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This work presents a theoretical framework for solving the field distributions of a piezo-
electric-piezomagnetic fibrous composite subjected to generalized plane strain with trans-
verse electromagnetic fields. The matrix is infinite containing arbitrarily distributed
circular cylinders, which may have different sizes and material properties. By introducing
an eigenstrain corresponding to the electro-magneto-elastic effect, this coupling problem
can be reduced to an equivalent plane elasticity problem. The classic work of Muskhelish-
vili to obtain the elastic potential of a composite is generalized to the current multi-field
multi-inclusion media. Several numerical examples are presented to demonstrate the
effectiveness of the approach.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The magneto-electric (ME) coupling refers to the polar-
ization induced by a magnetic field, or conversely the mag-
netization induced by an electric field. It was first
predicted by Landau and Lifshitz (1984) and observed by
Astrov (1960) and Rado and Folen (1961) over fifty years
ago. This ME effect has recently drawn ever-increasing
interest due to their potential applications as multifunc-
tional devices including ME data storage and switching
(Spaldin and Fiebig, 2005), modulation of optical waves
(Fiebig, 2005), and electrically microwave phase shifters
(Bichurin et al.,, 2002). However, the coupling is rather
weak in a single-phase material even at low temperature,
and this has motivated the study of composites of piezo-
electric and piezomagnetic media. The “product property”
causes the ME effect in this multiferroic composite:
an applied electric field generates a deformation in the
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piezoelectric phase, which in turn generates a deformation
in the piezomagnetic phase, resulting a magnetization
(Nan et al., 2008).

The promise of applications, and the indirect coupling
through strain have also made ME composites the topic
of a number of theoretical investigations. Among them,
Nan (1994), Srinivas and Li (2005) and Liu and Kuo
(2012) estimated the effective properties of ME composites
of non-dilute volume fractions by mean-field-type models.
Benveniste (1995) derived exact relations in a ME compos-
ite with cylindrical geometry. The analysis for local fields is
available for simple microstructures such as a single ellip-
soidal inclusion (Huang and Kuo, 1997; Li and Dunn, 1998),
arbitrarily distributed or periodic arrays of fibrous ME
composites (Kuo, 2011; Kuo and Pan, 2011; Kuo and
Bhattacharya, 2013), and laminates (Kuo et al., 2010). In
addition, Liu et al. (2004) and Lee et al. (2005) used finite
element method to address ME composites for general
microstructures, while Aboudi (2001) and Camacho-
Montes et al. (2009) adopted the homogenization method.
However, much of this work uses approximate methods
and models based on single inclusions to estimate the


http://crossmark.crossref.org/dialog/?doi=10.1016/j.mechmat.2014.04.007&domain=pdf
http://dx.doi.org/10.1016/j.mechmat.2014.04.007
mailto:hykuo@mail.nctu.edu.tw
http://dx.doi.org/10.1016/j.mechmat.2014.04.007
http://www.sciencedirect.com/science/journal/01676636
http://www.elsevier.com/locate/mechmat

104 H.-Y. Kuo/Mechanics of Materials 75 (2014) 103-110

effective properties of composites. Exact methods that pro-
vides the detailed field distribution are limited to the med-
ium subjected to the anti-plane shear with in-plane
electromagnetic fields due to the complexity.

In a classic work, Muskhelishvili (1975) used the Kolo-
sov-Muskhelishvili potentials with truncated Laurent ser-
ies for elastic problems with circular boundaries.
Analogous representations were employed by McPhedran
and Movchan (1994) for a pair and a square array of circu-
lar elastic inclusions, by Buryachenko and Kushch (2006)
for a matrix reinforced two linearly elastic isotropic
aligned circular fibers, and by Kushch et al. (2008) for the
progressive damage in the fiber reinforced composite. This
method was extended to investigate the multiple piezo-
electric inclusions in a non-piezoelectric matrix (Yang
and Gao, 2010), and for a three-phase thermo-electro-mag-
neto-elastic cylinder model (Tong et al., 2008). In addition,
a Galerkin boundary integral method has also been devel-
oped to address the elastic composites with multiple circu-
lar cylinders (Mogilevskaya and Crouch, 2001), while
Eshelby’s equivalent inclusion for a fibrous piezoelectric
inhomogeneity was proposed by Xiao and Bai (1999). In
this paper, we generalize Muskhelishvili’s methodology
to a fibrous composite made of piezoelectric and piezo-
magnetic phases under generalized plane strain
(€% = 0,85 = 0,83, # 0) with transverse electromagnetic
fields. Specifically we seek the stress and displacement dis-
tributions of the composite.

The remainder of this paper is organized as follows. In
Section 2 we formulate the equation for a piezoelectric—
piezomagnetic composite under generalized plane strain
with transverse electromagnetic fields. We show that the
multi-field coupled problem can be reduced to an equiva-
lent plane elastic problem with a corresponding uniform
eigenstrain. In Section 3 we generalize the work of
Muskhelishvili (1975) to obtain a representation of the
solution. The basic idea is to express the stress and dis-
placement via two complex potentials and expand each
field in each medium in a series. We use this method to
study selected systems with sufficient accuracy in
Section 4.

2. General framework

Let us consider an infinite medium containing N arbi-
trarily distributed, parallel and separated circular cylinders
(Fig. 1). The domain of the pth circular cylinder is denoted
Vy,, p=1,2,...,N, and the remaining matrix is denoted
Q. We assume that the cylinders and the matrix are made
of distinct phases: transversely isotropic piezoelectric or
piezomagnetic materials. A global Cartesian coordinate
system is introduced with x;- and x,-axes in the plane of
the cross-section and x;-along the axes of the cylinders
(Fig. 1). The centers of the pth circular cylinder are desig-
nated as O,, each of which may have different radii a,.

Assume that the composite is subjected to in-plane
mechanical strain &%, ¢J, and &%, (or in-plane stress
ad,, 0%, and ¢?,) at infinity and uniform strain &2, electric
field ES and magnetic field HS in the xs-direction. It can be
shown that the general constitutive law for the non-vanishing

Fig. 1. The cross-section of the multiple fibers composite.

field quantities can be written in a compact form as
(Benveniste, 1995)

o1 Ch Ca C3 O €31 43 &11

02 Co Cn Gs O €31 s &2

033 C3 C3 Gs O €33 4s3 €33

on| |0 0 0 Cs 0 0 |[2en

Ds e ey ey 0 —Ki3 —ip —E;

B; G G 3 0 —Jsz —fig —H;
(2.1)

Here g, and ¢; are the stress and strain; D; and E; are the
electric displacement and electric field; B; and H; are the
magnetic flux and magnetic field, respectively.
C11, C12, Ci3, C33, and Cgg are the elastic moduli, e3; and
es3 are piezoelectric constants, g;; and ¢;; are piezomag-
netic constants, and i33, 33, and 133 are the dielectric per-
mittivity, magnetic permeability and magnetoelectric
coefficients, respectively.

The constitutive equation (2.1) are rather complicated.
However, it is observed that €33, E3, and Hs are constants
in the composite (Tong et al., 2008). Thus we can introduce
an uniform eigenstrain field

& =g} =&
= (—Ci3€33 + €31E3 + q31H3)/(C11 + C12). (2.2)
Substitution of Eq. (2.2) into Eq. (2.1) yields

011+ 02 = 2K[(e11 + &22) — 2€7],

02 — 011 = 2(&2 — &),

O12 = 2l€12 (23)
and

033 = C13(€11 + €22) + C33633 — €33E3 — (33H3,
D3 = e31(&11 + €22) + €33€33 + K33E3 + A33HS3,
B3 = q31(&11 + €22) + (33833 + A33E3 + U35 H3, (2.4)

where K = (Cy1 + C12)/2 is the in-plane bulk modulus, and
W= (Cy1 —Cy2)/2 is the transverse shear modulus. It is
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noted that the in-plane stress-strain fields (2.3) in the pie-
zoelectric—piezomagnetic composite material is the same
as that in the corresponding elastic material with an
appropriate uniform eigenstrain field ¢* (2.2). Therefore,
the multi-field coupled problem is reduced to an equiva-
lent in-plane elastic problem with the eigenstrain ¢*. Once
the in-plane strain is determined, the out-of-plane stress,
electric displacement, and magnetic flux are also deter-
mined through (2.4).

3. Representation of the solution

We follow Kolosov-Muskhelishvili formulae to express
the stress via two complex potentials ¢(z) and y(z) as fol-
lows (Muskhelishvili, 1975)

011+ 02 =2[¢(2) + ¢'(2)],

Oxn — 011 + 2i01; = 2(29"(2) + ¥/ (2)], (3.1)
where the overbar represents the complex conjugate, and
the prime denotes differentiation. In these equations,
z = X1 + ix, is complex coordinate of a point (x1,x;) in the
global Cartesian coordinate system, and i = v/—1. The dis-
placement u and resultant stress F are then obtained as

u=u; +iu :21—# {K(p(z) —ZW—WZ)] + &'z,

F=F, +iF, = —i[go(z)—&—zqo'(z)-f—@}j, (3.2)

where k =3 —4v in plane strain; x = (3 —v)/(1+V) in
plane stress; v is Poisson’s ratio; F; and F; are the resultant
stress components from point A to point B along any arc,
and []5 denotes the value difference between two points
A and B.

Further, we assume that the interfaces are perfectly
bonded, and therefore the field quantities satisfy

Uy, = u? Fanloy, = F (3.3)

v, tolav,’
where 9V, = a,el”» = a,0),, and the subscripts m and i
denote the matrix and inclusion, respectively.

Following Buryachenko and Kushch (2006), the general
solution for the matrix is the superposition of the external
applied field and the disturbances induced by the inclu-
sions. That is,

N N
Uy = Uy + Zu'(TI‘)’ Fm = Fext + ZF;{')’ (34)
=1 =1

where

1
Uexr = ﬁ [Km(pext(z) - Zq),ext( ) lpext( )} + 8 Z,

~ 20\ (@) — ¥l (@)].

FEXf - (pex ( ) +Z§Dext( ) + lPext( )
= o0(z) + 208 (@) + V0 (@), (35)

z, =2z —Z;, and Z, is the center of the Ith inclusion. On the
contrary, for the pth inclusion

1 0P z) - P (z)] + &
ng) IR [Kp(PEp) (2p) — ZP(PEP) (2) =" (Zp)] + &%
2u,

FY = 0P (2)) + 2,0 (2,) + ¥ (2,). (3.6)

We consider a situation where the composite is
subjected to a homogeneous remote strain s° It follows
from (3.5); that

Pext(2) = Tp2,  Wo(2) =Tz, (3.7)
where
0 0
R AT RS T ANNCY
-

Similarly if the composite is subjected to a homogeneous

remote stress ¥,

r - 0, + 0% r — 09, — 09, +2io},
T4 T 2 '

In addition, the potential fields for the pth cylinder and its

matrix can be expanded as

(3.9)

v(z) = DYz (3.10)
for the inclusion, and

=N AVz", @) =Y BYz" (3.11)
n=1 n=1

for the matrix. Here the coefficients A", B, ¢ and DV
are some unknowns to be determmed The superscript
p(l) indicates that the fields are expanded with respect to
the pth (Ith) cylinder’s center Z, (Z;).

To proceed, we shift the origin of the expansions to a
fixed point, say Z,. For point z satisfying the inequality
|zp| < |Zp — Z)|, we can expand the term z; " using the bino-
mial theorem as

=) n+s— 1 o 00
=Y (" )@ -2 e =) e
(3.12)

Introducing (3.11) and (3.12) into (3.4), we have the
expansions

;wﬁ,?(zo = Z]Aﬁf”zf" + ZOAE‘?Z? (3.13)
= n= S=|

N %) oo

lzl)/,gg (z) = 23,{’&*" + Z;B(f’s)zf, (3.14)
= n= S=

and

quo”’ ZnA“’z n- 1+ZSA | =Y ARz, (3.15)
s=0
which are valid for the domain

|zp| < min(|Z, — Z|), forl=1,2,....N, I#p. (3.16)
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Here

®) XN:i M ppl ) ZN:i I

—ps = An ‘Cgsv "= B Egsv
l#pnfl I#pn=1
ZZA P (n+5) ' 12, -2 (3.17)
I1#pn=1 ( Zl)

Substituting (3.10), (3.11) and (3.13)-(3.15) into the
interface conditions (3.3), we obtain

LI I
20, | "

~Ty(ay0p+2))
—a,0, (ZSA(P) 5+1+ZSAP)a— 5+1>
+ZNPS)a;o‘I;S 7(a JP+Z> Z B®a

s=1

Ty(ay0p+2,) +ZA"a*SG*S+ZA_"S> a 5}
s=1

ZB"S’aPJPS} - (0y0p+Z,)
:% {KPZCip)a —a,,aszC a o, ZD ao,’
P s=0

+&,0,0, (3.18)

and
Ty (ay0p +Zp) +iA”a G_S+ZA a5 o,
p
+T4(ay0, +2,)
+ ay0p (is Pa1gs! +ZSA AP)as ! ‘3“>
P

S+ (a0, +Z,) + Z@agsas
s=1

=Y Paas +a,0,> sCPa; o, !
s=0 s=0
oo
+> DPao,* (3.19)
s=0

Equating the coefficients of ¢} and ¢,° of (3.18) and
(3.19) gives

217,,1 { [(Km ~-1r, —/mapaﬂ

+ {(Km -z, -T'yZ, - 2’@“123 + A_(i)) - B<—f()>] ds0

SH(s — 1)}

+KnAP)GS + (s — 2)A,a,*?H(s — 3) — BPa

+&5,(apds1 + Zyds0)

1 ~) N s —
= ﬂ [Kpcgp)als) - C%P)apbsl — (zcép)alz) + Dé)p))(sgo]
p

+eap0a, S >0, (3.20)

as? + APas — BP)as

-

(3.21)

— Ty ap061 + KmAPa* — (s + 2)AP) 2

f—% (s+2)CP,as? + DPas], s> 1
14

and

(2T, +A)aydsy + (202, + Ty Z, + 24702 — AT} + B%)dy
+A%al) — (s — 2)AHa;S”H(s ~3)+BY Ja*H(s — 1)
= 5 + CPayoq + (2CP @ + D)o, 5> 0, (3.22)

Tuapon + AP, + (s + A0, a7 — ARG + B)a;

=(s +2)C5+2aj,+2 +DP) a, s=>1, (3.23)
where d; is the Kronecker delta and H(:) is the unit step
function.

After some algebra, Egs. (3.20)-(3.23) can be arranged

as
APAY % + (s +2)AP), a2 — AP) + BY)

(s+2)"p
=-Tyoa, s>1, (324)

APBPa,? 4 ReA”) = AP —T,, s=1, (3.25)

AT+ AP [(s-2)A7,a, %~ BPa,*] =0, s>2  (3.26)

.

and
’y — *
& =) (1 40 oz
e
+ Tjg’ (rq,z,, +TyZ, +2A%a% — AT + BE"&),
(3.27)
o — Vik M+i ImIT (3.28)
S Kp + 1 '
CO = AP — (s-2)AP,a,>? + BPa®, s>2, (329

Dy =2TyZ, + T2, +AT% +B% - @ - A%

" Z(A(f’z) _ Cé‘”)ag, (3.30)
D§p) =Tyda +1W +(s+ Z)A S+2)a123 - A(—ps)
-‘rB( (S+2)Cs+2 P (331)

for s > 1. Here

Vo= o/ T = (16 +1) (T +A%) ) 4 211, (85, 55),

1+ Ky Y, +K
A(f”: T L3 Agp): P _p ’
/p K:Tﬂyp Kp
A(3P) _ ZVP +Kp— 1 7 Aip) _ 2:um'yp (S:n - 8;)

2[Kp = 1=, (K —1)] —1=7(kn—1)’

(3.32)
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Fig. 2. The hoop stress g, in the matrix along the interface for discrete values of y = 1;/u,, under six different remote loading cases (two PE inclusions in a
PM matrix): (a) uniform tension ¢9; = 1, (b) uniform tension ¢9, = 1, (c) pure shear ¢9, = 1, (d) uniform vertical strain &J; = 1, (e) uniform transverse

electric field Eg =1 and (f) uniform transverse magnetic field Hg =1.

Egs. (3.24)-(3.26) and their conjugates constitute an
infinite set of linear algebraic equations. Upon appropri-
ate truncations of the expansion terms, we can determine
the expansion coefficients A” and BP'. Substituting them
back to (3.27)-(3.31), we can determine the remaining
coefficients C? and D). After they are determined, all
the complex potentials of the matrix and inclusions are
known, and then all the field variables can be easily
obtained from Eqs. (3.1) and (3.2). For instance, the
stress fields in the polar coordinate are given by the
transformation

Gl +0n OG-0 .
O =1 er 2, 7n 5 22 00520 + 0415 5in 20,
O+ 0 61 —0 .
O = -1 er 2 _Zh 5 22 c0s26 — 013 sin 20,
o1 -0 .
O = ——+——225in 20 + 01, cos 26. (333)

4. Numerical results and discussion

Below we perform a numerical computation for
stress and displacement fields of composites of various
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Fig. 3. The normal contact stress ,, in the matrix along the interface for discrete values of y = ;/,, under six different remote loading cases (two PE
inclusions in a PM matrix): (a) uniform tension ¢, = 1, (b) uniform tension ¢, = 1, (c) pure shear ¢9, = 1, (d) uniform vertical strain ¢J; = 1, (e) uniform
transverse electric field ES = 1 and (f) uniform transverse magnetic field H3 = 1.

remote loadings. The numerical calculations are first
verified with the analytical solution for a composite
of a piezoelectric inclusion in an elastic matrix. Our
results of stress distributions agree very well with those
of the solution proposed by Xiao and Bai (1999). Next
we consider the particular case of a piezoelectric—
piezomagnetic composite including a single inclusion
with the center O, i.e. Z; = 0. The only non-zero coeffi-
cients are

A =
B, =
B; =
C =

D, =

—A]'T, @,

2| (m + D + 24, (&5, — &)

2a
o (e _
2+ (i, - 1)
71\1711—7(14,
(Km + DTy + 204, (&7, — &)
2+ (ki — 1)

(1- AT,

)

—T,|,

(4.1)
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Therefore, the complex potentials

Pn(2) =Aiz !,

Vn(2) = Biz7! 4 B3z 3 (4.2)
for the matrix, and

@i(z) = 1z,

i(2) = D1z (4.3)

for the inclusion.
Substitutions of (4.2) and (4.3) into Eq. (3.1);, we obtain
the stress field in the fiber

(Km + Dl + 204, (&7, — &)
2+ - 1) ’

(011 +02);=4 (4.4)

which covers the known result by Tong et al. (2008).

We now turn to the case of two inclusions of unit
radius and with identical material properties placed on
the x;-axis and |Z; — Z,| = 4. The inclusion is piezoelectric
(PE), while the matrix is piezomagnetic (PM). A state of

040 (P2)

0 60 120 180 240 300 360
0 (deg)

Fig. 4. The hoop stress gy in the matrix along the interface for discrete

values of y = 1,/ pt,,, under uniform tension ¢9; = 1 (three PE inclusions in
a PM matrix).

X2

X1

X2
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plane stress is assumed. The hoop stress is presented in
Fig. 2 for six different remote loading cases. Poisson’s ratio
for both the inclusions and matrix is the same with
Vi = Vm = 1/3, but the shear modulus of the inclusions is
different from that of the matrix. Circumferential stresses
oy are plotted for y=p;/u,=0,1/3, 1, 3, co. The
remaining material constants are: e3; = —4.32C/m?,
e33=18.6C/m?, K33 =11.8 x 1077 C2/Nm?, p1;, =10x 107°
Ns?/C? for the PE phase, and g¢; =580.3N/Am, gs; =
699.7 N/Am, K33 = 0.093 x 107" C*/Nm?, 55 =157 x 1078
Ns?/C? for the PM phase. The results in Fig. 2(a)-(c) agree
within the plotting accuracy with results from Yu and
Sendeckyj (1974) and Mogilevskaya and Crouch (2001)
for the pure elastic problem. This is because &* =0 for
these cases. The loading case for vertical strain and trans-
verse electromagnetic fields (Fig. 2(d)-(f)) is new. It is
interesting to observe that, in contrast to the stress con-
centration around the holes subjected to in-plane loadings,
the hoop stress is zero around the holes subjected to the
external applied vertical strain and transverse electromag-
netic fields. On the other hand, there is no concentration
for the normal contact stress o, around the holes under
all kinds of remote loadings (Fig. 3). Further, the stress
concentration in a multiferroic composite may aggravate
or alleviate by adjusting the magnitude and sign of various
loading combinations.

Fig. 4 shows the hoop stress in the matrix along the
interface under an uniform remote tension ¢%, =1 for a
PM matrix containing three PE inclusions. The material
properties are the same as those for the two-inclusion case.
Again, the results agree within the plotting accuracy with
the result from Mogilevskaya and Crouch (2001) by the
Galerkin boundary integral method for the pure elastic
problem.

Finally, in Fig. 5 we demonstrate the displacement
contours for a PM matrix containing five PE inclusions
under an uniform remote tension ¢?, = 1. Each of the
inclusions has different material properties and radii

(/M =4, Mo/l =6, L3/l =8, [/l =10, Us/l, =
12. a = 15, a, = ‘1257 as = 1, a4 :0.75, ds =0.5. O] =

5
4
3

/\./_\ i
=\

X1

N

Fig. 5. The displacement contours for a PM matrix containing five PE inclusions under an uniform remote tension ¢9, = 1. Phase properties are
W/, =4, W/l =6, W/l =8, /i, =10, ps/u,, = 12. The radii are a; = 1.5, a, = 1.25, a; =1, a4 = 0.75, as = 0.5. The centers of the inclusions
locate at O; = (2.5,-1.5), 0, = (-2.5,0), O3 = (1,2), 04 = (—1,-3), and Os = (—3.5,3.5), respectively.
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(2.5,-1.5), 0, = (-2.5,0), 03 =(1,2), 04 = (-1,-3), 05 =
(—3.5,3.5). The remaining material properties are the
same as those for the two-inclusion case). We observe
that, in contrast to the generalized anti-plane case (Kuo
and Bhattacharya, 2013) the displacement fields inside
the inclusions are nonlinear with respect to z. Thus the
higher-order terms play an important role in the in-plan
deformation.

5. Concluding remarks

In summary, we have extended Muskhelishvili’s formu-
lation on an elastic composite with circular boundaries to a
magneto-electro-elastic composite consisting of multiple
cylinders under generalized plane strain with transverse
electromagnetic intensities. We reduce the multi-field cou-
pling problem to an equivalent in-plane elasticity problem
by introducing an uniform eigenstrain corresponding to
the magneto-electro-elastic effect. The admissible poten-
tials for the inclusions and matrix are calculated within
sufficient accuracy for several configuration under differ-
ent loading cases. Numerical results are compared with
the previous known solutions and are shown in good
agreement. It is observed that, in contrast to the stress con-
centration around the holes subjected to in-plane loadings,
the stress is zero around the holes under the external
applied vertical strain or transverse electromagnetic fields.
In addition, the stress concentration in a piezoelectric-
piezomagnetic composite may aggravate or alleviate by
adjusting the magnitude and sign of various loading
combinations.
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