaviors Eligible input variables Notations

� Volatility clustering property.
� Momentum of volatility change.
� activation force that cause volatility change.

Variance
Variance of spot/futures return series VarðΔSÞ, VarðΔFÞ
First order differential of variance Var0ðΔSÞ, Var0ðΔFÞ
Second order differential of variance Var″ðΔSÞ, Var″ðΔFÞ

� Joint distribution of spot and future return series.
� Momentum of joint distribution change.
� activation force that cause joint distribution change.

Covariance
Covariance of spot and futures return series CovðΔS;ΔFÞ
First order differential of covariance Cov0ðΔS;ΔFÞ
Second order differential of covariance Cov″ðΔS;ΔFÞ

� Potential energy.
� Momentum of Potential energy.
� activation force that cause Potential energy change.

Price spread
Spread of spot and futures price series SpreadðS; FÞ
First order differential of SpreadðS; FÞ Spread0ðS; FÞ
Second order differential of SpreadðS; FÞ Spread″ðS; FÞ

Fig. 3. An example of the hierarchical clustered data.
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weighting is described in Fig. 4. The probability distribution of the
original time series is modified by combining the original popula-
tion data in estimating period and the resampling the similar data
samples. When the conditional distribution of spot and futures
returns is predictable, a more efficient estimate of the OHR can be
obtained by conditioning on recent information [34].

3.6. OHR estimating

In this study, OHR estimation is improved by replacing the
original data samples in the estimation period with the collection
of unequal weighted similar data samples. The traditional OLS
method for OHR estimation, expressed by Eq. (3), and is modified
to Eq. (13), in which Δ ~S and Δ ~F refer to the collection of observations
derived from spot and futures return series, respectively.

rn ¼ CovðΔ ~S;Δ ~F Þ
VarðΔ ~F Þ

ð13Þ

3.7. Model evaluation

The value of hedging effectiveness (HE) and the variance of
hedge portfolio, expressed by Eqs. (5) and (4), are used to evaluate
the model of OHR estimation in this study. Furthermore, White's
Reality Check is adopted to compare the different OHR estimation
models and to test the statistical significance of variance deduction
[38,39]. The reality check consists of a non-parametric test that
checks if any of the numbers in the concurrent methods yield
forecasts that are significantly better than a given benchmark
method; then, it corrects the data snooping bias. Data snooping
bias may occur when a given dataset is reused by one or more
researchers for model selection. The null hypothesis that the
performance of the proposed hedging model has no predictive

superiority over the conventional model is not rejected. The
hypotheses are as follows:

H0. No method is better than the benchmark.

H1. At least one method is better than the benchmark.

4. Experimental design and results analysis

4.1. Experimental design

The experiments in this study are designed with two objectives:
feasibility of the proposed GHSOM model and hedging performance
over various hedging horizons for OHR decision making based on
different models. Two factors are considered in the experiments. One
is the features selection for dynamic behaviors, the other is the days of
hedging horizon.

The feasibility of the proposed GHSOM model is examined
using dynamic behaviors extracted as the feature of the time
series. The feature-extracting process of the proposed model is
tested in different settings to achieve the best parameters. The
feature vectors that represent the dynamic behaviors of time
series for GHSOM similarity measurement are composed of
variance, covariance, price spread, and their first and second order
differences. We design six combinations of these parameters,
which are adopted in the experimental models to verify the
performance over various hedging horizons. Table 2 presents the
parameter settings of these models.

The optimal hedge ratio is estimated by the proposed model
concerned with the hedging horizon, and the hedging decision is
evaluated by hedging effectiveness. For each hedging horizon in the
testing period, the hedged portfolio is adjusted once according to
the latest OHR at the beginning of a hedge horizon and lasts until the
beginning of the next hedging horizon. At the end of the testing

Fig. 4. The pseudo code of data resampling and weighting.
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period, hedging effectiveness is calculated based on the variance of
the hedging portfolio in each hedging horizon. Hedge horizons in
the experiments are set at 1, 7, 14, 21, and 28 days, which cover
the intervals from short-term to long-term. To compare hedging
performance, the superiority of the proposed model is verified using
two conventional models, the OLS and naïve models, both of which
are widely used in OHR research on different hedging horizons [6,12].

4.2. Experiment data and basic statistics

This study obtained empirical trading data of the daily closing price
from various stock and futures markets, including Taiwan Weighted

Index (TWI), Standard & Poor's 500 Index (S&P 500), Financial Times
Stock Exchange 100 Index (FTSE 100), NIKKEI 255 Index, and their
correlated futures contracts. Table 3 lists the stock market index and
exchange of their correlative futures contracts trade. All data were
obtained from the Thomson Datastream database in the same period
from July 21, 1999 to July 18, 2008. The futures prices series was
gathered from the nearest month contracts and rolled over to the next
nearest contracts on the maturity day due to the consideration of
liquidity and price spread risk. The return series are defined as the
logarithmic first difference of price series multiplied by 100 using
Eq. (1). The numbers of observation for each market are listed in
Table 3. Among the total observations, the first 90% is considered the
estimation period, and the remaining 10% is considered the testing
period.

Table 4 shows some basic distributional characteristics of the
spot and futures return series. All eight series show significant
skewness, kurtosis, and Jarque–Bera (JB) statistics, implying non-
normal distributions with fatter tails. Comparisons of the standard
deviation of return, kurtosis, and JB statistics indicate that the
largest and smallest discrepancy between the spot and futures
data are in TWI and FTSE 100, respectively. In other words, the
correlation between spot and futures is highest in FTSE 100 and
lowest in TWI. The large discrepancy between the spot and futures
data displays more extreme movements than would be predicted
by a normal distribution. The F-test for equal variance between
spot and futures also indicates different characteristics in each
market. The result shows that the null hypothesis of equal variance
is rejected in TWI, but cannot be rejected in S&P 500, FTSE 100,
and NIKKEI 255 Index. Consequently, the data of the same period
gathered from different markets may exhibit different behaviors
and cause inconsistencies in the results.

4.3. Comparisons of dynamic behaviors prediction

The variance, covariance, price spread, and first and second
differences of the observations in previous hedging horizons are
suggested to capture the dynamic behavior for predicting fluctuations
in the next hedging horizon. Table 5 presents the hedging effective-
ness for all models. Results indicate that based on the same experi-
ment data, the GHSOM model can obtain the best performance
compared with the traditional OLS and naïve models, except for
short-term hedging in FTSE 100 and one day hedging in S&P 500.
A comparison of the six experiment models in all market data
indicates that the best GHSOM model is different over different
hedging horizons. For seven days hedging, the GHSOM_V0 model is
the best model in all market data. However, for the 1 day and 28 days
hedging, the GHSOM_V2 and GHSOM_V2C0S0 models are the best
models in three of four market data.

Table 3
Experiment data.

Index (Spot) Exchange (Futures) Observations

Taiwan Weighted Index
(TWI)

Taiwan Futures Exchange (TAIFEX) 2217

Standard & Poor's 500
index (S&P 500)

Chicago Mercantile Exchange
(CME)

2263

Financial Times Stock
Exchange 100 Index
(FTSE 100)

London International Financial
Futures and Options Exchange
(LIFFE)

2215

NIKKEI 255 Index Osaka Securities Exchange (OSE) 2275

Note: Data period is from July 21, 1999 to July 18, 2008.

Table 2
Parameter settings for testing dynamic behavior.

Code of testing model Input parameters (selected features)

Variance Covariance Price spread

GHSOM_V0 VarðΔSÞ, VarðΔFÞ
GHSOM_V2 VarðΔSÞ, VarðΔFÞ

Var0ðΔSÞ, Var0ðΔFÞ
Var″ðΔSÞ, Var″ðΔFÞ

GHSOM_V0C0S0 VarðΔSÞ, VarðΔFÞ CovðΔS;ΔFÞ SpreadðS; FÞ
GHSOM_V2C0S0 VarðΔSÞ, VarðΔFÞ

Var0ðΔSÞ, Var0ðΔFÞ CovðΔS;ΔFÞ SpreadðS; FÞ
Var″ðΔSÞ, Var″ðΔFÞ

GHSOM_V0C2S2 VarðΔSÞ, VarðΔFÞ CovðΔS;ΔFÞ SpreadðS; FÞ
Cov0ðΔS;ΔFÞ Spread0ðS; FÞ
Cov″ðΔS;ΔFÞ Spread″ðS; FÞ

GHSOM_V2C2S2 VarðΔSÞ, VarðΔFÞ CovðΔS;ΔFÞ SpreadðS; FÞ
Var0ðΔSÞ, Var0ðΔFÞ Cov0ðΔS;ΔFÞ Spread0ðS; FÞ
Var″ðΔSÞ, Var″ðΔFÞ Cov″ðΔS;ΔFÞ Spread″ðS; FÞ

Table 4
Basic distributional statistics of return series.

TWI S&P 500 FTSE 100 NIKKEI 255

Spot Futures Spot Futures Spot Futures Spot Futures

Mean �0.0060 �0.0068 �0.0040 �0.0042 �0.0072 �0.0073 �0.0160 �0.0158
Maximum 6.1721 6.7659 5.5744 5.7549 5.9026 5.9506 7.2217 8.0043
Minimum �9.9360 �11.0795 �6.0045 �6.2709 �5.8853 �6.0625 �7.2340 �7.5986
Std. Dev. 1.5931 1.8262 1.1287 1.1404 1.1657 1.1663 1.4058 1.4346
Kurtosis 5.2942 5.8891 5.2732 5.4067 5.7929 5.7588 4.6042 4.6496
Skewness �0.1883 �0.1867 0.0600 0.0274 �0.2096 �0.1658 �0.2075 �0.2122
Jarque-Bera (JB) 499.0886nnn 783.5957nnn 488.3711nnn 546.2142nnn 755.7494nnn 731.5745nnn 253.2913nnn 267.633nnn

F-test for equal variances (p value)
0.0000nnn 0.6247 0.9790 0.3396

Note: (1) The skewness of normal distribution is zero. (2) The kurtosis of normal distribution is 3. (3) The hypothesis of F-test is that two independent samples, spot and
futures return, come from normal distributions with the same variance.

nnn Represents significance at the 1% level.
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The results imply that the ability to capture fluctuation under
various timescales is different for GHSOM models. Short-term
dynamic behavior may be captured by variance and its first and
second differences. Long-term tendency may need more variables for
its description than short-term tendency by adding covariance and
price spread.

4.4. Comparison of hedging performance

For a comparison of hedging performance, we list the best GHSOM
model from the six experiments models, and the two conventional
models (naïve and OLS) in Table 6. Table 6 shows that increasing the
hedging horizon will increase the variance of unhedged portfolio but
will be effectively reduced by the hedging model. The percentage of
variance reduction, shown as hedging effectiveness in Table 5, is
higher in a long hedging horizon than in a short one.

A comparison of the model using the variance of hedged portfolio
in Table 6 shows that the GHSOMmodel is superior to the OLS model;
for TWI and NIKKEI 255, the GHSOM model obtains the minimum
variance in all hedging horizons. However, the conventional OLS
model cannot obtain minimum variance for all markets. Notably, for
FTSE 100 and S&P 500 in short-term hedging, the static naïve model
obtains the minimum variance. A possible reason for this may be the
high correlation of the fluctuations of spot and futures for FTSE 100.

This can be observed from the closing statistics value of the spot and
futures market in Table 3.

The value of hedging effectiveness is slightly different in these
models. To test the significance of these models’ performance
improvements, we perform White's reality check. When OLS is
treated as the benchmark, the null hypothesis of no improvement
of GHSOM model over benchmark is rejected for 28 days hedging
in TWI, 21 and 28 days hedging in S&P 500, 21 days hedging in
FTSE 100 and NIKKEI 255 at the significance level of 1%. Results of
the reality check provide evidence that the proposed CI-model can
improve the OLS model, especially in long-term hedging.

4.5. Comparison of OHR

Table 7, which includes OLS and the best GHSOM model for
comparison, presents the average OHR and standard deviation for
the underlying models. For all market data, the average OHR
estimated using GHSOM and OLS models is very close though a
large discrepancy that exists in the standard deviation. Maximum
standard deviation of the OLS model is 0.0069 for the one day
hedging for FTSE 100. However, minimum standard deviation of
the GHSOM model is 0.0070 for 28 days hedging for S&P 500.
Results suggest that the OHR estimated using the GHSOM model is
more variant than that of the OLS model.

Table 5
Comparisons of dynamic behaviors.

Market/model Hedging effectiveness
Hedging horizon (days)

1 7 14 21 28

TWI
GHSOM_V0 93.3309%n 97.1661%nn 99.2656% 99.3811% 99.3131%
GHSOM_V2 93.3905%nn 97.1534%n 99.2480% 99.3942% 99.3556%n

GHSOM_V0C0S0 93.2715% 96.9289% 99.2751% 99.3947% 99.3160%
GHSOM_V2C0S0 93.0998% 96.8809% 99.2879%n 99.4342%n 99.3802%nn

GHSOM_V0C2S2 93.1081% 97.0102% 99.3111%nn 99.4327% 99.3431%
GHSOM_V2C2S2 93.1798% 96.9169% 99.2047% 99.4666%nn 99.3470%
OLS 93.3055% 97.0244% 99.1612% 99.3860% 99.3089%
Naïve 90.6982% 96.0278% 98.5331% 99.0888% 98.8415%

S&P 500
GHSOM_V0 96.6140% 99.1678%nn 99.3126% 99.6413% 99.6493%
GHSOM_V2 96.6662%n 99.1206% 99.3777% 99.6010% 99.6513%
GHSOM_V0C0S0 96.6401% 99.1236% 99.3860%nn 99.6888%nn 99.7094%
GHSOM_V2C0S0 96.6447% 99.0880% 99.3856%n 99.6806%n 99.7310%nn

GHSOM_V0C2S2 96.6069% 99.0630% 99.3837% 99.6774% 99.6793%
GHSOM_V2C2S2 96.6221% 99.0656% 99.3667% 99.6661% 99.7263%n

OLS 96.6510% 99.1287%n 99.3705% 99.5911% 99.6131%
Naïve 96.7974%nn 99.0029% 99.3045% 99.4826% 99.5752%

FTSE 100
GHSOM_V0 96.9688% 98.5911% 98.5323% 99.0140% 99.4868%nn

GHSOM_V2 97.0511%n 98.5522% 98.5596% 99.1438% 99.4483%
GHSOM_V0C0S0 96.9842% 98.5673% 98.5690% 99.1743% 99.4857%n

GHSOM_V2C0S0 96.9828% 98.6141%n 98.5572% 99.2197%n 99.4751%
GHSOM_V0C2S2 96.9945% 98.5904% 98.5883% 99.1774% 99.4475%
GHSOM_V2C2S2 97.0278% 98.5823% 98.6069% 99.2263%nn 99.4764%
OLS 97.0130% 98.5552% 98.6306%n 99.0979% 99.4767%
Naïve 97.1492%nn 98.6258%nn 98.8094%nn 99.1005% 99.3223%

NIKKEI 255
GHSOM_V0 96.4072% 99.4409%nn 99.5007% 99.5261% 99.8709%
GHSOM_V2 96.4909% 99.3939% 99.4533% 99.5560%nn 99.9036%n

GHSOM_V0C0S0 96.5677%nn 99.4311%n 99.5075%n 99.5499%n 99.8948%
GHSOM_V2C0S0 96.5026% 99.4310% 99.4954% 99.5245% 99.9051%nn

GHSOM_V0C2S2 96.5099% 99.4037% 99.5107%nn 99.5274% 99.8899%
GHSOM_V2C2S2 96.4615% 99.3797% 99.4698% 99.5431% 99.8893%
OLS 96.5501%n 99.4271% 99.5002% 99.5072% 99.9023%
Naïve 96.2222% 99.3305% 99.4317% 99.4585% 99.8711%

n Represents the second best HE among eight models at the same hedging horizon.
nn Represents the best HE among eight models at the same hedging horizon.
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Figs. 5–8 present the plot of OHR estimated by the best GHSOM
and OLS models over 1 and 28 days hedging horizons for all market
data, correspondingly. In both figures, the OHR estimated using the
traditional OLS model approximates a straight line, and the values
are almost the same during the hedge period. However, the OHR

estimated using the GHSOM model is time-varying, which can reflect
the dynamic behavior of the financial time series.

Fig. 7 also indicates the difference of FTSE 100 among all
markets. The OHRs given by OLS model become smaller when
the hedging horizons are longer. But it is contrary as observed in
Figs. 5, 6, and 8. Simultaneously, for FTSE 100, Table 4 shows the
highest p-value of F-test for equal variances, and Tables 5 and 6
show the best model is naïve. Consequently, the market behavior
of FTSE 100 is a special case which is hardly suitable to make
hedge decision.

4.6. Discussion

The experimental results show that the model comparisons may
differ in different markets. Some studies indicate GARCH family
models to be superior to the OLS model in a specific market [40].
However, other studies indicate opposing opinions, stating that the
OLS hedge ratio performs better than other popular multivariate
GARCH models [41,42]. The naïve hedge ratio of 1 is suggested as
the optimal hedge ratio when the hedging horizon is long [6]. The
superiority of the hedging model can be evaluated using White's
reality check. However, this evaluation is not significant for model
comparisons in one day hedging [39,43]. This phenomenon may
be due to the dissimilar behavior of markets: the behavior of
an emerging market differs from a mature market. For example,
hedging effectiveness can be enhanced by a certain model in emer-
ging markets such as the Hungarian BSI market, but not for
developed markets such as the US S&P 500 market [44]. A similar
result can be observed in this study, that is, the hedging effective-
ness in TWI is different from that of UK FTSE 100.

Another issue that arises in this study is that the improvement
of HE is very slight when comparing different models, e.g. from
93.30% to 93.39% (0.09% improvement) on 1 day TWI dataset. The
explanation of minor improvement is due to the small scale of
variance and covariance computing, which is commonly reported
in OHR literature. For example, Lee and Yoder's RS-BEKK models
[39] compared with OLS model improve the variance reduction
from 77.4732% to 78.8891% for corn, and from 99.2068% to
99.2087% for nickel. Li's threshold VECM model [44] compared
with OLS model improve the variance reduction from 96.22848%
to 96.2646% for S&P 500. Moon et al. [42] report that principal
component GARCH model compared with rolling OLS model
improve the variance reduction from 95.45% to 95.52%. Although,
the improvement is minor in this study, the proposed GHSOM
model is capable of discovering similar behavior in the same
market and can adapt to the characteristics of a particular market.
Therefore, the long-term tendency of markets can be captured
easily and the statistical significance when compared with OLS
model in this study can be obtained.

5. Conclusions and future works

The empirical findings in this study are consistent with the
following notations. First, hedging horizon will increase hedging
effectiveness. When hedge horizon is increased, hedging effective-
ness is also increased. Second, the proposed GHSOM model can
improve the typical OLS model, especially in long-term hedging.
Third, the present findings lend support to the superiority of the
GHSOM model in enhancing hedging effectiveness for emerging
markets, but not for developed markets such as the US S&P 500
and UK FTSE 100 markets. Finally, the OHR estimated using the
GHSOM model is more volatile than the OHR estimated using the
OLS model, which implies that the GHSOM model can rapidly

Table 6
Variance of the portfolio.

Market/models Variance
Hedging horizon

1 7 14 21 28

TWI
Unhedged 2.7527 20.5443 41.8060 35.5709 39.9629
Naïve 0.2561 0.8161 0.6132 0.1840 0.1698
OLS 0.1843 0.6113 0.3507 0.1454 0.1546
GHSOM 0.1819a 0.5822a 0.2880a 0.1148a 0.1056a

Reality check p value 0.134 0.026n 0.015n 0.085 0.000nn

S&P 500
Unhedged 1.6688 7.7995 14.9320 35.5709 39.9629
Naïve 0.0534a 0.0778 0.1039 0.1840 0.1698
OLS 0.0559 0.0680 0.0940 0.1454 0.1546
GHSOM 0.0556 0.0649a 0.0917a 0.1107a 0.1075a

Reality check p value 0.354 0.072 0.257 0.000nn 0.000nn

FTSE 100
Unhedged 2.0479 8.3512 23.6463 35.0068 57.8882
Naïve 0.0584a 0.1148a 0.2815a 0.3149 0.3923
OLS 0.0612 0.1207 0.3238 0.3158 0.3029
GHSOM 0.0604 0.1157 0.3294 0.2709a 0.2971a

Reality check p value 0.039n 0.022n 1.000 0.002nn 0.050n

NIKKEI 255
Unhedged 2.8548 17.2076 46.2477 38.9337 87.7568
Naïve 0.1078 0.1152 0.2628 0.2108 0.1131
OLS 0.0985 0.0986 0.2312 0.1919 0.0857
GHSOM 0.0980a 0.0962a 0.2263a 0.1729a 0.0833a

Reality check p value 0.318 0.078 0.151 0.004nn 0.136

Note: The benchmark model for White's reality check is the OLS model.
n Represents significance at the 5% level.
nn Represents significance at the 1% level.
a Represents the minimum variance among the naïve, OLS, and GHSOM hedged

portfolios.

Table 7
Comparison of OHR.

Hedging
horizon/

OHR

Model TWI S&P 500 FTSE 100 NIKKEI 255

Mean Std.
Dev.

Mean Std.
Dev.

Mean Std.
Dev.

Mean Std.
Dev.

1
OLS 0.8189 0.0012 0.9636 0.0037 0.9819 0.0069 0.9429 0.0015
GHSOM 0.8263 0.0268 0.9649 0.0163 0.9833 0.0145 0.9474 0.0175

7
OLS 0.9423 0.0019 0.9746 0.0021 0.9738 0.0040 0.9799 0.0010
GHSOM 0.9288 0.0150 0.9751 0.0088 0.9821 0.0100 0.9826 0.0058

14
OLS 0.9570 0.0019 0.9818 0.0024 0.9746 0.0057 0.9737 0.0015
GHSOM 0.9493 0.0134 0.9821 0.0143 0.9851 0.0159 0.9832 0.0078

21
OLS 0.9625 0.0021 0.9872 0.0039 0.9647 0.0045 0.9851 0.0019
GHSOM 0.9598 0.0145 0.9847 0.0099 0.9701 0.0149 0.9867 0.0078

28
OLS 0.9647 0.0012 0.9960 0.0023 0.9589 0.0045 0.9764 0.0010
GHSOM 0.9624 0.0066 0.9882 0.0070 0.9676 0.0118 0.9858 0.0083
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reflect the time-variant property of financial time series and
provide accurate estimation for dynamic hedging decision.

Although this research still has some restriction of model
parameters selection, this novel approach based on GHSOM can

improve the performance of traditional approach without too
many inappropriate assumptions and restrictions. Consequently,
the proposed model can also be considered as a powerful tool
to investigate any financial market, in which the probability

Fig. 5. Comparison of OHR in different hedging horizons for TWI.

Fig. 6. Comparison of OHR in different hedging horizons for S&P 500.
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distribution of data is unrestricted and not necessary to fit any
type of probability distribution.

The findings, although significant, have some limitations and are
expected to be investigated further. The recommendations for future

works are summarized as follows. This research only conducts model
and OHR estimations on stock index futures. However, the model has
the potential to be applied to other futures markets, such as foreign
exchange futures or commodity futures.

Fig. 7. Comparison of OHR in different hedging horizons for FTSE 100.

Fig. 8. Comparison of OHR in different hedging horizons for NIKKEI 255.
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The proposed GHSOM model is expected to be used as a tool for
investigating the relevant issue of volatility in financial engineering,
such as volatility forecasting, modifying beta coefficient in capital
asset pricing model (CAPM), and estimating value of risk (VaR).
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