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Efficient Wideband Source Localization 
Using Beamforming Invariance Technique 

Ta-Sung Lee, 

Abstruct- A novel scheme for wideband direction-of-arrival 
(DOA) estimation is proposed. The technique performs coherent 
signal subspace transformation by a set of judiciously constructed 
beamforming matrices. The beamformers are chosen to trans- 
form each of the narrowband array manifold vectors into the one 
corresponding to the reference frequency, regardless of the actual 
spatial distribution of the sources. The focused data correlation 
matrix can thus be obtained without any preliminary DOA 
estimation or iteration. A simplified version of the beamspace 
Root-MUSIC algorithm is developed and used in conjunction 
with the proposed method to efficiently localize multiple wide- 
band sources with a linear, equally spaced array. Numerical 
simulations are conducted to demonstrate the efficacy of the new 
scheme. 

I. INTRODUCTION 
HE problem of efficiently processing wideband array data T for multiple sources localization has received consider- 

able attention [ 11-[ 111. The idea of coherent signal subspace 
transformation was proposed by Wang and Kaveh [2] as an 
alternative to the classical incoherent signal subspace methods 
[ 11. In the coherent signal subspace method (CSSM), the wide- 
band array data are first decomposed into several narrowband 
components via FlT. Focusing matrices are then constructed 
to transform each of the narrowband DOA matrices into the 
one corresponding to the reference frequency bin. Application 
of eigen-based methods in conjunction with CSSM dictates 
that the DOA estimates be obtained with the effective focused 
datahoise correlation matrix pencil formed as the weighted 
average of the individual transformed narrowband correlation 
matrices. This is in contrast to the incoherent approach, in 
which individual processing of each narrowband array data 
component is performed, followed by a statistical combination 
of the resulting estimates from narrowband processing. Com- 
pared with the incoherent methods, CSSM has been shown 
to exhibit lower detection and resolution SNR threshold. The 
coherent method thus provides an efficient means of exploiting 
the full time-bandwith product of the wideband data. 

Much work has been done along the lines of CSSM. Buckley 
and Griffiths [6] propose a broad-band signal-subspace spatial 
spectrum (BASS-ALE) estimator based on the eigenstructure 
of the broad-band spatial/temporal correlation matrix. In their 
approach, low-rank representation for wideband sources is 
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used based on focusing operation, and lower source location 
bias is achieved by increasing the number of “location vec- 
tors.” The tradeoff is an increase in computational load. An 
alternative to the BASS-ALE method is the steered covariance 
matrix (STCM) method described by Krolik and Swingler [9]. 
They consider the STCM as a slice through the correlation 
matrix taken at a primary steering direction. The STCM is 
computed for each direction of interest resulting in a greater 
computational complexity but, again, a smaller source location 
bias. A different approach developed by the same authors [ 111 
is based on the concept of spatial resampling or interpolation. 
They exploit the characteristic structure of the array manifold 
vector, i.e., the components of the manifold vector depend 
on the source frequencies and the sensor element positions 
only through their product. Consequently, the same manifold 
vector may be obtained at different frequencies by suitably 
interpolating the narrowband array data components, that is, 
the manifold vector can be made invariant to the frequency. 
The resampling method is shown to exhibit good performance 
for a large angular region within the field-of-view (FOV) of 
the array. The major limitation is that their method is only 
applicable to linear, equally spaced (LES) arrays. Another 
class of CSSM-based wideband source localization schemes 
operating in beamspace were described by Buckley and Xu 
[5 ] .  In their work, the wideband array data are first transformed 
into reduced dimension beamspace data via a beamforming 
matrix. CSSM is then applied to focus these beamspace data 
over the spatial passband of the beamformers. The advantage 
of working with CSSM in beamspace is the simplification in 
constructing the focusing matrices. 

We here propose a beamspace wideband source localization 
scheme by exploiting the concept of beamspace manifold 
invariance. A design criterion based on the principle of least 
squares (LS) fit is employed to construct a beamforming matrix 
for each of the narrowband frequency bins extracted from 
the wideband array data. The beamforming matrices perform 
the same operation as do the focusing matrices described in 
[2], without knowing the spatial distribution of the wideband 
sources. One can regard the proposed method as beamspace 
CSSM, with the beamforming matrices judiciously chosen so 
that the resulting beamspace DOA matrices are essentially the 
same for all frequencies. The focused beamspace datdnoise 
correlation matrix pencil can then be readily formed with the 
respective narrowband beamspace correlation matrices without 
any additional preliminary processing. The method provides 
a relatively wide range of effective operation in that perfect 
focusing can be achieved over a large angular region within 
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the FOV of the array as long as the normalized bandwidth of 
the wideband data is of moderate size. 

For the special configuration of an LES array, we develop 
a computationally efficient implementation of the beamspace 
Root-MUSIC algorithm [ 121 via subarray beamforming and 
banded transformation. By subarray beamforming, the large- 
order Root-MUSIC signal polynomial is first reduced to one 
with the order equal to the beamspace dimension. The algo- 
rithm is further simplified by transforming the matrix rep- 
resenting the element space noise subspace into a banded 
form and converting the reduced-order signal polynomial into 
several polynomials with the order equal to the number of 
sources. These polynomials are then rooted in parallel to 
determine the DOA’s. Aside from the saving in computations, 
the simplified algorithm avoids the vagueness of choosing a 
few desired signal roots from a large set of roots, as often 
occur in the execution of conventional Root-MUSIC. 

The paper is organized as follows. In Section 11, a brief 
review of wideband array signal modeling and the concept 
of CSSM is presented. In Section 111, the beamforming- 
invariance focusing transformation is developed. Section IV 
demonstrates that the computational complexity associated 
with the beamspace Root-MUSIC algorithm can be greatly 
reduced via subarray beamforming and banded transformation. 
Finally, Section V presents simulation results confirming the 
efficacy of the proposed methods, and Section VI concludes 
the paper. 

11. CSSM MODEL FORMULATION 

We here consider the scenario of D wideband sources 
impinging on an array of M identical sensor elements. The 
sources are assumed to be in the far field of the array such 
that planewave assumption holds at each element. We further 
assume that the sensor elements have a common passband 
of width Bw centered at frequency f c .  Here, f c  and Bw 
are chosen according to the spectral content of the sources 
of interest. Additive wideband noise uncorrelated with the 
sources is present at each element with a known cross-spectral 
density matrix. The received waveform is first decomposed 
into J narrowband components via a bank of J bandpass 
filters, centered at f j ,  j = 1,. . . , J ,  where f 1  < f2 < 
. . . < f J ,  followed by the conventional I-& demodulation 
and sampling to produce J sets of M x 1 complex array data 
snapshot vectors 

where the argument f j  denotes the dependence of the array 
data on different frequency bins. Note that the formation of 
narrowband components can also be done with suitable data 
segmentation and Fourier transform [2]. The ith component of 
the D x 1 source vector ~ ( n ;  fj)  represents the data received 
at some reference point of the array due to the ith source. The 
M x  1 noise vector ~ ( n ;  fj) represents the noise present at the 
M elements. The ith column of the M x  D DOA matrix A(fj), 
accounting for the phase variation across the array due to the 

wavefront of the ith source, has the following structural form 

with r‘ = r’;, where 
r’; unit vector pointed at the ith source from the reference 

point zm coordinate vector of the mth element with respect to 
the reference point 

c propagation speed of the source wave. 
The vector a(.‘; f j )  is here referred to as the narrowband 
manifold vector. 

The core idea of CSSM is the construction of J focusing 
matrices Tj, j = 1 , .  . . , J such that the DOA matrices 
associated with different frequency bins can be transformed 
into the one corresponding to a preselected reference frequency 

(3) 

With the J focusing matrices applied to the respective data 
vectors, we obtain a set of new data vectors 

f o :  

TjA(fj) = A(f,) j = 1,. . . , J. 

Tjx(n; f j )  = A(fo)s(n; fj) + f 3 )  

n =  1, . . . ,  N ;  j = 1, ..., J (4) 

having the identical DOA matrix structure. Application of 
correlation level DOA estimation methods in conjunction with 
CSSM dictates the formation of the “focused” data correlation 
matrix 

J 

R,, = ajTjE{x(n; fj)xH(n; fj)}Tj” 
j=1 

= A(.fo)RssAH(fo) + R,, (5)  

where 
J 

R,, = ~j E 
j = 1  

J 

R,, = C a j T  
j=1 

and {a j }  is a set of preselected weights. The operation of 
CSSM in fact produces an effective narrowband datdnoise 
correlation matrix pencil {R,,, R,,} associated with fo, with 
the effective source correlation matrix given by Rss. 

The benefits of using CSSM are twofold. First, by coher- 
ently combining the signal subspaces associated with different 
frequency bins, the effective source correlation matrix is 
essentially full rank, even in the extreme case of coherent 
sources. Second, the computational complexity is fairly low 
compared with the incoherent approach [2]. The only growth 
in computational load is the formation of J focusing matrices 
and the focused correlation matrix pencil. In spite of these 
beneficial aspects, CSSM requires a set of preliminary DOA 
estimates in order to construct the focusing matrices. As a 
consequence, large estimation bias occurs when the focusing 
matrices are in error [9]. An iterative procedure is suggested 
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[2] to improve the accuracy of the DOA estimates at the cost of 
higher computational complexity. As a remedy, the directional 
derivative constrained (DDC) method [7] was proposed as a 

at the cost of poorer performance. Research efforts have been 
made on the development of perfect focusing, i.e., focusing 
without preliminary DOA estimates and iterations [4], [8], 
[11]. In this paper, we propose a new method of perfect 
focusing based on the concept of beamforming-invariance (BI) 
transformation. 

Note that f ,  need not be one of f ,  , j = 1, . . . , J .  The solutions 
to (1 1) are given by 

(12) means of expanding the effective angular range of focusing W, = U , l S , ~ ,  j = 1,. . . , J 

where 

U, = b p(f)a(< f,)aN(< f,)dF j = 1,. . . , J (13) 

S, = l p(F)a(?; f,)aH(< f,)d? j = 1,. . . , J.  (14) 

111. BEAMFORMING- INVARIANCE TRANSFORMATION 
We here develop a beamforming technique that can achieve 

nearly perfect focusing over a specified angular region within 
the FOV of the array. The idea is to conduct beamspace 
transformation [5]  at each of the J frequency bins, with 
the beamforming matrices judiciously chosen so that the 
corresponding beam pattems are essentially identical for all 
frequencies. For simplicity, consider first the pattems associ- 
ated with a single beam: 

w(< f j )  = w;a(F; f j )  j = 1,. . . , J (8) 

where wj is the Mxl  complex weight vector employed at 
f j .  Due to the discrete nature of the array, it is in general not’ 
possible to find two weight vectors that produce completely 
identical beam pattems at two different frequencies, except 
for the trivial case of zero weighting. As an approximation 
method, we propose a LS fit procedure for constructing weight 
vectors that nearly produce frequency-invariant beam pattems. 

A convenient measure of the proximity between the two 
pattems w(< f i )  and w(F; f j )  is the generalized L2 distance 

(9) 

where R is a sector of the unit sphere representing the FOV 
of the array. The weighting function p ( f )  is incorporated to 
enhance the approximation within a preselected angular region. 
The weight vectors possessing “beamforming-invariance” are 
determined in accordance with the minimum-distance criterion 

min b p(qIw?a(< f ; )  - wra(< f j ) 1 2 d ~  
W% ,w, 

subject to : w, # 0 # wj (10) 

where the constraint is imposed to assure nontrivial solutions. 
A major consideration in beamforming is that the beam pattem 
should exhibit good physical properties such as high SNR 
gain and low sidelobes. To incorporate these into the BI 
beamformer, we propose that a desired weight vector w, 
associated with a preselected reference frequency f ,  within 
the passband of the array is chosen first. The BI weight vectors 
associated with the J frequencies are then determined by 

It is noteworthy that Uj may be ill conditioned if the FOV is 
too small. However, we do not here concem ourselves with 
the problem of small FOV. The reason is that if the FOV 
is rather small, then much information is available for the 
choosing of the preliminary DOA estimates. In this case, the 
regular version of CSSM would be the appropriate method of 
focusing. 

A physical interpretation of the BI method is as follows. 
If a wideband source moves across the FOV of the array, 
then a set of essentially identical output waveforms (except 
possibly for a complex scalar multiple) can be observed at the 
J beamformer outputs. One can thus regard the BI method 
as a means of compressing the high-dimension element space 
wideband data into the low-dimension beamspace narrowband 
data associated with f,. 

A .  Beamspace Focusing with BI Transformation 

In beamspace eigen-based methods, multiple beams are 
formed over the spatial band of interest to achieve effective 
reception of the source signals. This may be accomplished 
by using a set of K beamforming weight vectors W,k, IC = 
1,. . . , K to simultaneously form K linear combinations of 
the array data at f , .  Mathematically speaking, the Mxl  
element space data snapshot vectors are converted into K x 1 
beamspace data snapshot vectors via 

XI3 (n; f ,  = W,Hx(n; f ,  
n = 1,. . . , N ; j  = 1,. . . , J (15) 

where W,, j = 1, . . . , J are the respective M x  K beamform- 
ing matrices employed at the J frequencies 

W, = [w,~Iw,~I...Iw,K]~=~,...,J (16) 

Here, K is chosen to be such that D < K 5 M .  The 
beamspace data snapshot vectors have the same structural form 
as the original array snapshot vectors 

xB(n; f j )  = B ( f j ) s ( n ;  f j )  -k v E ( n ;  f j )  

n =  1 ,..., N ; j  = 1 ,..., J (17) 

where 

and 
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are the beamspace DOA matrices and noise vectors, re- 
spectively. The concept of BI prompts us to choose W,, 
j = 1,. . . ?  J in accordance with the procedure outlined in 
(1 1)-( 14). In this case, we first determine a set of K reference 
weight vectors wok, k = 1, . . . , K ,  associated with fo.  We 
then construct the K weight vectors associated with the J 
frequencies as follows: 

Wjk = u,’s,wok 
k = 1,. . . , K ; j  = 1,. . . ? J.  (20) 

Putting in matrix form, we get 

W, = U,lS,Wo j = 1,. . . , J (21) 

where 

WO = [w,1Iw,2I . . . IWOK] (22) 

is the reference beamforming matrix. Due to the BI property, 
we have B(f,) w B(fo), j = 1,. . . , J ,  such that the 
beamspace data snapshot vectors in (17) are fully characterized 
by a single beamspace DOA matrix B(fo) representing the 
beamspace signal subspace associated with f,. CSSM may 
then be applied to obtain a focused beamspace data correlation 
matrix 

J 

Qzz = C % E { X B ( n ;  f,)x%; f , ) }  
,=1 

= B(fo)RssBH(f,) + Q U V  (23) 

QUU = C Q , E { v B ( n ; f , ) v : : ( n ;  f,)). (24) 

where R,, is as defined in (6), and 

J 

,=1 

The operation of BI-CSSM produces an effective narrowband 
beamspace data/noise correlation matrix pencil { Qzz , QVv} 
associated with f ,  with, again, the effective source correlation 
matrix given by Rs,. 

B. Design of Reference Beamforming Matrix 

Several criteria have been proposed for the design of “op- 
timum” beam forming matrices for narrowband applications. 

suppress unwanted out-of-band interfering sources. A well- 
known example exhibiting uniformly low sidelobes for LES 
arrays is the Chebyshev beamformer. It is conceivable that 
in order to retain the merits of the optimum beamformers, 
when used in conjunction with BI-CSSM, one must assure 
that beamspace focusing be performed successfully. To this 
end, we propose a method of constructing the reference 
beamforming matrix that exhibits both optimality and small 
focusing error. 

Our goal here is to determine an orthonormal basis for the 
subspace of “minimum focusing error.” Let Ew be an M x K’ 
matrix satisfying E$Ew = I, where K 5 K’ 5 M.  If we 
use Ew as the reference beamforming matrix, then, from (21), 
the resulting total focusing error is given by 

Ef = f 2 J, P(T3IIE%(C f o )  

,=1 

- EESPU,’a(T‘; f,)l12dd.‘= tr{EESuEw} (25) 

where 1 I . I I denotes the vector %-norm, tr{ .} denotes the trace, 
and 

(26) 
l J  

Su = - (so - S,HU,lS,) 
,=1 

where S o  is given by (14) with f, replaced by f o .  The optimum 
Ew that minimizes Ef  is composed of the K’ eigenvectors 
(EV) of Su associated with the K’ smallest eigenvalues 
(ev), which are denoted as Xk, k = 1,. . . ?  K‘. Moreover, 
the minimum value of E, equals E,,, = xfll X k .  We 
may thus regard these EV’s as the orthonormal basis vectors 
spanning the K’-dimensional subspace of minimum focusing 
error and use them as the basis for constructing the reference 
beamforming matrix. Suppose that a desired beamforming 
matrix 

(27) 

is selected. We wish to determine a set of reference weight 
vectors as linear combinations of the columns of Ew, which 
approximate the desired weight vectors in LS sense. Putting 
in matrix form, we have 

W d  = [wdl (wd2 1 ‘ ’ ’ (WdK] 

min IIW, - 
W,=EwQ 

Lee and Wengrovitz [I31 derived the’ beamforming matrix 
that minimizes the resolution threshold for two closely spaced 

retains the full dimension element space CramCr-Rao lower 

where !D is a K’ x K linear combination coefficient matrix, 

given by 
sources. Anderson [ 141 derived the beamforming matrix which and 1 1  . 11-F denotes the Frobenius norm‘ The Optimum is 

bound (CRLB) in beamspace. As an altemative, Forster and 
Vezzosi [15] proposed the idea of constructing beamformers 
using the prolate spheroidal sequences. Their method leads to 
the optimum beamforming matrix in that the total SNR gain 
associated with the K beamformers is maximized over the 
specified spatial band. It should be pointed out that the above 
results were obtained based on some idealized assumptions 
such as uncorrelated sources or spatially white Gaussian noise. 
For a more practical consideration, it is preferable to employ 
beamformers exhibiting high SNR gain within the desired 
spatial band and yet uniformly low sidelobes in order to 

w, = E ~ ( E & E ~ . ) - ’ E & W ~ .  (29) 

Geometrically speaking, we have projected the columns of 
Wd onto the subspace of minimum focusing error. 

The general relationship between the normalized bandwidth 
Bw = Bw/fc  and the focusing error is easily derived. For 
small &, the corresponding focusing error is undoubtedly 
small. As Bw is increased (and so is J ) ,  we note that the 
disparity between S o  and SBU,lS,, j = 1, . . . , J ,  becomes 
significant. Due to the averaging effect in (26), Su will 
approach a relatively high rank matrix, leading to a relatively 
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large Emin. This implies that the focusing error associated 
with the reference beamforming matrix constructed according 
to (29) is also large. Since most desired beamforming matrices 
can be approximated by Ew to a certain extent, we arrive at 
the conjecture that the focusing error is indeed an increasing 
function of Bw. It is therefore conceivable that working 
with a large Bw in BI-CSSM does not necessarily improve 
the estimation performance as the effect of increase in time- 
bandwidth product is likely to be offset by the extra focusing 
error incurred. 
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C .  Design Examples 
The following experiments were conducted to access the 

efficacy of the BI transformation. For a simple demonstration, 
we assume that an LES array was employed. The general form 
of the manifold vector associated with an LES array consisting 
of M identical elements and operating with frequency f is 
given by 

with r = 21rd/c, where d is the spacing between two adjacent 
elements. The sine-space angle U is defined as U = sin(f3), 
where 6' is the angle measured with respect to the broadside 
of the array. Note that we have set the reference point of the 
array to be at its first element. For the experiment, we choose 
M = 15, & = 40%, and fc = c /2d ,  i.e., the elements are 
equally spaced by a half wavelength corresponding to f c .  

For the execution of the BI transformation, the frequency 
band was decomposed into J = 33 uniformly distributed 
subbands. The reference beamforming matrix WO was con- 
structed at fo = fl in accordance with the procedure outlined 
in (27)-(29), with K' = 9 and Wd composed of weight 
vectors associated with K = 7 Chebyshev beams with -30 
dB sidelobes pointed at 6' = 0", f7.7", f15.5", and f23.6". 
The Chebyshev beamformer is optimum in that given a 
specified sidelobe level, the corresponding mainlobe width is 
minimized. Fig. 1 shows the superposition of the beam pattems 
associated with WO. We see that low sidelobes were retained 
by WO. Note that we chose fo = f1 in order to alleviate 
the grating lobe problem. In the construction of the remaining 
32 beamforming matrices via (21), the FOV was set to be 
R = [-1.0,1.0] in U domain. The weighting function p(u) 
was chosen as 

p(v) = 1.0 I u (  5 0.7 
= 0.5 0.7 < I u ~  5 1 (31) 

to enhance the focusing effect within the sector [-44", 44"]. 

lated the normalized focusing error spectrum 
To evaluate the quality of focusing numerically, we calcu- 

(32) 

and plotted the result in Fig. 2. The flat valley over [-44,44"] 
confirms our previous statement. The relatively large focusing 

" I  I "  I 
-80 -64 -40 -20 0 20 40 60 80 

Spatial Angle in Degrees 

-80 I 

Fig. 1 .  
generated by an M = 15 element LES array. 

Superposition of I< = 7 minimum focusing error beam pattems 

$ :% 
f 0.7 

1 0.2 0.3 t \ 

i 

O '  -80 -60 k -20 0 20 $ Bo 80 ' 
Spatial Angle in Degrees 

Fig. 2. Normalized focusing error spectrum associated with .J = 33 sets 
of focused beam pattems generated by an ,If = 15 element LES array with 
enhanced focusing within [-44,44O]. 

error occurring near the endfires was mainly caused by the 
grating lobes associated with the high frequencies. Since 
the angular separation between the mainlobe and the nearest 
grating lobes is approximately c / f j d  (in U-domain) for the 
jth band, it is conceivable that effective focusing can only 
be achieved within a sector of width c l f j d .  For the above 
example, fj M 1.2fc such that the size of the sector of 
effective focusing is approximately 1.67. 

IV. BI-CSSM/ROOT-FORM EIGEN-BASED DOA ESTIMATION 
For simplicity, we will consider only the operation asso- 

ciated with fo and omit the argument of frequency in the 
relevant terms. Application of beamspace eigen-based methods 
on the BI-CSSM focused data dictates that the source DOA's 
be determined via the null spectrum 

a(3 = aH(3W,EBPE,HW,Ha(q (33) 

where EB, which is referred to as the beamspace noise EV 
matrix, is the K x ( K - D )  matrix composed of the general- 
ized eigenvectors of {Qzz, Qvv} associated with the K-D 
smallest generalized eigenvalues, where Qz, is an estimate 
of Qzz. P is a positive-semidefinite matrix serving to weight 
the respective columns of EB. As two well-known examples, 
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beamspace MUSIC corresponds to P = I and beamspace 
Minimum-Norm [16] corresponds to P = ccH, where c is 
the transpose of the first row of W,EB. 

For LES arrays, the null spectrum in (33) can be converted 
into the 2(M- 1)th order ‘‘signal polynomial” [ 121 

~ ( z )  = aT(z-l)W,EBPE;W,Ha(z) (34) 

where 

(35) 
T a(z) = [I, 2,. . . , zM-’] 

with z = e jr fou .  With a set of D “signal roots” i i ,  i = 
1, . . . , D extracted from @(z) ,  the DOA’s can be determined 
by 6% = arg{.&}/~f,, i = 1,. . . , D. Note that the coefficients 
of Q ( z )  exhibit conjugate symmetry such that the correspond- 
ing 2(M-1) roots form M-1 conjugate reciprocal pairs. 
As a consequence, only M-1 distinct values are observed 
regarding the phase angles of the 2(M-1) roots. Rao and 
Hari [17] show that “root-form” methods exhibit a higher 
resolution capability than their “spectral-form” counterparts 
in dealing with closely-spaced sources. They argue that a zero 
of the null spectrum having a large radial error will cause the 
corresponding spectral minima to be less defined but does not 
affect the DOA estimates. In addition, it is found that root-form 
methods are more robust to certain modeling errors [18]. 

In spite of the merits stated above, working with root- 
form methods may be computationally expensive due to the 
need of large order polynomial rooting. To remedy this, we 
propose in this section a scheme that can avoid the rooting of 
a large-order signal polynomial while retaining the resolution 
capability of root-form methods. The new algorithm involves 
three stages. First, the signal polynomial is reduced from 
order 2(M-1) to 2(K-1) via judiciously performed subarray 
beamforming. Second, the reduced-order signal polynomial is 
converted into several 2Dth (or Dth) order polynomials via 
a banded transformation of the corresponding reduced noise 
EV matrix. Third, signal roots are extracted by rooting these 
polynomials in parallel. 

A .  Polynomial-Order Reduction via Subarray Beamforming 

Consider an M-element LES array as consisting of L = 
M-K+ 1 overlapping K-element LES subarrays, as depicted 
in Fig. 3. We refer to these identical subarrays as AK. Define 
the KxM selection matrices that select from the full array 
data snapshot vectors the respective subarray data snapshot 
vectors 

where x i )  (n) denotes the K x 1 data snapshot vectors received 
at the lth subarray. It is easily seen from Fig. 3 that rl is 
given by 

with the subscripts indicating the sizes of the respective 
identitv and zero matrices. Assume that the same K x 1 weight 

1381 

vector g = [gl, gz, . . . , g ~ ] ~  is applied at each of the subar- 
rays, producing a set of L x 1 vectors 

representing the data snapshots received at the L subarray 
beamformer outputs, where 

G = [rrglr;gl.. . ~r;g] = 

91 O1 

91 

We can now regard x ~ ( n ) ,  n = 1 , .  . . , N as the data snap- 
shot vectors obtained from a L-element LES array, which is 
denoted as AL, and apply a Lxl weight vector c to form 

~ ~ ( 7 2 )  = c ~ x L ( ~ )  = ( G c ) ~ x ( ~ )  = w ~ x ( ~ )  
n =  1, ..., N .  (40) 

It is readily seen that w = Gc is the effective weight 
vector acting on the entire array. In contrast to (40), we 
may consider the beamforming to be performed first on AL, 
treating the L subarrays as “super elements.” With such an 
array configuration, we may apply an L x l  weight vector 
c = [cl, cz, . . . ,  CL]^ to produce a set of Kx 1 “vector data 
snapshots” 

L 

XK(71) = cTx!)(n) = CHx(n) 
1=1 

n =  1, ..., N (41) 

where 

L 

c = Cclrf = 
1=1 

c1 0 

CL 

0 
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L-MK+l 

1 2 3  K K+l L-1 L L+l Ml M 

. . .  . . .  . . .  

Fig. 3 .  Subarray structure associated with an LES array. 

These vector data snapshots can be regarded as "data snapshot 
vectors" obtained from A K .  In this case, applying a K x l  
weight vector g forms 

Z B ( n )  = g*XK(n) = (Cg)"x(n) = WHX(n) 
n = 1 , .  . . , N .  (43) 

We conclude from (40) and (43) that the full weight vector 
exhibits two types of decomposition: 

(44) w = GC = Cg 

Invoking the banded, Toeplitz structure of C or G, we have 

W"a(z) = { g H a K ( z ) }  { c H a L ( z ) }  (45) 

thus contains no information about the DOA's. As a result, 
the DOA estimates must be determined with the 2(K-l)th 
order polynomial 

@ K ( z )  = a z ( z - l ) G E B P E g G " a K ( z ) .  (52) 

The structure in (52) suggests that we may regard it as the 
signal polynomial associated with a K-element LES array 
generated by the noise EV matrix GEB. Thus, working 
with (52) instead of (34) leads to a substantial reduction in 
computational load if K << M .  

B. Parallel Processing via Banded Transformation 
Although the execution of polynomial rooting is greatly sim- 

plified with subarray beamforming, the procedure of choosing 
D signal roots out of the 2(K-1) roots of @ K ( z )  is still 
vague, especially at low SNR. Kumaresan [I91 and Bresler 
[20] propose a scheme to convert the DOA estimation problem 
into that of rooting a Dth order polynomial and thus avoid 
the vagueness in determining the signal roots. They exploit 
the fact that the ideal noise subspace associated with an LES 
array is spanned by the columns of a banded Toeplitz matrix 
with bandwidth D+1. Motivated by their work, we conduct 
the following matrix conversion: 

LO b ~ - D  J 
where a K ( z )  and a L ( Z )  are given by (35) with 
by K and L, respectively. Similarly, we can get 

replaced where bl,  1 = 1,. . . , K-D are (D + 1) x 1 vectors with 
a unit leading component, and Tg is a ( K - D ) x  ( K - D )  

aT(z-')W = { a ~ ( . - ' ) g } { a ~ ( ~ - ' ) c } .  (46) 

We now develop a beamspace transformation scheme based 
on the concept of weight vector decomposition. The idea is 
to construct K reference weight vectors with the following 
forms: 

nonsingular matrix. Note that the banded matrix in (53) has 
the same structure as that described in (39) and (42). Some 
algebraic manipulations yield 

bl = M(1 : D + 1 ,  : ) T i 1 ( : ,  1 )  

1 = 1 ,  . . . ,  K - D  (54) 

Wok = G k C  = cgk k = 1, .  . . , K (47) and 

[M(E(i+';:!K, :) el 

(55)  
1 -l 

where Gk is given by (39) with g replaced by g k .  The key 
point is that Wok, k = 1 , .  . . , K ,  contain the same "weight 
factor" c. Putting in matrix form and using (45)-(46), we have 

W f a ( z )  = { G H a K ( z ) } { c H a L ( z ) }  (48) 

T i l ( : , l )  = 

1 =1, . . . ,  K - D  

a T ( z - l ) W 0  = { a ~ ( z - l ) G } { a ~ ( z - l ) c }  (49) where 
M(nl : n2, :) submatrix consisting of the nlth to the n2th 

where row of G E B  

G = [gl la1 ' ' . kK1.  

Substitution of (48)-(49) in (34) leads to 

a(.) = { a E ( z - l ) c c H a L ( z ) }  

T i ' ( : , l )  lth column of Ti1  
lth column of the ( K - D )  x ( K - D )  identity (50) el 

matrix. 
Substitution of (53) back into (52) leads to 

{ a z ( z - l ) G E , P E E G ' a K ( z ) } .  (51) @ K ( z )  = aTD+l(z-l)FD(z-l)TgPT~D(z)F*aD+l(z) 
(56) 

(57) 

An interesting point gleaned from (51) is that we have de- 
composed @ ( z )  in two individual factors accounting for c and 

where aD+l(z) = with M = ~ + 1 ,  

G, respectively. The factor involving c is known a priori and D(z) = Diag { 1, z ,  . . . , z ~ - ~ - ~  1 
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and 

F = [bl(bz[ . . . ( ~ K - D ] .  (58)  

Note that except for the z-dependent term D(z), the poly- 
nomial in (56) is essentially that associated with a (D + 
1)-element LES array. To fully exploit this reduction in 
dimension, it is natural to replace D(z) with a constant matrix 
by fixing z = z,: 

@ K ( Z ~ Z , )  = az+l(z-l)FD(z;l)TBP 
TgD(zO)FHaD+1(4 (59) 

Comparing (59) and (56), we see that in order to achieve the 
performance of working with the original signal polynomial, 
we must choose zo M z, = eJTfoUa in estimating U,. This 
dictates that a set of reduced-order signal polynomials @ K ( Z  I 
Z,), z = 1,. . . , D be constructed with Z, M zz ,  z = 1, . . . , D. 
To determine C,, the corresponding signal root 2, is determined 
as a root of @ K ( Z  I 5,) closest to Z,, that is, only a single DOA 
estimate is extracted from each reduced order polynomial. 

The major difficulty of the above procedure is that it requires 
the knowledge of the DOA's we are trying to estimate. As a 
practical approach, we may decompose the effective spatial 
passband of the reference beamforming matrix into I, disjoint 
sectors centered at U,, m = 1, .  . . ,I,, and construct 

@ K ( Z  I Z,) = a;+,(z-')FD(ZL1)TB 

PTgD(z,)FHaD+I(z) m = 1, .  . .,Is 
(60) 

with Z,,, = eJrfozlm, m = 1,. . . , I , .  As long as the size of 
the sector is relatively small, we may approximate @ K ( z )  
by @ K ( Z  I Z,) for the mth sector with high accuracy. By 
rooting (60) in parallel, we obtain totally I, sets of roots f,, 
and l/f:,, z = 1,. . . , D, m = 1,. . . ,I,. Since U ,  should be 
best estimated with the polynomial associated with the sector 
containing U,, we should pick those roots satisfying 

1 - arg{f,,} E sector m 
r f o  

z = 1 , .  . . , D i m  = 1 , .  . . ,Is. (61) 

If the total number of roots picked exceeds D, then those D 
ones closest to the unit circle are selected. It should be pointed 
out that under no noiselerror conditions are the I, sets of roots 
identical since replacing (52) by (60) is in fact tantamount to 
replacing P by z-dependent positive semidefinite weighting 
matrices. 

For practical noisy cases, the above developed parallelized 
DOA estimator is suboptimum since the modified z-dependent 
weighting matrices are no longer optimum even if P is so 
chosen. This results in degradation in estimation accuracy at 
low SNR. On the other hand, even with the true DOA's used as 
the fixing angles, U,, m = 1 , .  . . ,I,, the DOA estimates will 
not be exactly identical to those obtained with the true signal 
polynomial. This is because that the signal roots associated 
with the true signal polynomial may not lie on the unit 
circle, but the conversion from (56) to (60) inherently assumes 
that all signal roots are on the unit circle. In some sense, 

the parallelized estimator behaves as a mixture of the root- 
form and spectral-form estimators. According to the argument 
of Rao and Hari [17], one can predict that the parallelized 
estimator should exhibit poorer resolution capability at low 
SNR than the full dimensional root-form estimators. 

C .  Further Simplification via Rank-One Approximation 

We note that under no noiselerror conditions is the banded 
matrix on the right-hand side of (53) also Toeplitz [20], i.e., 
bl = b2 = = bK-D.  It follows from (58) that under 
moderately good conditions, F is approximately rank one. This 
suggests that we may replace the matrices on the right-hand 
side of (60) by their rank-one representations: 

FD(Z;~)T~PT;D(Z,)F~ 
H H  =+ F D ( Z ~ ~ ) T ~ P , ~ , T , D ( Z , ) F ~  m = 1 , .  . . , I ,  

(62) 

where p, is a (K-D) x 1 vector, Note that we put the 
subscript m to emphasize the dependence on different sectors. 
For example, choosing pm to be the transpose of the first row 
of FD(Zkl)T~ corresponds to Root-Minimum-Norm applied 
on a ( D  + 1)-element LES array. With the structures of (62), 
we need only work with the set of Dth order polynomials: 

In summary, except for the initial construction of beamform- 
ing matrices and the BI transformation, the above developed 
subarray-based DOA estimation procedure requires 

1) performing a K x K generalized eigen-decomposition 
2) solving in parallel B-D systems of equations of size 

3) rooting in parallel I, 2Dth (or Dth) order polynomials. 
We thus conclude that significant saving in computations can 
be achieved, compared with the conventional Root-MUSIC 
algorithm for the case D M K << M .  

K-D 

D .  Design of Subarray-Based Reference Beamforming Matrix 

The factorization described in (47) does not hold for a 
particular desired beamforming matrix w d .  One way to retain 
the merits of w d  using subarray beamforming is to judiciously 
choose c and g k ,  k = 1, .  . . , K so that W O  is close to 
w d .  Using again the LS fit technique leads to the following 
problem: 

Invoking the structures in (47), we can rewrite (64) as 
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where C and G are given by (42) and (50), respectively: 

G =  - [ X q  
and 

Equation (65) has no closed-form solution in general. In- 
stead of solving it with brute force, we suggest that the problem 
be decomposed into two individual stages for which in one 
stage, we solve for the common weight factor c, whereas 
in the other, we solve for the uncommon weight factor g k ,  
lc = 1 , .  . . , K .  Assuming that an initial guess of c (or C )  is 
available and solving the left-hand side of (65) for G, we get 

Constructing G with the obtained G in accordance with (39), 
(50), and (66) and solving the right-hand side of (65) for c 
yields 

We may proceed to construct C and solve for a new G. The 
procedure is then alternately executed between (68) and (69) 
until the solutions converge. 

V. COMPUTER SIMULATIONS 
Computer simulations are presented to ascertain the per- 

formance of the proposed BI-CSSM processing in a multiple 
wideband sources environment. The array employed was LES, 
consisting of M = 15 elements with a half-wavelength spacing 
at the center frequency f c .  The normalized bandwidth of 
the receiver was 40%. Signals from three wideband sources 
arrived at 8, 11, and 35" with respect to the broadside of the 
array. The angular separation between the first two sources 
was slightly less than half a 3-dB beamwidth of the array 
(= 7.64'). The received signals due to the three sources are 
assumed to be uncorrelated bandpass white Gaussian processes 
with the same spectral density height So. It should be pointed 
out that although we here consider only uncorrelated sources, 
the proposed method works for coherent case as well. Spatially 
white Gaussian bandpass noise with a spectral density height 
No, independent of the received signals, was present at each 
array element. The signal-to-noise ratio (SNR) in decibels per 
array element was defined as 10log,,(So/No). A bandpass 
filter bank was used to decompose the receiving band into 
J = 33 uniformly distributed frequency bins so that the 
output data from each bin may be modeled as narrowband. 
For each execution of DOA estimation, N = 30 snapshots 
were collected at each of the 33 bins. 

The first set of simulations compares the performance of BI- 
CSSM with that of regular CSSM. For all cases, the reference 

frequency was chosen as f a  = f l .  For BI processing, the set of 
K = 7 minimum focusing error weight vectors corresponding 
to Fig. 1 was used to constitute the reference beamforming ma- 
trix. The beamforming matrices for the remaining 32 frequen- 
cies were constructed in accordance with (21). The FOV was 
[-1,1] and the weighting function was the same as that given 
by (31). For CSSM, 33 focusing matrices were formed based 
on the dummy direction-vector constrained (DDVC) approach, 
with focusing angles (-30, -21, -12, -3,6, 8,11,13,23,33, 
35,37,46,55, and 6 4 O } ,  and the rotational signal subspace 
(RSS) approach [7], with focusing angles {8,11, and 35"). 
Note that we have assumed that the correct DOA's were 
used for the focusing angles in DDVC-CSSM and RSS- 
CSSM. The focused data snapshots were then transformed 
into beamspace using the same reference beamforming matrix 
as that used in BI-CSSM. The resulting sample root-mean- 
squared error (RMSE) of the DOA estimates obtained from 
50 independent trials of the conventional beamspace MUSIC 
algorithm were shown in Fig. 4(a) for various SNR levels. 
Note that each RMSE value represents the average of the 
sample RMSE's for the three sources. Surprisingly, DDVC- 
CCSM did not outperform BI-CSSM, even though perfect 
focusing angles were used. A plausible reason for this is 
that the dummy direction vectors were not optimally chosen 
in DDVC-CSSM. BI-CSSM, on the other hand, does not 
suffer any performance degradation due to the imperfections 
in the preliminary processing. This is a demonstration of 
the reliability of the BI-CSSM preprocessing. As would be 
expected, RSS-CSSM performs best among the three methods, 
owing to the unitariness of the focusing matrices used, and 
because perfect focusing angles were used. Fig. 4(b) shows the 
probability of resolution versus SNR for the two sources from 
8 and 11". RSS-CSSM again outperforms the other two, with 
a resolution threshold of -5 dB. We observe that BI-CSSM 
performs slightly better than DDVC-CSSM, both exhibiting a 
resolution threshold of 0 dB. This is a demonstration of the 
efficacy of BI-CSSM in resolving closed-spaced sources. 

Although RSS-CSSM exhibits excellent resolution capabil- 
ity and estimation accuracy compared with other CSS methods, 
its performance is affected greatly by the choosing of focusing 
angles. To demonstrate this effect, we repeated the above 
simulation work for RSS-CSSM but with a new set of focusing 
angles {7.6,9.5,11.4,30.1, 32, and 33.9'}. In this case, it was 
assumed that preliminary DOA estimation was performed. The 
source at 35" was not accurately detected, and consequently, 
focusing was only effective for the two closely spaced sources. 
The average sample RMSE of the DOA estimates obtained 
from 50 independent trials of the conventional beamspace 
MUSIC algorithm were shown in Fig. 5(a). Observing the 
results, we find that RSS-CSSM was not able to provide 
reliable DOA estimates at any SNR level. Interestingly, the 
sample RMSE did not decrease as the SNR was increased. 
This is in contrast with BI-CSSM, which apparently improved 
with higher SNR. The large sample RMSE associated with 
RSS-CSSM reflects the estimation bias due to the errors in 
the focusing angles. This is a drawback not shared by BI- 
CSSM. The probability of resolution versus SNR curves for 
the two sources from 8 and 11' were plotted in Fig. 5(b). We 
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Fig. 4. Comparison of the performance of BI-CSSM, DDVC-CSSM, and 
RSS-CSSM for several SNR values: (a) Average sample RMSE's and (b) 
probability of resolution. 

see that in spite of the large estimation bias, RSS-CSSM still 
exhibits a lower resolution threshold than BI-CSSM. 

The third set of simulations was conducted to ascertain the 
effectiveness of the beamspace reduced-order Root-MUSIC 
(RORoot-MUSIC) procedure outlined in Sections IV-A-IV-D 
when used in conjunction with BI-CSSM. The subarray-based 
reference beamforming matrix was constructed in accordance 
with the procedure described in Section IV-D using the afore- 
mentioned minimum focusing error beamforming matrix as 
the desired one to fit. Fig. 6 shows the superposition of the 
resulting reference beam patterns. We have found that for 
this particular case, the algorithm converged in 20 iterations, 
with a suitably chosen initial guess of c.  Comparing Figs. 1 
and 6, we observe that the new patterns were fairly close to 
the original ones over the entire passband. We also note that 
the new patterns exhibit several out-of-band "common nulls" 
corresponding to the common factor c.  For the rooting of (60), 
the spatial band [-40,40°] was divided into I ,  = 8 sectors 
centered at 19 = 45, 4x15, f 2 5 ,  and f35'. The resulting 
average sample RMSE of the DOA estimates obtained from 50 
independent trials were depicted in Fig. 7(a). For comparison, 
we also include the results obtained with the conventional 
beamspace Root-MUSIC algorithm working with the same 
reference beamforming matrix. We see that the two methods 
provide comparable results for most SNR levels. As expected, 
conventional Root-MUSIC performed better at low SNR. 

! 
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Fig. 5. Comparison of the performance of BI-CSSM and RSS-CSSM (with- 
errors in focusing angles) for several SNR values: (a) Average sample 
RMSE's; (b) probability of resolution. 

Finally, the probability of resolution curves shown in Fig. 7(b) 
indicate that both methods exhibit a resolution threshold of 
-5 dB. Root-MUSIC is superior in that the degradation in 
performance at low SNR is more gradual than that associated 
with RORoot-MUSIC. To compare the numerical complexity 
of the two methods, we recorded the number of floating- 
point operations required for each execution of the two DOA 
estimation procedures. Impressively, the computational load of 
RORoot-MUSIC (z 8x104 flops/execution) is less than 5% 
that of Root-MUSIC (E 1 . 7 ~  lo6 flops/execution). It should 
be noted that the disparity between the two numbers will be 
even greater as the number of elements increases. 

VI. CONCLUSION 

The BI focusing scheme was developed as an efficient 
means of beamspace wideband source localization. It performs 
beamspace transformation and focusing at the same time by 
judiciously constructing a set of beamforming matrices so 
that the resulting beamspace DOA matrices are essentially the 
same for all frequencies. These beamforming matrices achieve 
nearly perfect focusing over a large angular region within 
the FOV of the array without knowing a priori the spatial 
distribution of the wideband sources. For LES arrays, a fast 
root-form eigen-based method was proposed, which requires 
only solving in parallel several small systems of equations and 
rooting in parallel several polynomials with the order equal to 
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by an M = 15 element LES array. 
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Fig. 7. Comparison of the performance of BI-CSSM working in conjunction 
with Root-MUSIC and reduced-order Root-MUSIC (RORoot-MUSIC) for 
several SNR values: (a) Average sample RMSE’s; (b) probability of resolution. 

the number of sources. Numerical examples show that the new 
method exhibits excellent estimation accuracy and is robust 
compared with the regular CSSM. 

The proposed BI wideband beamforming scheme devel- 
oped herein can be extended to a more complicated scenario 
involving strong out-of-band interference. In this case, the 
beamforming matrices Wj, j = 1,. . . , J are constructed 
in such a fashion that each of the beam piittems exhibits a 
null in each of the interfering directions. To apply the fast 
root-form methods to a nonLES array, the BI transformation 

may be used as a means of both interpolation [18], [21] 
and focusing over a specified spatial band, that is, the DOA 
matrices associated with the J frequencies are transformed into 
the one associated with a virtual LES array operating at the 
reference frequency. The proposed method is suitable for real- 
time passive wideband source direction finding for which low 
computational complexity is critical. For example, in passive 
sonar applications, one may use an LES hydrophone array to 
localize a group of active underwater sources. 
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