
Future Generation Computer Systems 37 (2014) 76–87
Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Exploiting fine-grain parallelism in the H.264 deblocking filter by
operation reordering
Tsung-Hsi Weng ∗, Chung-Ping Chung
Department of Computer Science, National Chiao Tung University, Engineering Building C, Kuang-Fu Campus, 1001 University Road, Hsinchu 300,
Taiwan, ROC

a r t i c l e i n f o

Article history:
Received 16 April 2012
Received in revised form
13 July 2013
Accepted 14 October 2013
Available online 22 October 2013

Keywords:
Deblocking
Parallelization
Data intensive
Many-core architecture
H.264

a b s t r a c t

In the H.264 video compression standard, the deblocking filtering contributes about one-third of all com-
putation in the decoder. With many-core architectures becoming the future trend of system design,
computation time can be reduced if the deblocking appropriately apportions its operations to multiple
processing elements. In this study, we used a four-pixel-long boundary as the basis for analyzing and
exploiting possible parallelism. Compared with the two-dimensional (2D) wavefront method order for
deblocking both 1920×1080- and 1080×1920-pixel frames, the proposed design exhibits speedups of
1.92 and 2.44 times, respectively, given an unlimited number of processing elements. Compared with
our previous design, it gains speedups of 1.25 and 1.13 times, respectively. In addition, as the frame size
grows, this approach requires only extra time that is proportional to the square root of the frame size in-
crease (keeping the same width to height ratio), pushing the boundary of practical real-time deblocking
of increasingly larger video sizes.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Integrated circuit capacity on a single die has increased as pre-
dicted byMoore’s Law in the past 50 years. However, single-thread
computing performance has been observed to level off in past
decades, due to both insufficient parallelism in applications and
power usage limitations. Multi-core and many-core designs allow
not only efficient use of energy, but also parallel processing capa-
bilities at almost all levels, pushing the computation power of a
single die up at a rate proportional to IC technology.

We study how to explore multi-core hardware capabilities
in data-intensive computing. The paradigm of pervasive data-
intensive computing has become widely applied in all computer
devices especially for multimedia processing. In this paper, we
chooseH.264 to be the target application as it is awidely used tech-
nique for such multimedia processing that is highly computation
and data intensive. H.264 provides acceptable image quality and a
reduction in bit rate compared to the existing video compression
standards. In addition, it provides high adaptability and superior
error resilience for a wide range of multimedia applications [1].
Due to H.264’s intensive data compression, picture frame deblock-
ing is a crucial process and is our focus.

Deblocking is intended to smoothen block-edge artifacts caused
by the decoding process and enhance picture quality. In the

∗ Correspondence to: No.17, Ln. 106, Minzu Rd., Xinying Dist., Tainan City 730,
Taiwan, ROC. Tel.: +886 952767833; fax: +886 35715460.

E-mail addresses: chwong@cs.nctu.edu.tw (T.-H. Weng),
cpchung@cs.nctu.edu.tw (C.-P. Chung).

0167-739X/$ – see front matter© 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.future.2013.10.018
encoding process, the H.264 encoder uses the macroblock (MB),
a 16 × 16 pixel square, as the basic coding unit. The quantiza-
tion of the macroblocks causes visual discontinuities between the
edges of the decoded macroblocks. The pixels located on the mac-
roblock boundaries with a similar value might be decoded with a
larger difference in values for the aforementioned reason, resulting
in a decline in picture quality. Therefore, the purpose of deblock-
ing is to smoothen block artifacts caused by the decoding process
to enhance picture quality. Another advantage of deblocking is to
increase coding efficiency. Decoded and deblocked images are ref-
erenced later, and because the picture is of superior quality, the
encoded bit rate is reduced.

Deblocking filtering accounts for one-third of all computation in
a decoder [2]. Many-core architectures are becoming the trend; if
deblocking can be processed using amulti-core parallel processing
architecture, processing can be distributed to different computing
PEs to address and reduce the execution time.Whereasmost paral-
lel processing of deblocking currently focuses on parallelization at
the MB level, we found that parallelizing deblocking at a granular-
ity of 16-pixel-long boundaries enablesmore parallelism than par-
allelization at the MB level in our previous work [3]. In this paper,
we further examine the possibility of parallelizing deblocking at a
finer granularity and whether it can be developed according to our
presented design. We analyze the deblocking order to obtain the
dependency between the various boundaries and then propose an
execution order in which the execution of deblocking in this order
provides improved parallelism.

The remainder of this paper is organized as follows. Section 2
introduces the background of the deblocking filtering and related

http://dx.doi.org/10.1016/j.future.2013.10.018
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2013.10.018&domain=pdf
mailto:chwong@cs.nctu.edu.tw
mailto:cpchung@cs.nctu.edu.tw
http://dx.doi.org/10.1016/j.future.2013.10.018


T.-H. Weng, C.-P. Chung / Future Generation Computer Systems 37 (2014) 76–87 77
a b

c

Fig. 1. (a) Affected pixels in deblocking. (b) The pixel values before deblocking; the P0–P3 and Q0–Q3 pixel value gap causes a visual discontinuity. (c) After deblocking; the
pixel values are now smooth.
a b

Fig. 2. Deblocking orders of (a) intra-MB and (b) inter-MB.

work for deblocking parallelization. Section 3 shows our paral-
lelized design. Section 4 presents an analysis of the proposed
method and compares it with related works. Section 5 shows our
proposed hardware architectural requirements. Finally, the con-
clusion and suggestions for future research are provided.

2. Background and related studies

2.1. Background

The deblocking filtering is used to smoothen block-edge arti-
facts. Fig. 1(b) shows a block-edge artifact caused by a large differ-
ence in pixel values. The pixels P0–P3 and Q0–Q3 in Fig. 1(b) can
be located either vertically or horizontally, as shown in Fig. 1(a).
Deblocking applied on the P0–P3 and Q0–Q3 pixel values enables
these eight values to appear visually smooth. The pixel value dis-
tribution after deblocking is shown in Fig. 1(c).

Deblocking is needed for both MB boundaries and 4 × 4 block
boundaries. Because the MB is the basic coding unit in H.264,
block-edge artifacts occur easily at MB boundaries. In addition,
some coding modes use 4 × 4 blocks for inter prediction and intra
prediction. For these cases, deblocking is needed to smoothen the
block-edge artifacts.

The MB deblocking internal (intra-MB) execution order, as
defined by the H.264 standard, is shown in Fig. 2(a). The execution
starts by deblocking a column of pixels moving horizontally from
left to right, and then a row of pixels moving vertically from top
to bottom. The inter-MB execution order is shown in Fig. 2(b), and
moves from left to right and top to bottom.

Although the H.264 standard defines the deblocking order as
shown in Fig. 2, the order can be altered if the final decoding re-
sults are correctly outputted. Altering the order in which the cal-
culation is performed is an opportunity for parallelizing deblocking
filtering.Wepropose a conceptual design to improve the paralleliz-
ability of the deblocking.
2.2. Related work

Pipelining the H.264 video decoding stages and distributing the
workload to threadsworking on different cores are effectivemeth-
ods to make use of the system-provided parallelism in a multi-
core system. Several studies [4–8] have focused on this domain.
T.W. Chen et al. [6] arranged the H.264 decoder functions into
proper pipelining schedules. Y.K. Chen et al. [7] provided an ef-
ficient multi-threaded H.264 encoding/decoding method on Intel
hyper-threading architecture. H. Baik et al. [4] exploited function-
level parallelism (FLP) on IBM CELL architecture. Moreover, Y. Kim
et al. [8] optimized the performance of [4] using dynamic load
balancing. Furthermore, K. Nishihara et al. [5] provided a flexi-
ble partitioning of the H.264 decoding functions for an embedded
multi-core processor.

However, because microprocessor design increasingly involves
applying fully customized PEs for higher computing performance
and energy efficiency [9,10], another dimension of parallelism is
needed to extend the use of the provided computation resource.
Consequently, various designs [11–16] focus on the data-level par-
allelism (DLP) of the H.264 codec. In recent years, several methods
[17,18] have considered both FLP and DLP to exploit both dimen-
sions of parallelism. Today, DLP is increasingly crucial.

The two-dimensional (2D) wavefront method [11] proposed by
Van Der Tol et al. exploits DLP by using the MB as a unit for paral-
lelization. In Fig. 3(a), according to the deblocking order, the cur-
rent MB has a data dependency on the upper, upper-right and left
MBs. Therefore, when using an MB as the parallelization unit, the
upper, upper-right and left MBsmust be deblocked before the cur-
rentMB. In Fig. 3(b), theMBs that can be processed simultaneously
are numbered together.

S. Sun [13] proposed a macroblock region partition (MBRP) to
further use the 2Dwavefrontmethod. The video encoder of this de-
sign partitions one frame into individual coded regions, and each
region can apply the 2Dwavefrontmethod individually. Moreover,
F.H. Seitner et al. [15] evaluated various types of partitioning ap-
proaches including the multi-column, slice-parallel, rotating slice-
parallel, and diagonal approaches. However, this enhancement
requires a video stream that is not compatible with the H.264 stan-
dard. In addition, K. Schöffmann [12]mentioned that increasing the
number of partitions also increases the bit rate requirements of the
H.264 video.

The three-dimensional (3D) wavefront method [14] is based
on the 2D wavefront method; however, it also uses inter-frame
parallelism, meaning that more MBs can be processed in parallel.
This method can considerably enhance the parallelism. A. Azevedo
et al. [16] implemented the 3D wavefront method on a multi-core



78 T.-H. Weng, C.-P. Chung / Future Generation Computer Systems 37 (2014) 76–87
a b

Fig. 3. (a) Data dependencies in inter-MB deblocking. (b) MBs that can be processed simultaneously.
a b

Fig. 4. (a) ID assignment and (b) data dependency of an MB.

architecture composed of NXP TriMedia TM3270 embedded pro-
cessors to verify its effects in a real-world scenario.

In our previous work [3], we found that parallelizing deblock-
ing at a granularity of 16-pixel-long boundaries produces more
parallelism than parallelization at the MB level. As mentioned, de-
blocking at a finer granularitymight enable rapid attainment of the
maximal parallelism, but also benefit diminishing the limitation
from the shape of the frame.

The 3D wavefront method is compatible with MB-level meth-
ods and our previous work. The MB-level methods and our previ-
ous work are used for intra-frame parallelization, whereas the 3D
wavefrontmethod is used for inter-frameparallelization. In the fol-
lowing sections, we explain whether deblocking at a finer granu-
larity can increase the amount of parallelism and still be combined
with the 3D wavefront method to further increase the parallelism.

3. Design

Analyzing applications at a finer granularity usually provides
additional opportunities for parallelization. In H.264, the standard
defined orders intersect with each other on a 4 × 4 grid; thus, we
used four-pixel-long boundaries as the basic unit. In the follow-
ing section, we first analyze the data dependencies and generate
the corresponding data dependency chain. Second, we determine
the critical paths of the data dependency chain and assign the de-
blocking order of four-pixel-long boundaries on the critical paths
based on their dependency depth. Last, we determine the order of
deblocking the four-pixel-long boundaries that are not on the crit-
ical paths based on the optimal use of the provided hardware re-
sources. At the end of this section, we consider the assignment of
available PEs.

3.1. H.264 deblocking data dependency tree

To delineate the data dependency chain, we assigned IDs
(b1–b32) to each of the four-pixel-long boundaries in an MB
(Fig. 4(a)). The result of deblocking b5 became an input into the
deblocking for b6, and that result subsequently became the inputs
for both b1 and b7, and so on. In accordance with the data depen-
dencies caused by the standard H.264 order, the data dependency
chain for intra-MB deblocking is as shown in Fig. 4(b).

Moreover, the data dependency tree can be derived for deblock-
ing in an MB, as shown in Fig. 5.
In Fig. 5, the data dependency tree is represented as eight timing
phases. The timing of each boundary signifies the earliest time that
the deblocking can operate. The black solid arrowsmean that these
inputs resulted from other four-pixel-long boundaries that are in
the same MB; the black dotted arrows represent the inputs result-
ing from four-pixel-long boundaries that are in different MBs; and
the double arrows mean that the inputs are used for the first time
and originate from the external memory. The inter-MB depen-
dency tree can be constructed by placingMBs side by side and link-
ing the black dotted arrows (which are shown in Fig. 5) together.

3.2. Deblocking order of four-pixel-long boundaries on the critical
paths

The critical paths of the data dependency tree must be deter-
mined in the next step. When deblocking a critical path, this de-
blocking time determines the performance. The three steps, which
are outlined below, are used to illustrate the critical paths of a
frame.

Step1: Identify critical paths among four-pixel-long boundary data
dependency chains in MB.

A frame containing only one MBwas assumed. Fig. 6, which is a
trivial derivation from Fig. 5, shows the critical paths of this frame
with arrows representing the data dependency directions. By or-
dering the counts of arrows from b5 to each four-pixel-long bound-
ary, the execution order of the critical paths could be generated.

Step2: Identify critical paths among four-pixel-long boundary data
dependency chains in the same row of MBs.

Following Step 1, we extended the analyzed frame size to one
row of m MBs. Fig. 7 shows the critical paths of this frame with
three types of arrows. The gray arrows (from Step 1) indicate
intra-MB dependencies. The double arrows indicate inter-MB de-
pendencies in a row ofMBs. The black dotted arrows indicate some
intra-MB dependencies not shown in Fig. 5. These intra-MB depen-
dencies are added because of the effects of inter-MB dependencies.

To meet the order demanded by the critical paths, we modified
the deblocking order of Step 1, as shown in Fig. 8. The modifica-
tion is represented by the numbers in bold, which are on the ex-
tra critical paths caused by the inter-MB dependencies in a row of
MBs. Though not every critical path that resides in different MBs
is identical, this order fulfils the requirements and maintains reg-
ularity. Fig. 9 shows the order of two adjoining MBs in the same
row of MBs. Note that the deblocking of the adjoining MB on the
right starts at Time 7, which precedes the last operation of the MB
on the left. The performance improvements are analyzed further in
the analysis section.

Step3: Identify critical paths among four-pixel-long boundary data
dependency chains in adjoining rows of MBs.

In this step, we extended the size of a frame to n rows ofmMBs.
Fig. 10 shows the corresponding critical paths. The gray arrows in-
dicate both the intra-MB and the same row of inter-MB data de-
pendencies. The black arrows indicate data dependencies between
adjoining rows of MBs. Moreover, the distribution of critical paths
forms eight types of MBs. To meet the requirements of these criti-
cal paths, we provided the deblocking order extended from Step 2
in Fig. 11.

The onlymodificationmade is shown in Fig. 11 by the number 3
in bold, which is on the extra critical path caused by adjoining rows



T.-H. Weng, C.-P. Chung / Future Generation Computer Systems 37 (2014) 76–87 79
Fig. 5. Data dependency tree of an MB.
a b

Fig. 6. (a) Critical paths of a frame with only one MB and (b) deblocking order on
critical paths.

of MBs. Fig. 12 illustrates the deblocking order of a 3 MB × 3 MB
frame, which is the smallest example containing all eight types of
MBs shown in Fig. 10. By labeling the start of the first row of MBs
as the first stage, we found that the second row of MBs started de-
blocking at the sixth stage. The analysis of the performance im-
provements is also discussed in the analysis section.

3.3. Deblocking order of four-pixel-long boundaries on the non-
critical paths

The deblocking order in Fig. 11 fulfils the requirements for cor-
rect deblocking of all four-pixel-long boundaries on the critical
paths. Next, we determined the execution order of the boundaries
that are not on the critical paths. Because these boundaries are not
on the critical paths, a degree of flexibility is possible in reordering,
while not increasing the time for deblocking. Fig. 13 shows all the
possible orders for four-pixel-long boundaries not on critical paths
without increasing the length of any critical path. These boundaries
were categorized into three groups. By following the arrows in each
Fig. 8. Deblocking order fulfils the critical paths of a single row of MBs.

group, all possible orders can be generated. Taking the group con-
taining b8, b12, and b16 for example, {4, 5, 6}, {4, 5, 7}, {4, 6, 7},
and {5, 6, 7} are all the possible order assignments for {b8, b12, b16}
in this group.

When we considered all the possible order assignments for
the boundaries not on the critical paths, we found that different
order assignments result in different amounts of required PEs. To
minimize the total amount of required PEs, we had to derive the
minimal possible amount of required PEs for one additional MB
row. Although deblocking oneMB requires at least eight time units
because of the length of the critical paths in a single MB, we found
that spanning oneMB horizontally used only sixmore stages in the
critical paths according to the order for four-pixel-long boundaries,
as shown in Fig. 12. Moreover, one MB contains 32 boundaries
requiring deblocking, and had to be completed in six time units.
Assuming that one PE could deblock one four-pixel-long boundary
in a single time unit, the minimal possible amount of required PEs
Fig. 7. Critical paths of a frame with only one row of MBs.



80 T.-H. Weng, C.-P. Chung / Future Generation Computer Systems 37 (2014) 76–87
Fig. 9. Deblocking order of boundaries on critical paths in one row of MBs.
Fig. 10. Critical paths of a frame withm × n MBs.

Fig. 11. Deblocking order that fulfils the critical paths of a frame withm × nMBs.

for one MB row without increasing the execution time is a ceiling
of 16/3.

Because of thisminimal amount of required PEs for oneMB row,
weproposed a specific order,which is shown in Fig. 14(a). A regular
number sequence of the number of boundaries exists that could be
deblocked in parallel: 12(565565)∗565553 (Fig. 14(b)). This order
required seven PEs for one MB row, which is exactly the ceiling
of 16/3. In addition, deblocking n rows of MBs uses only a ceiling
of 16n/3 PEs, which is also the minimal possible amount without
increasing the execution time (Fig. 15).

3.4. Assignment of processing elements

Because of the relationship between the number of PEs and the
aspect ratio of the frame to be deblocked, two cases can result:
Case I: Degree of parallelism depends on the frame’s aspect ratio.

Assuming that more PEs are available than needed, the degree
of parallelism is limited only by the frame aspect ratio. Whereas
processing 16 pixels horizontally (the width of one MB) occurs in
Fig. 12. Deblocking order of boundaries on critical paths in a 3 MB × 3 MB frame.
All eight types of MBs are shown in this example.

six stages, processing 16 pixels vertically occurs in only five stages
in the proposed order. Consequently, deblocking the first row of
MBs finishes before starting the last row of MBs when the number
of rows of MBs is less than (6/5)× (the number of columns of MBs
in a frame). We categorized the effects of the frame’s aspect ratio
into the following two situations:
i. Number of rows of MBs in a frame ≤ 6/5 × number of columns
of MBs in a frame (degree of parallelism limited by the number of
rows of MBs in a frame).

In this situation, the number of rows of MBs in the frame dom-
inates the maximal parallelism. According to the deblocking order
in Fig. 15, the maximal parallelism of three rows of MBs is 16. We
found that the maximal parallelism of one row of MBs is a ceiling
(16/3). For example, the maximal parallelism of one row of MBs
is 6, the maximal parallelism of two rows of MBs is 11, and the
maximal parallelism of three rows of MBs is 16. Our method has a
wind-up and wind-down time similar to that of the 2D wavefront
method. Fig. 16 shows the portions of a frame during the wind-up
and wind-down time. The upper-left gray region shows the start-
ing up of the deblocking and the lower-right gray region is the fin-
ishing of the deblocking. In these regions, the deblocking could not
reach the maximal parallelism. The white region is where the de-
blocking could reach the maximal parallelism. The degree of par-
allelism and timing relationship diagram is shown in Fig. 17.
ii. Number of rows of MBs in a frame > 6/5 × number of columns
of MBs in a frame (degree of parallelism limited by the number of
columns of MBs in a frame).

In this situation, which is shown in Fig. 18(a), the degree of par-
allelism is equal to the ceiling (16/3) multiplied by the number of
rows ofMBs that can start deblocking before the deblocking for the
first row of MBs completes. As explained at the beginning of Case
I, if the ratio of the height to width is larger than 6/5, the degree of



T.-H. Weng, C.-P. Chung / Future Generation Computer Systems 37 (2014) 76–87 81
Fig. 13. Flexible orders on non-critical-path boundaries.
Fig. 14. Proposed deblocking order and the number of boundaries deblocked in
parallel for one MB row.

parallelism is limited by the framewidth. The degree of parallelism
and timing relationship diagram is shown in Fig. 18(b).
Case II: the number of PEs is insufficient to exploit maximal paral-
lelism.

In this case, the frame has to be split into multiple stripes for
deblocking.We assumed that a limited number of PEs are available,
such that only K rows of MBs could be deblocked simultaneously,
where K is inferior to the maximal number of parallelizable MB
rows. Each stripe contains at most K parallelizable MB rows. In this
instance, we first outlined a base approach and then proposed an
improved one.
i. Base approach:

As Fig. 19 shows, the frame is split into stripeswhere each stripe
contained K rows ofMBs. The execution order of the stripes is from
top to bottom.We found that each stripe has a wind-up and wind-
down time, meaning that not all PEs can be busy during these
times. The degree of parallelism and timing diagram is shown in
Fig. 20.
ii. Improved approach:

In the base approach, not all PEs can be busy during thewind-up
and wind-down time in stripe deblocking, as shown in Fig. 21(a).
Notice that the execution of the wind-down of stripe x and the
wind-up of stripe x + 1 could be overlapped to fully utilize the
PEs. Once a PE is available, stripe x + 1 could start deblocking
immediately. Fig. 22 shows how the first MB row of stripe x + 1
could start deblocking at the last two stages of deblocking the first
MB row of stripe x as an example. Using this approach, the wind-
up of stripe x + 1 could start the execution earlier than that in the
base approach, as shown in Fig. 21(b). Moreover, we maintained
the regularity of the amount of required PEs for both stripes.
Fig. 16. Portions of a frame during the wind-up and wind-down of deblocking
order.

Fig. 17. The degree of parallelism and time relationship diagram.

By applying this method, we found the degree of parallelism
and timing shown in Fig. 23, which exhibits a reduction in the idle
time of PEs. In addition, when the number of rows per stripe K does
not divide evenly into the total number of MB rows, the final stripe
has a number of idle PEs, as shown in Fig. 24.

4. Simulation and modeling

The proposed order, subsequently called the Order4 method,
was outlined in the previous section. In this section, the focus is
on determining the degree to which this design can improve the
parallelism and execution time. In this section, we first construct
figures to show the benefits from the stripe overlapping in Order4,
Fig. 15. The number of PEs required for multiple rows of MBs.



82 T.-H. Weng, C.-P. Chung / Future Generation Computer Systems 37 (2014) 76–87
Fig. 18. (a) The degree of parallelism is limited when the frame height is larger than 6/5 times of the frame width. (b) The degree of parallelism and timing relationship
diagram.
Fig. 19. The number of PEs is insufficient to exploit maximal parallelism, frame
split into multiple stripes for deblocking.

Fig. 20. The degree of parallelism and timing diagram when the number of PEs is
insufficient to exploit maximal parallelism.

our previous work (subsequently called the Order16 method), and
the 2D wavefront method. Second, we compare the effects of the
three methods on both the horizontally shaped and the vertically
shaped frames. Third, we illustrate situations where the Order4
outperformed the other twomethodswith an unlimited amount of
PEs and where it failed with a limited amount of PEs. In addition,
we explain that our design also complements the 3D wavefront
method. Moreover, we model the parallelism and time of deblock-
ing a frame for all three methods to help choose a suitable order
based on the shape of a frame and the number of available PEs. Fi-
nally, we estimate the increase of the internal buffer space demand
as well as the memory bandwidth requirements for deblocking.

4.1. Effects of stripe overlapping

To demonstrate the effects of the number of PEs and the
benefits from overlapping the deblocking of adjoining stripes of
MBs, we wrote a simulator to simulate the deblocking orders with
or without overlapping for the 2D wavefront, Order16, and Order4
methods. We normalized the abilities of a PE and the basic time
unit to those used in Section 3 for fair comparison. Fig. 25(a)–(c)
show the effect of stripe overlapping on the total execution time
for each method for a 1920 × 1080 frame size.

First, we found that, for all these methods, the total execution
time curves display a step-like pattern. This characteristic origi-
nated from the splitting of frames. When the number of PEs ex-
ceeds a threshold inwhich the number of PEs can be divided evenly
into the total number of MB rows, the total execution time is
greatly reduced, thus forming the curves.

Secondly, the stripe overlapping made the increase of the num-
ber of PEs more beneficial than that without the stripe overlap-
ping because the stripe overlapping could greatly prevent PEs from
idling away during the wind-up and wind-down time of stripes.
In addition, the 2D wavefront method gained the greatest benefit
from stripe overlapping among the three methods because of long
wind-up and wind-down times.
Fig. 21. (a) The degree of parallelism and timing relationship between stripe x and stripe x + 1 before overlapping. (b) The degree of parallelism and timing relationship
between stripe x and stripe x + 1 after overlapping.



T.-H. Weng, C.-P. Chung / Future Generation Computer Systems 37 (2014) 76–87 83
Fig. 22. PE assignment for the first MB row of both stripe x and x + 1.

Fig. 23. Time reduction of improved approach.

Fig. 24. The degree of parallelism and timing relationship when the number of
rows per stripe K does not divide evenly into the total number of MB rows.

4.2. Effects of different orders

To further compare the Order4 method with the Order16 and
the 2D wavefront methods, Fig. 26 shows a comparison of the
execution time and number of PEs required of all three methods
with stripe overlapping for both a horizontally shaped frame
(1920 × 1080) and a vertically shaped frame (1080 × 1920).

We observed that, for all the three methods, using a large num-
ber of PEs decreased the time to deblock a frame until themaximal
parallelism of eachmethodwas exploited.Whereas the speedup of
the 2D wavefront method stopped at 240 PEs for the horizontally
shaped frame and at 136 PEs for the vertically shaped frame, the
speedup of the Order16 method kept improving until 272 PEs for
the horizontally shaped frame and 436 PEs for the vertical frame.
Conversely, the Order4 method kept improving until 363 PEs for
the horizontally shaped frame and 438 PEs for the vertically shaped
frame. Fig. 27 shows the comparison among these three methods
with an adequate number of PEs for both (a) horizontally and (b)
vertically shaped frames. The Order4 method obtained the greatest
benefits of the three methods because of its shorter wind-up and
wind-down time requirements, especially for the vertically shaped
frame.

However, the time reduction of the 2D wavefront and Order16
methods was superior when the amount of PEs was significantly
less than the maximal parallelism. Fig. 28 shows the comparison
of both the 2D wavefront and Order4 methods with deblocking
overlapping for a 1920 × 1080 frame using 70 PEs. This is an
example of the Order4 method displaying a highermaximal degree
of parallelism but failing to obtain a superior time reduction.When
a frame was divided into stripes, the last stripe of the frame might
have been small; however, it still had a long delay. This delay could
be covered when more than 74 PEs were available.

Last, the Order16 and Order4 methods are as complementary
with the 3Dwavefront method as the 2Dwavefront method is. Be-
cause the deblocking filtering has no inter-frame data dependen-
cies, we assert that our approach complemented the 3Dwavefront
method.

4.3. Modeling

In this section, we model the maximal parallelism being ex-
ploited, the wind-up and wind-down time, and the total execu-
tion time using algebraic equations. Although the Order4 method
gained the greatest time reduction among the threemethodswhen
using unlimited PEs, it was less adequate than the 2D wavefront
and Order16 methods when the amount of PEs was limited. Using
these equations, we find the most suitable method based on the
shape of the frame and the amount of available PEs.

Let

MH = the (given) number of rows of MBs in a frame;
MW = the (given) number of columns of MBs in a frame;
N = the (given) number of available PEs;
TMB= time required to process one MB (changes with methods);
Tdr = time delay between processes in the next row of MBs
(changes with methods);
Prow = average number of required PEs to process one row of MBs
without prolonging the critical paths (changes with methods);
α = the slope of average progress on a frame = TMB/Tdr;
β = the time taken to reach the maximal parallelism in one row of
MBs (changes with methods);
γ = the time after reaching the maximal parallelism in one row of
MBs (changes with methods).

Then,

RF = the maximal number of rows of MBs that can be
deblocked in parallel

= Min(MH , ⌈α × MW ⌉) (1)

RP = the maximal number of rows of MBs
that can be deblocked in parallel using N PEs

= Min

RF ,


N

Prow


(2)

Rl_stripe = the number of rows of MBs in the
last stripe (if striped)

=


RF mod RP , if RF mod RP ≠ 0
RP , otherwise (3)

P = the maximal parallelism
= ⌈RP × Prow⌉ (4)

Wind-up time TWind-up

= the time taken to reach the RP -th MB row + the time taken
to reach the maximal parallelism in that MB row
= Tdr × (RP − 1) + β (5)

Wind-down time TWind-down

=


Time after finishing the last RP th row of MBs.,

if PEs are sufficient
Time after finishing 1st row of MBs in last stripe.,

if limited PEs

=


Tdr × (Rp − 1) + X,

if N ≥ ⌈Prow × RF⌉

Tdr × (# of rows in last stripe-1) + Y ,

if N < ⌈Prow × RF⌉



84 T.-H. Weng, C.-P. Chung / Future Generation Computer Systems 37 (2014) 76–87
Fig. 25. Overlapping compared with non-overlapping in time for deblocking and number of PEs when frame size is 1920 × 1080. The time unit is the time required for
deblocking a four-pixel-long boundary.
Fig. 26. Comparison amongOrder4 , Order16 , and 2Dwavefrontmethods in time for deblocking and number of PEswhen frame sizes are (a) 1920×1080 and (b) 1080×1920.
The time unit is the time required for deblocking a four-pixel-long boundary.
Fig. 27. Comparison among Order4 , Order16 , and 2D wavefront methods in degree of parallelism and time for deblocking when frame sizes are (a) 1920 × 1080 and
(b) 1080 × 1920.



T.-H. Weng, C.-P. Chung / Future Generation Computer Systems 37 (2014) 76–87 85
Fig. 28. Proposed method compared with the 2D wavefront method in degree of
parallelism and time for deblocking when frame sizes are 1920 × 1080 and using
70 PEs.

=



Tdr × (Rp − 1) + γ ,

if N ≥ ⌈Prow × RF⌉

Tdr × (Rp − 1) + γ ,

if N < ⌈Prow × RF⌉ and Rl_stripe = RF

Tdr × ((MH mod Rp) − 1) + γ ,

if N < ⌈Prow × RF⌉ and Rl_stripe ≠ RF

=


Tdr × (Rp − 1) + γ ,

if N ≥ ⌈Prow × RF⌉ or Rl_stripe = RF

Tdr × ((MH mod Rp) − 1) + γ , otherwise
(6)

where X is the time after the maximal parallelism in the last RP th row
of MBs and Y is the time after the maximal parallelism in the first row
of MBs in last stripe; both are equal to γ .

Total Execution TimeTExec

=



the time taken before the last row of MBs starts
+ the time taken to finish the last row of MBs,
if PEs are sufficient

(the time to finish one row of MBs)
× (the number of pieces)
+wind-down time of last stripe,
if limited PEs

=



TMB × MW + Tdr × (MH − 1) + γ ,

if N ≥ ⌈Prow × RF⌉

TMB × MW ×


MH

RP


+ Tdr × (Rp − 1) + γ ,

if N < ⌈Prow × RF⌉ and Rl_stripe = RF

TMB × MW ×


MH

RP


+ Tdr × ((MH mod RP) − 1) + γ ,

if N < ⌈Prow × RF⌉ and Rl_stripe ≠ RF .

(7)

All these equations can be applied to the Order4,Order16, and
2D wavefront methods using appropriate coefficients. The coeffi-
cients that change with these methods are TMB, Tdr, Prow, β , and
γ . The sets of coefficients for each method are shown in Table 1,
where the time unit is the time required for deblocking a four-
pixel-long boundary.

4.4. Internal buffer space demand increase

Applying the proposed order to the existing decoder increases
the internal buffer. For a decoding method with an identical par-
allelism at every stage of decoding, the temporal results could be
directly bypassed into the following stages. The sizes of the internal
buffers between the stages were minimized in this case.

In the video decoding pipeline, throughputs of different stages
should be the same in a long run. However, speed fluctuation be-
tween adjoining stages necessitates the use of an internal buffer.
Fig. 29. The necessitated internal buffer in the H.264 decoding process.

Table 1
Coefficients of methods.

TMB Tdr Prow β γ

2D wavefront 8 16 4 0 0
Order16 8 5 4 0 0
Order4 6 5 16/3 2 2

Where the time unit is normalized to the time required for deblocking a four-pixel-
long boundary.

This happens to be the case ifwe replace the 2Dwavefront deblock-
ing algorithm and plain implementation with our scheme. Fig. 29
shows the block diagram when the Order16 or Order4 is used. Be-
cause theparallelismsof all the stages involved in the 2Dwavefront
method are the same, we joined all the processes occurring before
the deblocking stage to simplify Fig. 29. To determine the buffer
size, we show the snapshot of when our scheme begins exploiting
maximal parallelism. At this instant, the stage before the deblock-
ing stage is at its full speed as always, and the deblocking stage us-
ing the Order4 or Order16 has just caught up. This is then the time
the maximal amount of decoded information needs to be buffered.
Fig. 30(a) shows the portion of a frame that has been decoded at
this instant, Fig. 30(b) shows the portion of a frame that has been
deblocked, and Fig. 30(c) shows the portion of decoded frame that
should be preserved. Note that this buffering is inevitable, since
these two adjoining stages process the frame with different pat-
terns.

Fig. 31 shows portions of decoded frame that should be pre-
served in the internal buffer when the shape of the frame varies.

In this section, we provide general equations to calculate the
required size of the internal buffer. Let α1 and α2 be the slopes of
the average progress on a frame of two adjoining decoding stages,
and assume that α1 is less than α2 without loss of generality.

Moreover, let

bp = the number of bytes that represent a pixel,
which is 1.5 in the YUV420 format.

Then,

Cp = the maximal number of columns of MBs
that previous stages can decode in parallel

= Min

MW ,


Rp

α1


(8)

The maximal number of MBs should be kept
in the internal buffer Mbuffered

= Rp × Cp −
R2
p

2α2
−

α1 × C2
p

2
(9)

The internal buffer size between these two stages SizeIB
= Bp × 16 × 16 × Mbuffered

= 384 × Mbuffered (bytes). (10)
Though these equations are made for replacing the deblocking

stage of the 2D wavefront method with Order4 or Order16, all
equations should be applicable to the internal buffers between any
two adjoining video decoding stages. To show realistic numbers,
we provide Table 2, which shows the required size of the internal
buffer for bothOrder16 andOrder4 when the frame sizes are 1920×

1080 and 1080 × 1920.



86 T.-H. Weng, C.-P. Chung / Future Generation Computer Systems 37 (2014) 76–87
Fig. 30. (a) The portion of a frame that has been decoded, (b) the portion of a frame that has been deblocked, and (c) the portion of decoded frame that should be preserved
in the internal buffer.
Fig. 31. Portions of decoded frame that should be kept in the internal buffer for different shapes of frames.
Table 2
Internal buffer size.

Method Frame size
1920 × 1080 1080 × 1920

Order16 1,196,160 305,184
Order4 1,011,200 258,944

Where the size is in number of bytes.

4.5. Memory bandwidth requirements

In this section, we discuss the memory bandwidth require-
ments for accessing the internal buffer and the decode picture
buffer (DPB). First, the internal buffer shown in Fig. 29 is used to
store the temporal results for the deblocking processes, in which,
conventionally, every pixel is read and written four times. Taking
a 1920 × 1080 24 fps H.264 coded video as an example, the mem-
ory bandwidth requirement for a read or write operation on every
pixel could be calculated as follows:
Trw = Memory bandwidth per read/write

operation on every pixel
= bp × (number of pixels in a frame)

× (number of frames in one second)
= 1.5 × 1920 × 1080 × 24 = 71.2 MB/s. (11)

The memory bandwidth requirement for the internal buffer is
characterized by the number of reads and writes occurring in this
buffer.Whenusing the internal buffer to store the temporal results,
four reads and three writes occur on every pixel in the internal
buffer. Consequently, the requiredmemory bandwidth of the inter
buffer was determined as follows:
Memory bandwidth for reads = 4 × Trw = 284.8 MB/s. (12)
Memory bandwidth for writes = 3 × Trw = 213.6 MB/s. (13)

Because only one write (to write the final result) on every pixel
occurred in the DPB, the memory bandwidth requirement equaled
Trw , which is 71.2 MB/s in this example.

The memory bandwidth requirements for the internal buffer
were considerably higher than those of the DPB. This issue could
be alleviated dramatically if all the temporal results are bypassed
between the PEs. The need for memory access was reduced to
only the initial read of each pixel from the internal buffer and the
remaining reads and writes were operated by bypassing between
the PEs. Because of the bypassing process, the memory bandwidth
requirements are 71.2 MB/s both for reading from the internal
buffer and for writing to the DPB.

5. Conclusion

In examining the deblocking algorithm at finer granularity, ad-
ditional parallelism can be exploited for speedup or power-saving
purposes. To speed up, for 1920 × 1080- and 1080 × 1920-pixel
frames and given an unlimited number of PEs, our design obtains
speedups of 1.92 and 2.44, respectively, compared with the 2D
wavefrontmethod, and 1.25 and 1.13, respectively, comparedwith
Order16.

Two digital video codec trends are larger frame sizes and better
coding compression rates. Hence the role of deblocking will be-
come more crucial. Our method can take advantage of more hard-
ware resources. In addition, as the frame size grows, our method
requires only extra time that is proportional to the square root of
the frame size increasewhen the aspect ratio of frames fixed. These
features are very desirable in data-intensive computing.

Above is a significant step towards how speedup and energy ef-
ficiency can be achieved in pervasive data-intensive computing for
multimedia processing. Two future directions will be attempted:
One, whether there are opportunities in other process steps in
H.264, and howwe can take advantage of these opportunities. And
two, if these opportunities and techniques can be extended to run
on distributed systems, asmany computing resources exist around
us in this form.

Acknowledgment

This work is supported in part by the National Science Council
of the Republic of China, Taiwan under Grant NSC 98-2221-E-009-
073-MY3.

References

[1] X. Liu, L.T. Yang, K. Sohn, High-speed inter-view frame mode decision
procedure for multi-view video coding, Future Generation Computer Systems
28 (2012) 947–956.

[2] P. List, A. Joch, J. Lainema, G. Bjontegaard, M. Karczewicz, Adaptive deblocking
filter, IEEE Transactions on Circuits and Systems for Video Technology 13
(2003) 614–619.

http://refhub.elsevier.com/S0167-739X(13)00236-7/sbref1
http://refhub.elsevier.com/S0167-739X(13)00236-7/sbref2


T.-H. Weng, C.-P. Chung / Future Generation Computer Systems 37 (2014) 76–87 87
[3] T.-H. Weng, Y.-T. Wang, C.-P. Chung, Exploiting parallelism in the H.264
deblocking filter by operation reordering, in: Proceedings of the 11th Inter-
national Conference on Algorithms and Architectures for Parallel Processing—
Volume Part I, Springer-Verlag, Melbourne, Australia, 2011, pp. 80–92.

[4] B. Hyunki, S. Kue-Hwan, K. Yun-il, B. Sehyun, H. Najeong, S. Hyo Jung, Analysis
and parallelization of H.264 decoder on cell broadband engine architecture,
in: 2007 IEEE International Symposium on Signal Processing and Information
Technology, 2007, pp. 791–795.

[5] K. Nishihara, A. Hatabu, T. Moriyoshi, Parallelization of H.264 video decoder
for embedded multicore processor, in: 2008 IEEE International Conference on
Multimedia and Expo, 2008, pp. 329–332.

[6] C. To-Wei, H. Yu-Wen, C. Tung-Chien, C. Yu-Han, T. Chuan-Yung, C. Liang-Gee,
Architecture design of H.264/AVC decoderwith hybrid task pipelining for high
definition videos, in: IEEE International Symposium on Circuits and Systems,
2005, Vol. 2933, ISCAS 2005, 2005, pp. 2931–2934.

[7] C. Yen-Kuang, X. Tian, G. Steven, M. Girkar, Towards efficient multi-level
threading of H.264 encoder on Intel hyper-threading architectures, in:
18th International Parallel and Distributed Processing Symposium, 2004.
Proceedings, 2004, p. 63.

[8] K. Yun-il, K. Jong-Tae, B. Sehyun, B. Hyunki, S. Hyo Jung, H.264/AVC decoder
parallelization and optimization on asymetric multicore platform using
dynamic loadbalancing, in: 2008 IEEE International Conference onMultimedia
and Expo, 2008, pp. 1001–1004.

[9] M. Hübner, in: J. Becker (Ed.), Multiprocessor System-on-Chip, 2011.
[10] S. Borkar, A.A. Chien, The future of microprocessors, Communications of the

ACM 54 (2011) 67–77.
[11] E.B.V.D. Tol, E.G.T. Jaspers, R.H. Gelderblom, Mapping of H.264 decoding on a

multiprocessor architecture, 2003, pp. 707–718.
[12] K. Schöffmann, M. Fauster, O. Lampl, L. Böszörmenyi, An evaluation of

parallelization concepts for baseline-profile compliant H.264/AVC decoders,
in: A.-M. Kermarrec, L. Bougé, T. Priol (Eds.), Euro-Par 2007 Parallel Processing,
Springer, Berlin, Heidelberg, 2007, pp. 782–791.

[13] S. Sun, D.Wang, S. Chen, A highly efficient parallel algorithm for H.264 encoder
based on macro-block region partition, in: R. Perrott, B. Chapman, J. Subhlok,
R. deMello, L. Yang (Eds.), High Performance Computing and Communications,
Springer, Berlin, Heidelberg, 2007, pp. 577–585.

[14] M. Cor, A. Arnaldo, A. Mauricio, J. Ben, R. Alex, Parallel scalability of H.264,
2008.

[15] F.H. Seitner, R.M. Schreier, M. Bleyer, M. Gelautz, Evaluation of data-
parallel splitting approaches for H.264 decoding, in: Proceedings of the 6th
International Conference on Advances in Mobile Computing and Multimedia,
ACM, Linz, Austria, 2008, pp. 40–49.

[16] A. Azevedo, C. Meenderinck, B. Juurlink, A. Terechko, J. Hoogerbrugge,
M. Alvarez, A. Ramirez, Parallel H.264 decoding on an embedded multicore
processor, in: A. Seznec, J. Emer, M. O’Boyle, M. Martonosi, T. Ungerer (Eds.),
High Performance Embedded Architectures and Compilers, Springer, Berlin,
Heidelberg, 2009, pp. 404–418.
[17] Y. Cho, S. Kim, J. Lee, H. Shin, Parallelizing the H.264 decoder on the cell BE
architecture, in: Proceedings of the Tenth ACM International Conference on
Embedded Software, ACM, Scottsdale, Arizona, USA, 2010, pp. 49–58.

[18] C.C. Chi, B. Juurlink, A QHD-capable parallel H.264 decoder, in: Proceedings of
the International Conference on Supercomputing, ACM, Tucson, Arizona, USA,
2011, pp. 317–326.

Tsung-His Weng received his B.S. and M.S. degrees in
Computer Science and Information Engineering from the
National Chiao Tung University, Taiwan, in 2003 and 2005,
respectively. He is currently pursuing his Ph.D. degree in
Computer Science at the National Chiao Tung University,
Taiwan. His research interests include computer architec-
tures, parallel processing, and embedded system design.

Chung-Ping Chung received the B.E. degree from the Na-
tional Cheng-Kung University, Tainan, Taiwan, Republic
of China in 1976, and the M.E. and Ph.D. degrees from
the Texas A&M University, Texas, USA in 1981 and 1986,
respectively, all in Electrical Engineering. He was a lec-
turer in electrical engineering at the Texas A&M Univer-
sity while working towards the Ph.D. degree. Since 1986
he has been with the Department of Computer Science at
the National Chiao Tung University (NCTU), Hsinchu, Tai-
wan, ROC, where he is a professor and the associate dean
of the College of Computer Science. From 1998, he was on

leave from the university and joined the Computer and Communications Laborato-
ries, Industrial Technology Research Institute, ROC as the Director of the Advanced
Technology Center, and then the Consultant of the General Director’s Office, until
2002. From 2007 to 2011, he was the director of the Institute of Biomedical Engi-
neering at NCTU. He also served as the Editor-in-Chief in the Information Engineer-
ing Section of the Journal of the Chinese Institute of Engineers (EI, SCI), ROC, in 2000
to 2005, and the editor of the Journal of Information Science and Engineering (SCI)
in 2006 to 2012. He has led the Computer Systems Laboratory in the CS department,
NCTU since 1992, served as the consultant and reviewer for numerous information
and IC companies and government organizations, published over 200 refereed tech-
nical papers, and obtained over 20 patents. His research interests include computer
architecture, parallel processing, embedded system and SoC design, and paralleliz-
ing compilers.

http://refhub.elsevier.com/S0167-739X(13)00236-7/sbref3
http://refhub.elsevier.com/S0167-739X(13)00236-7/sbref9
http://refhub.elsevier.com/S0167-739X(13)00236-7/sbref10
http://refhub.elsevier.com/S0167-739X(13)00236-7/sbref12
http://refhub.elsevier.com/S0167-739X(13)00236-7/sbref13
http://refhub.elsevier.com/S0167-739X(13)00236-7/sbref15
http://refhub.elsevier.com/S0167-739X(13)00236-7/sbref16
http://refhub.elsevier.com/S0167-739X(13)00236-7/sbref17
http://refhub.elsevier.com/S0167-739X(13)00236-7/sbref18

	Exploiting fine-grain parallelism in the H.264 deblocking filter by operation reordering
	Introduction
	Background and related studies
	Background
	Related work

	Design
	H.264 deblocking data dependency tree
	Deblocking order of four-pixel-long boundaries on the critical paths
	Deblocking order of four-pixel-long boundaries on the non-critical paths
	Assignment of processing elements

	Simulation and modeling
	Effects of stripe overlapping
	Effects of different orders
	Modeling
	Internal buffer space demand increase
	Memory bandwidth requirements

	Conclusion
	Acknowledgment
	References


