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The shuffle-exchange network is one of the most well-
studied multistage interconnection networks. Whether a
(2n � 1)-stage shuffle-exchange network is rearrange-
able has been a challenging conjecture for some 30
years, and only recently a proof was claimed. In this
article, we use the analysis method developed for EGSN
networks to show that the shuffle-exchange network
can be strictly nonblocking by deleting some inputs and
outputs. © 2004 Wiley Periodicals, Inc. NETWORKS, Vol. 45(1),
4–8 2005
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1. INTRODUCTION

An s-stage d-nary shuffle-exchange network with N
� dn inputs (outputs), denoted by SE(N, d, s), consists of
s stages each having N/d d � d switches (crossbars), and
the connection between two adjacent stages is of the shuffle
type: if the input ports and output ports of stage i, 1 � i
� s, are each labeled by the d-nary n-sequence (u1,
u2, . . . , un), then the output port (u1, u2, . . . , un) of stage
i is connected to the input port (u2, . . . , un, u1) of stage i
� 1 for 1 � i � s � 1. We assume s � n throughout this
article. Figure 1 illustrates SE(27, 3, 4).

A network is called rearrangeable if given any set of
(input, output) pairs, where the inputs and outputs are all
distinct, there exists an equinumerous set of link–disjoint
paths each connecting an (input, output) pair. A network is

strictly nonblocking if given any sequence of additions and
deletions of (input, output) pairs, the last added pair can
always be connected by a path link–disjoint from all exist-
ing paths regardless how previous pairs have been con-
nected.

The shuffle-exchange network has been extensively stud-
ied in both the computer network and the telecommunica-
tion network literature. In particular, SE(N, 2, n) is the
Omega network [4], one of the most popular self-routing
network. The conjecture that SE(N, 2, 2n � 1) is rear-
rangeable [1] has fascinated many switching network theo-
rists with a proof recently claimed by Cam [2].

A d-nary network has the nice property of using identical
switches as components, which is good for manufacturing.
However, it is well known [3] that a d-nary network cannot
be strictly nonblocking. Hence, SE(N, d, s) is not strictly
nonblocking for any s. This article is motivated by the aim
to obtain a strictly nonblocking network that preserves the
basic d-nary structure. Clearly, this is possible only if we
reduce the traffic load of the network by reducing its num-
ber of inputs and outputs. One way is to leave some inputs
(outputs) unused on each input (output) switch, while an-
other is to leave some input and output switches totally
unused. Let SE(N, d, s : r, v), v � d, denote a reduced
SE(N, d, s), which keeps only v inputs (outputs) per input
(output) switch and r v � d input switches (r d � v output
switches). In this article we study the strict nonblockingness
of SE(N, d, s : r, v). We do so by applying the sufficient
condition for a strictly nonblocking EGSN network (defined
in Section 2) to the special case SE(N, d, s : r, v).

2. THE EGSN NETWORK

Richards and Hwang [5] gave a sufficient condition for
strict nonblockingness of a class of multistage networks
called extended generalized shuffle-exchange networks, or
EGSN. The main characteristic of this class is that the
linking between two adjacent stages is of the extended
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generalized shuffle type defined as follows: let stage i
consist of ri ni � mi stage-(i � 1) switches. The “shuffle”
type means the first stage-i switches are linked to the first mi

stage-(i � 1) switches, the second stage-i switches to the
next mi stage-(i � 1) switches, and so on. “Generalized”
means mi does not have to divide ri�1, and the ri�1

switches are treated cyclically in the shuffle-linking, that is,
the first switch follows the last; “extended” means ni � mi

can differ from stage to stage. Note that SE(N, d, s : r, v)
clearly is an extended generalized shuffle-exchange net-
work.

Define Ni, j � �k�i
j nk, Mi, j � �k�i

j mk for i � j. Let
N denote the number of inputs and M the number of outputs.
We quote several results (Theorem 4.2a, Equation (7.3a)
and Theorem 10.1) from [5].

Lemma 2.1. The number P of paths (not necessarily dis-
joint) from an input x to an output y is M1,s/M (or N1,s/N) if
it is an integer.

For a given pair ( x, y) of inputs and outputs, an inter-
secting connection is a path from x� � x to y� � y, which
shares a link with a ( x, y)-path.

Lemma 2.2. Suppose N1,k�1 divides N or vice versa, and
Mk�1,s divides M or vice versa. Then w � N1,k�1 � Mk�1,s

� 2 is an upper bound on the total number of intersecting
connections.

(The original statement in [5] did not contain the “vice
versa” part, but it is obvious.) An intersecting connection
enters an ( x, y) path at some stage and exits at a later stage.
The number of intersecting connections that can enter or
exit a given stage is restricted. Richards and Hwang [5] gave
an assignment of the w intersecting connections to the entry

stages and the exit stages to maximize the number B of
blocked ( x, y) paths.

Let t be the largest j such that N1, j � N, and let u be
smallest i such that Mi,s � M. Richards and Hwang [5]
gave:

Lemma 2.3.

B � �
i�1

s

	min
N1,i � 1, w� � min
N1,i�1 � 1, w��Mi�1,s/M

� �
j�1

s

	min
Mj,s � 1, w� � min
Mj�1,s � 1, w��N1, j�1/N

� w� �
k�t�1

u�2 N1,k

N � Mk�1,s

M
�

Mk�2,s

M � �
Mt�2,s

M �
The network is nonblocking if P 
 B.

Remark. In Lemma 2.3, N1,0 � 1 and Ms�1,s � 1 are set
to 0 as these terms are nonnegative.

For SE(N, d, s : r, v), ni � mi � d except n1 � ms

� v and n2 � ms�1 � r/(dn�2) � q. Hence N1,1 � v and
N1,i � di�2qv for i � 2, while Ms,s � v and Mj,s

� ds�j�1qv for j � s � 1. Further, N � M � dn�2qv.
By Lemma 2.1, P � ds�n. In Lemma 2.2, if we take k
� s/ 2, then

w � �2v � 2 for s � 3,
v � qv � 2 for s � 4,
d s/ 2�3qv � d �s�1�/ 2�3qv � 2 for s � 5

is an upper bound on the total number of intersecting
connections.

It is easily checked that t � n � 1, u � s � n � 2, N1,i

� 1 
 w if and only if i � (s � 1)/ 2, and Mi,s � 1 
 w
if and only if i � (s � 1)/ 2. Let

B � B1 � B2 � B3,

where Bi is the ith term of B in Lemma 2.3. Then

B1 � �N1,1 � 1�
M2,s

M
� �

i�2

�s�1�/ 2

�N1,i � N1,i�1�
Mi�1,s

M

FIG. 1. SE(27, 3, 4).
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� �w � N1,�s�1�/ 2 � 1�
M�s�3�/ 2,s

M

� �
�v � 1�d2�n � w � v � 1 for s � 3,

�v � 1�d3�n � �qv � v�d2�n

� �w � qv � 1� for s � 4,

�v � 1�ds�n�1 � �qv � v�ds�n�i � �
i�3

�s�1�/ 2

�d � 1�di�3qvds�n�1 � �d s/ 2�3qv � 1�

� d �s�2n�1�/ 2 for s � 5

B2 � B1 by symmetry.

B3 � w� �
k�n

s�n

dk�n�ds�k�n � ds�k�n�1� � ds�2n�
� �w	�d � 1��s � 2n�ds�2n�1 � ds�2n� for s � n � n � 1

�w for s � n � n

3. SE(N, d, s : r, vv)

There do not exist many tools to analyze whether a
network is strictly nonblocking. Lemma 2.3, messy as it is,
provides a general framework to check the strict nonblock-
ingness of a multistage network. We will take full advantage
of it in applying it to SE(N, d, s : r, v). More specifically,
we determine the parameters r and v in an SE(N, d, s : r,
v) such that P 
 B, where B is given in Lemma 2.3. To
avoid trivial cases, we assume s � 3 and s 
 n (s � n
corresponds to the Omega network for which P � 1, and is
clearly not strictly nonblocking for all v and r except in
some degenerate cases).

Using the formulas for B1, B2, and B3 given in the last
section, we separate the computation of B into several cases:

CASE I. n � 2 � s � 2n.

For n � 2 and s � 4

B1 � �v � 1�d � �qv � v� � w � qv � 1

� v�d � 1� � w � d � 1

B3 � �w

Hence,

B � 2B1 � B3 � 2v�d � 1� � 2 � w � 2d

� 2vd � qv � v � 2d

and P 
 B implies

d2 � 2vd � qv � v � 2d

For s � 5, we have

B1 � vds�n�2�d � 1� � ds�n�1 � qvds�n�2

� �
i�3

s�n

�d � 1�di�3qv ds�n�i � �
i�s�n�1

�s�1�/ 2

�d � 1�di�3qv

� �ds/ 2�3qv � 1� � vds�n�2�d � 1� � ds�n�1

� qvds�n�2 � �s � n � 2��d � 1�ds�n�3qv

� �d�s�5�/ 2 � ds�n�2�qv � �ds/ 2�3qv � 1�

� vds�n�2�d � 1� � ds�n�1 � �s � n � 2��d

� 1�ds�n�3qv � d�s�5�/ 2qv � ds/ 2�3qv � 1

B3 � �w � �d �s�5�/ 2qv � d s/ 2�3qv � 2

B � 2B1 � B3 � 2vds�n�2�d � 1� � 2�s � n � 2�

� �d � 1�ds�n�3qv � 2ds�n�1 � d�s�5�/ 2qv � ds/ 2�3qv

thus, B � P implies

v �
ds�n � 2ds�n�1

2ds�n�2�d � 1� � 2�s � n � 2��d � 1�ds�n�3q
� d�s�5/ 2q � ds/ 2�3q

(2.1)

Note that in (2.1),

ds�n � 2ds�n�1 � d�s�5�/ 2q � ds/ 2�3q

� 2ds�n�2�d � 1� � 2�s � n � 2��d � 1�ds�n�3q

� d�s�5�/ 2q � ds/ 2�3q

Thus, the right-hand side of (2.1) is less than 1 unless s
� 2n � 4, n � 5 and q � 1. But n � 5 and s � 2n � 4
� 6 is a case not satisfying the condition s � n � 2.
Hence, (2.1) does not apply for s � 2n � 4. This does not
imply that the network is necessarily blocking, but merely
that the sufficient condition is not strong enough to cover
these cases.

For 2n � 3 � s � 2n, P 
 B can have a positive
solution v for any q. In particular, for q � d, (2.1) becomes

v �
d2 � 2d

2�s � n � 1��d � 1� � d�2n�s�1�/ 2 � d�2n�s�/ 2

(2.2)
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The right-hand side of (2.2) is less than 1 for s � 2n � 3.
For 2n � 2 � s � 2n, (2.2) can be further simplified to

v � �
d2 � 2d

2�n � 1�d � 2�n � 2�
for s � 2n � 1

d2 � 2d

�2n � 1�d � �2n � 3�
for s � 2n

Example 1. SE(27, 3, 5 : 6, 1) is strictly nonblocking
since the right-hand side of (2.2) equals (32 � 2 � 3)/(2(3
� 1) � 2 � 2) � 15/8 
 1.

CASE II. s � n � 1.

For n � 2 and s � 3

B1 � �v � 1� � w � v � 1 � w

B3 � �w

Hence,

B � 2B1 � B3 � w � 2v � 2

and P 
 B implies

d � 2v � 2

For n � 3 and s � 4

B1 � �v � 1� � qv � v � w � qv � 1 � w

B3 � �w

Hence,

B � 2B1 � B3 � w � v � qv � 2

and P 
 B implies

d � v � qv � 2

For n � 4, we have

B1 � qv � 1 � �
i�3

�s�1�/ 2

�d � 1�di�3qv � ds/ 2�3qv � 1

� qv � 1 � 	d�s�5�/ 2qv � qv� � ds/ 2�3qv � 1

� w

B3 is the same as in Case i. Thus,

B � 2B1 � B3 � w � d �s�5�/ 2qv

� d s/ 2�3qv � 2 � dqv � P

unless n � 4 or n � 5 and qv � 1.

CASE III. s � 2n � 1

B1 � v�d � 1�ds�n�2 � qvds�n�2 � ds�n�1 � �
i�3

�s�1�/ 2

� �d � 1�di�3qvds�n�i � �ds/ 2�3qv � 1�d�s�2n�1�/ 2

� v�d � 1�ds�n�2 � qvds�n�2 � ds�n�1 � �s � 5�/ 2

� �d � 1�ds�n�3qv � �ds/ 2�3qv � 1�d�s�2n�1�/ 2

� qv � 1

B3 � �d�s�5�/ 2qv � ds/ 2�3qv � 2�	�s � 2n�

� �d � 1�ds�2n�1 � ds�2n�

For s � 2n � 4

B3 � �d�s�5�/ 2qv � ds/ 2�3qv � 2�ds�2n

and it is easily verified that

B � 2B1 � B3 � 2�qv � 1� � B3

� d�s�5�/ 2�s�2n � ds�n � P

unless s � 5 and qv � 1 (in that case B � 0 � P).
For s � 2n � 3

B � �2v�d � 1�dn�1 � 2dm�1qv � 2dm�2 � 2�n � 1�

� �d � 1�dnqv � 2�dn�1qv � 1�d � 2�dn�1qv � 1�

� �3�d � 1�d2 � d3� � 2vdn�2 � 4dn�2qv � 2vdn�1

�2�n � 4�dn�1qv � 2�n � 2�dnqv � 2dn�2 � 4d3

�6d2 � d � 2vdn	d2�1 � 2q� � �n � 4�dq

� d � �n � 2�q� � 2dn�2

P 
 B implies

v �
d3 � 2d2

2�d2�1 � 2q� � �n � 4�dq � d � �n � 2�q�

For s � 2n � 2

B � 2v�d � 1�dn � 2dn�1 � 2dnqv � 2�n � 1�

� �d � 1�dn�1qv � 2�dn�2qv � 1�
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��dn�1qv � dn�2qv � 2��2�d � 1�d � d2�

�vdn�1�2 � q� � 2dn�1 � 2vdn � �2n � 1�dnqv

�2ndn�1qv � 2dn�2qv � �2d2 � 4d � 2�

�vdn�2	�2 � q�d3 � ��2n � 1�q � 2�d2

� 2ndq � 2q� � 2dn�1

P 
 B implies

v �
d4 � 2d3

�2 � q�d3 � ��2n � 1�q � 2�d2 � 2ndq � 2q

For s � 2n � 1

B � 2v�d � 1�dn�1 � 2dn � 2dn�1qv � 2�n � 2�

� �d � 1�dn�2qv � 2�dn�2qv � 1��1 � �d � 1� � d�

� vdn�22�d2 � �n � 1�qd � d � �n � 2�q� � 2dn

P 
 B implies

v �
d3 � 2d2

2�d2 � �n � 1�qd � d � �n � 2�q�
(2.3)

For q � d, (2.3) can be further simplified to

v �
d2 � 2d

2�nd � �n � 1��
.

For example, consider the case d � q � 8, n � 2, s � 5, v
� 2. Because (d2 � 2d)/[2(nd � (n � 1)] � (64 � 16)/2(16
� 1) 
 2 � v, the network in Figure 2 is strictly nonblocking.

Note that for the three cases q � d leads to a solution of
v, is largest for s � 2n � 1, then followed by s � 2n and
s � 2n � 1, contrary to our intuition that the range should
increase in s. This again might be a reflection of the anal-
ysis, not the reality. These networks have size vr, which is
about d/ 2n, and have about 2nd2 crosspoints, while a d/ 2n
� d/ 2n crossbar has (rd/ 2n)2 crosspoints. The ratio is
(4n2)/r � (4n2)/(dn�1). For example, for n � 3 and d
� 8, the ratio is 9/16.

4. CONCLUSIONS

The Omega network was the first self-routing network
proposed. Its multistage extension, the shuffle-exchange
network, has the advantage of having the same linking
pattern over all stages when compared to other similar
networks. To prove the rearrangeability of the (2n � 1)-
stage shuffle-exchange network has been a big challenge for
a long time. In this article we show that the (2n � 1)-stage
shuffle-exchange network can also be strictly nonblocking if
enough input (output) switches, or inputs (outputs) per
switch, are inoperative. We discuss the interaction between
the two types of inoperativeness.

The method we used is the method developed for the
EGSN network. The strictly nonblocking condition can be
met only for 2n � 3 � s � 2n � 3. Further, if q � d, that
is, no input or output switches are inoperative, then the
condition can be met only for 2n � 1 � s � 2n � 1.
When the network is connecting processors with memory
devices, then v � 1 for d � q. It is easily verified that d
� 2n is a sufficient condition for strictly nonblocking.
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