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Abstract—A new data-driven approach to building a speaking
rate-dependent hierarchical prosodic model (SR-HPM), directly
from a large prosody-unlabeled speech database containing ut-
terances of various speaking rates, to describe the influences of
speaking rate on Mandarin speech prosody is proposed. It is an
extended version of the existing HPM model which contains 12
sub-models to describe various relationships of prosodic-acoustic
features of speech signal, linguistic features of the associated text,
and prosodic tags representing the prosodic structure of speech.
Two main modifications are suggested. One is designing proper
normalization functions from the statistics of the whole database to
compensate the influences of speaking rate on all prosodic-acoustic
features. Another is modifying the HPM training to let its param-
eters be speaking-rate dependent. Experimental results on a large
Mandarin read speech corpus showed that the parameters of the
SR-HPM together with these feature normalization functions in-
terpreted the effects of speaking rate on Mandarin speech prosody
very well. An application of the SR-HPM to design and implement
a speaking rate-controlledMandarin TTS system is demonstrated.
The system can generate natural synthetic speech for any given
speaking rate in awide range of 3.4-6.8 syllables/sec. Two subjective
tests,MOSandpreference test, were conducted to compare the pro-
posed system with the popular HTS system. TheMOS scores of the
proposed system were in the range of 3.58-3.83 for eight different
speaking rates, while they were in 3.09-3.43 for HTS. Besides, the
proposed system had higher preference scores (49.8%-79.6%) than
those (9.8%-30.7%) of HTS. This confirmed the effectiveness of the
speaking rate control method of the proposed TTS system.

Index Terms—Mandarin prosody modeling, speaking rate mod-
eling, speaking rate-controlled TTS.
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I. INTRODUCTION

S PEAKING RATE (SR) is a prosodic feature that influ-
ences many speech phenomena such as syllable duration,

pause duration, prosodic phrasing, occurrence frequency of
pause, word pronunciation, phone contraction, pitch contour
shape, and so on. Exploring the effects of speaking rate on
prosodic/linguistic features [1], [2] are interesting research
issues. [1] investigated the effects of speech rate on discourse
prosody of Chinese speech and concluded that the effects are
nonlinear. [2] explored the effect of speech rate on prosodic
phrasing in Korean speech; and found that accentuated phrase
includes 5 or fewer syllables at normal rate, but can include up
to 7 syllables at fast rate.
Modeling the effects of speaking rate is also an important

research issue in both automatic speech recognition (ASR)
and text-to-speech (TTS). For ASR, the main concern is how
to compensate the speaking rate effect in order to improve
the relatively-low recognition performance of fast or slow
speech [3]–[9]. Methods proposed included speaking rate
normalization of spectral feature [3], [4], use of durational
information [5], modeling of pronunciation variation [6], ad-
justment of mixture weights and transition probabilities [7],
use of parallel rate-specific acoustic models [8], and decoding
strategy adaptation [9]. For TTS, the speaking rate control of
the synthetic speech is needed for making it sound more vividly
to away from the criticism of machine-like sounding [10]–[17]
as well as for being suitable for some special applications, e.g.
fast rate for people with vision disability [18], [19]. Methods
proposed included proportional duration adjustment [11],
modeling of speech rate effects on prosodic features [12]–[14],
model interpolation [10], [15], [19], and phone/syllable dura-
tion modeling [16], [17]. Besides, speaking rate change was
also considered in voice conversion [20].
We find from those previous studies that an unsolved issue

is the lack of a systematic way to build a quantitative model
to account for all major influences of speaking rate on speech
prosody so as to be used in various applications. In this study, we
adopt a new approach to solve the problem based on an existing
prosody labeling and modeling (PLM) algorithm which builds a
sophisticated hierarchical prosodic model (HPM) of Mandarin
speech containing 12 sub-models to describe various relation-
ships of the prosodic-acoustic features of speech signal, the lin-
guistic features of the associated text, and the prosodic tags
representing a 4-layer prosody structure of the utterance [21].
The current speaking rate modeling approach takes two strate-
gies to modify the PLM algorithm in order to automatically
generate a speaking rate-dependent HPM (SR-HPM) from a
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Fig. 1. The hierarchical structure of Mandarin prosody used in this study [21].

large prosody-unlabeled speech database containing utterances
of various speaking rates. One is taking the speaking rate as a
continuous independent variable to design proper feature nor-
malization functions from the statistics of the whole database in
order to normalize the prosodic-acoustic features for compen-
sating the influences of speaking rate in 7 prosodic- acoustic
feature-related sub-models of the SR-HPM. Another is mod-
ifying the training procedure of the PLM algorithm to let the
parameters of 3 other sub-models be speaking rate dependent.
The approach is in contrast to our previous study of realizing
a speaking rate-controlled TTS system via model interpolation
using four HPM models trained from four parallel speech cor-
pora of a female speaker with fast, normal, medium and slow
speaking rates [10]. The current study builds a single sophis-
ticated SR-HPM to more accurately describe the influences of
speaking rate on Mandarin speech prosody from an aggregation
of the same four parallel speech corpora. Using the SR-HPM, a
better speaking rate-controlled TTS system can be built.
Several advantages of the proposed approach can be found.

First, the influences of speaking rate on Mandarin speech
prosody can be automatically learned from a large database
without human’s prosody labeling. Second, the effects of
speaking rate on many important prosodic phenomena, such
as prosodic-acoustic feature variations, prosodic phrasing and
occurrence frequencies of breaks, can be directly investigated
from the SR-HPM model. Third, since speaking rate becomes
a continuous independent variable of the SR-HPM model, it is
easy to consider the effect of speaking rate in some applications,
such as ASR and TTS, via using the SR-HPM. In this study, a
speaking rate-controlled Mandarin TTS system is realized to
demonstrate such an application.
The paper is organized as follows. Section II gives a brief

review of the existing HPM model and the PLM algorithm pro-
posed previously. Section III presents the proposed speaking
rate modeling approach to generate the SR-HPM model in de-
tail. Experimental results of the speaking rate modeling are also
discussed. An application of the SR-HPM to design and im-
plement a speaking rate-controlled Mandarin TTS system is
demonstrated in Section IV. Some conclusions are given in the
last section.

II. REVIEW OF THE EXISTING HPM MODEL

The HPM [21] is a statistical prosodic model designed to
describe various relationships of prosodic-acoustic features ,
tags of prosody structure , and linguistic features . Three
types of prosodic-acoustic features are modeled, including
syllable-based features , syllable juncture-based features
, and inter-syllable differential prosodic-acoustic features
. Here, includes syllable pitch contour feature vector

which contains four coefficients
of a 3-rd order orthogonal polynomial expansion [22], syllable
duration , and syllable energy level of the -th syllable;

includes pause duration and energy-dip level of the
syllable juncture between the -th and ( )-th syllables (re-
ferred to as juncture ); and includes a normalized pitch-level
jump and two normalized duration lengthening factors,
and , across juncture . So, the complete prosodic-acoustic
feature sequence is ; where ,

and represent sequences of
the above prosodic-acoustic features.
The prosody structure considered in the HPM is a four-layer

prosody hierarchy shown in Fig. 1. It is a modified version
of the hierarchical prosodic phrase grouping (HPG) model
proposed by Tseng [23]. It is composed of four types of layered
prosodic constituents: syllable (SYL), prosodic word (PW),
prosodic phrase (PPh), and breath/prosodic phrase group
(BG/PG). The prosody hierarchy is represented in terms of
two types of prosody tags : the break type
of syllable juncture and the prosodic state of syllable. As
shown in Fig. 1, the four prosodic constituents are delimited by
seven break types denoted as , , - , - , - , ,
and [21]. Here, and are non-breaks representing
the reduced and normal syllable boundaries within a PW;
- , - and - are breaks representing PW boundaries

with F0 reset, short pause and pre-boundary syllable duration
lengthening, respectively; is perceived as a clear pause
to represent PPh boundary; and is defined for a breathing
pause or a complete speech paragraph end. is used to specify
the prosodic-acoustic feature patterns of prosodic constituents.
In [21], an analysis was performed to illustrate the pitch pat-
terns of PW, PPh, and BG/PG using the affecting pattern (AP)
sequences of pitch prosodic states. Affecting pattern is a scalar
or vector representing the influential value or pattern from a
specific affecting factor on a prosodic-acoustic feature. Three
types of prosodic states, , and , are used for syllable
pitch contour, duration and energy level, respectively. Thus,
the complete prosodic tag sequence is , where

and are sequences of these prosodic
tags defined above.
The linguistic features involved in the HPM are classified

into two classes. One is composed of low-level syllable-related
features including lexical tone sequence , base-syllable
sequence , and final type sequence . Another
comprises word-level features including word length sequence

, part-of-speech sequence , and punctuation mark se-
quence . So, .
The HPM model is formulated by

(1)
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where is the syllable prosodic-acoustic model
which describes the influences of the two types of prosodic
tags and the contextual linguistic features on the variations of
syllable F0 contour, duration and energy level;
is the syllable-juncture prosodic-acoustic model describing the
inter-syllable acoustic characteristics specified for different
break type and surrounding linguistic features; is the
prosodic state model describing the variation of prosodic state
conditioned on the neighboring break type; and is
the break-syntax model describing the dependence of break
occurrence frequency on the surrounding linguistic features. In
the above formulation, some assumptions are made to let the
model be simple and tractable. First, the syllable-based features
and the two juncture-based features and are assumed

to be independent so that the influences of prosodic tags and
contextual features on them are separately considered. Second,
the two juncture-based features and are mainly influenced
by the juncture-based tags and contextual feature . So we
let them be independent of the syllable-based tags . Last,
is assumed to be independent of . This is a strategy used in
the prosody modeling. It is motivated by the fact that the use
of a simple prosodic state model has almost no harm
to the labeling of in the prosody modeling because of the
availability of the prosodic-acoustic features . This can let
the prosodic state labeling rely more on the prosodic-acoustic
features. After training, we can refine the prosodic state model
using the prosody-labeled training dataset when it is needed. A
practice was realized in a previous study to extract the syllable
pitch-level patterns of prosodic constituents of PW, PPh, and
BG/PG from the -labeled training dataset [21]. In this study,
we will create an additional model to describe the
relation between and from the -labeled training dataset in
the application to SR-controlled TTS to assist in the prediction
of from and (to be discussed in Section IV).

is further divided into three sub-models for
, and :

(2)

where and . The
sub-model is further elaborated to con-
sider four major affecting factors and formulated as a multi-di-
mensional linear regression problem by

(3)

where is the observed log-F0 contour of syllable ;
is the modeling residue; and are the affecting patterns
(APs) for the affecting factors (AFs) and , respectively;

represents the tone pair ; and are
the forward and backward coarticulation APs contributed from
syllable and syllable , respectively; and is the

global mean of pitch vector. By assuming that is zero-mean
and normally distributed, i.e., , we have

(4)

Similarly, the other two sub-models are formulated by

(5)

(6)

where and represent APs of syllable duration and syl-
lable energy level, respectively; and are their global
means; and and are variances of modeling residues.

, is further divided into five sub-models by

(7)

where is a Gamma distribution for
; and the other four features are all modeled as normal

distributions. Since the space of is large, the CART
algorithm [24] with the node splitting criterion of maximum
likelihood (ML) gain with a minimum sample size constraint is
adopted to concurrently classify the five features for each break
type according to a question set.

is further divided into three sub-models by

(8)

Lastly, the break-syntax model is approximated by

(9)

where is the break type model for juncture . We
also realize by the CART algorithm.
The HPM is trained automatically from a prosody-unlabeled

speech corpus by the PLM algorithm [21] which is a sequen-
tial optimization procedure based on the ML criterion to jointly
label the prosodic tags for all utterances in the training corpus
and estimate the parameters of all 12 prosodic sub-models. It
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Fig. 2. A schematic diagram of the proposed speaking rate modeling approach.

first defines an objective likelihood function formed by these
12 sub-models for all utterances, and then performs a multi-step
iterative procedure to re-label the prosodic tags of each utter-
ance with the goal of maximizing and to update the parame-
ters of all prosodic models sequentially and iteratively.

III. THE SPEAKING RATE MODELING

Fig. 2 shows a schematic diagram of the proposed speaking
rate modelingmethod. For each utterance , the average number
of syllables per second calculated with all pauses being ex-
cluded is taken as a measure of speaking rate and denoted as

. Note that is also known as articulation rate.
The prosodic-acoustic features of the utterance are then nor-
malized by SR-specific normalization functions to compensate
the influences of speaking rate on them. Those SR-specific nor-
malization functions are constructed using the statistics of the
prosodic-acoustic features of all utterances in the whole data-
base. Lastly, a modified version of the PLM algorithm [21] is
employed to construct the SR-HPM and label prosodic tags of
all utterances, simultaneously. The modification of the PLM
algorithm lies in letting some model parameters be dependent
variables of . In the following subsections, we describe
the method in detail.

A. The Speech Database

A speech database containing four parallel speech corpora of
a female professional announcer with fast, normal, medium and
slow speaking rates is used in the speaking rate modeling. The
associated texts of each dataset contain 380 short paragraphs
selected from the Sinica Treebank Version 3.0 [25]. Each para-
graph is composed of several sentences. Originally, the database
contains, in total, 1,520 utterances with 208,768 syllables. After
excluding utterances of bad recording quality, 1,478 utterances
with 203,746 syllables are used in the study. All utterances are
segmented into syllables, and then syllable pitch contours are
found. Fig. 3 shows the histogram (utterance count) of speaking
rate of the database. As shown in the figure, the SRs of utter-
ances in these four speech corpora distribute widely in the range
of 3.4-6.8 syl/sec and overlapped seriously. The database is di-
vided into a training set with 183,795 syllables and a test set
with 19,951 syllables. The training set is used to construct the
SR-specific feature normalization functions and the SR-HPM
model, while the test set is used for outside test.

B. Prosodic-Acoustic Feature Normalization

The prosodic-acoustic feature normalization is performed
in the preprocessing stage of the proposed speaking rate mod-
eling to equalize the influences of different speaking rates on
prosodic-acoustic features so that we can, in the following

Fig. 3. Histogram of utterance’s speaking rate of four databases used in the
study.

Fig. 4. The scatter plots of and utterance-wise mean vs. (left)
and utterance-wise standard deviation vs. (right).

stages, first build an HPM model with parameters in common
for all speaking rates, and then make some parameters of
the HPM be SR-dependent. A popular feature normalization
method is the z-score normalization using the utterance-based
mean and standard deviation of the processing feature. Al-
though the method is simple and effective, it has a problem
in the speaking rate-controlled TTS application to select a
proper denormalization function solely from SR. This can be
justified based on the fact that many utterances in our database
have similar SRs but with quite different means and standard
deviations. As the conventional z-score normalization is ap-
plied, it will be a problem to choose proper mean and standard
deviation (which are unknown) from SR for denormalization.
A possible way to solve the problem is using the local averages
of mean and standard deviation. But this will result in an incon-
sistency between normalization and denormalization. To avoid
the drawback, we take care of each prosodic-acoustic feature
separately by designing smooth normalization functions from
the statistics of the feature of all utterances in the database.
In the following subsections, we discuss the normalizations
of syllable duration, syllable-juncture pause duration, syllable
pitch contour, and syllable energy level in detail.
1) Syllable Duration Normalization: Fig. 4 displays the

scatter plots of syllable duration and utterance-wise mean
vs. (left) and utterance-wise standard deviation vs.

(right). Here, and denote indices for syllable and
utterance. From the left panel, it is observed that scatters
over a larger range for smaller and the utterance-wise
syllable durationmean is inversely proportional to . From
the right panel, we find that the scattering of utterance-wise stan-
dard deviation also depends on with a trend of decreasing
as . We also find that utterance-wise standard deviation
can be quite different even when their are very close. As
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Fig. 5. The scatter plots of and utterance-wise mean vs. (left)
and utterance-wise standard deviation vs. (right).

discussed before, directly using the utterance-wise mean and
standard deviation for syllable duration normalization is hence
improper. In this study, a smooth function of SR, constructed via
fitting the scatter plot of utterance-wise standard deviation with
a second-order polynomial, is employed to generate a smoothed
standard deviation for each utterance to replace the original
one for syllable duration normalization. Since utterance-wise
standard deviation is in a unit of time, it is more suitable to take
the utterance-wise syllable duration mean instead of as
the independent variable in the syllable duration normalization
function. For modeling convenience, we define a new variable

as . The normalization for is then
formulated by

(10)

where

(11)

is the least-square fitted smooth curve for standard deviation;
is the SR-normalized version of syllable duration; and

and are the global mean and standard deviation of syllable
duration of the whole database.
2) Pause Duration Normalization: Syllable-juncture pause

duration can be deviated wildly from very small values for
non-break junctures, to medium values for minor-break junc-
tures, and to very large values for major-break junctures. Since
the influences of speaking rate on pause duration are more se-
rious for both minor and major breaks, statistics of medium and
long pause durations are more emphasized in constructing the
pause duration normalization function. This is realized via cal-
culating the statistics of pause duration using only data with
values larger than 5 ms. The dominating effect of very short
pause durations due to their large total amount labeled for most
intra-word syllable junctures and some inter-word junctures can
therefore be avoided. Note that the normalization operations are
performed on all pause durations. This is to keep the normal-
ized values of small pause durations in the same order as their
original counterparts. Fig. 5 displays the scatter plots of
and utterance-wise pause-duration mean vs. (left) and
utterance-wise standard deviation vs. (right). It can be
found from the figure that both utterance-wise pause-duration
mean and standard deviation scatter to larger-valued ranges as

decreases. Based on the same idea of treating ,
two second-order polynomials are employed to fit the trends of
scatterings of utterance-wise pause-duration mean and standard
deviation by

(12)

Fig. 6. The scatter plots and fitting lines for the utterance-wise mean and stan-
dard deviation of with tone 4.

(13)

The results of curve-fitting are displayed in Fig. 5.
The implementation of pause duration normalization is dis-

cussed as follows. In this study, is modeled as a Gamma
distribution with two parame-
ters and . A Gamma distribution-normal-
ization scheme is adopted to normalize cumulative distribution
function (cdf) of pause duration (of a specified SR) to a refer-
ence one. This is realized by firstly calculating the smoothed

and from and by

(14)

(15)

Then, an SR-specific normalization function is derived and
used to normalize by

(16)
where is the inverse function of ; and are pa-
rameters of the reference Gamma distribution calculated from
global mean and standard deviation.
3) Syllable log-F0 Contour Normalization: The log-F0 con-

tour of syllable in utterance is represented by
with components representing re-

spectively the mean, slope, acceleration and curvature of the
contour [22]. By observing the scatter plots of the utterance-
wise mean and standard deviation of each coefficient vs. ,
we find that it is necessary to compensate the effects of speaking
rate on syllable log-F0 contour for each component of each lex-
ical tone, i.e.,

for and (17)

is the SR-specific normalization functions for the -th com-
ponent of with tone , where and

represent respectively the smoothed mean and
standard deviation; and and are the -th
components of the global mean and standard deviation vectors
for tone . It is noted that the five tones in Mandarin are
high-level, middle-rising, low-dipping, high-falling and un-
stressed low-level tones, and are commonly referred to as tone
1 - tone 5. Two first-order polynomials of are constructed
for and , respectively. Fig. 6
shows an example of the scatter plots and fitted curves for the
mean and standard deviation of (i.e., slope ) with
tone 4 (high-falling tone). It can be seen from these two figures
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that both mean and standard deviation are correlated with
. The slope of tone 4 becomes more negative as

becomes smaller (slower speech). This mainly results from the
linear normalization of the orthogonal expansion operation in
feature extraction [22], and may also result in part from the
more complete pronunciation of tone 4 for slow speech.
4) Syllable Energy Level Normalization: Generally, syllable

energy level is highly correlated with the recording conditions,
e.g. distance between microphone and speaker, the gain of the
microphone set on the recording equipment, etc. By observing
the scatter plots of syllable energy level, we find that they truly
depend on the recording condition of each utterance but not
speaking rate. Therefore, we simply let them be z-score nor-
malized to the global mean and standard deviation on an utter-
ance-by-utterance basis.

C. The Modified PLM Method

After feature normalization, amodified version of the PLMal-
gorithm proposed previously [21] is employed to automatically
train an SR-HPM model and label all utterances with the two
types of prosodic tags: prosodic state and break type. Themodifi-
cation of the PLM algorithmmainly lies in letting some parame-
ters of theHPMbe SR-dependent to account for the influences of
speaking rate. Since the occurrence frequency of break is known
to highly depend on the speaking rate [10], we consider it by let-
ting the break-syntax model, which is a decision tree describing
the relation between the occurrence frequencies of 7 break types
and various contextual linguistic features, be SR-dependent. Be-
sides,wealso let theparameters of twoprosodic state sub-models
for syllable pitch and duration be SR-dependent.
The modified PLM algorithm is formulated in the same

way like the original one [21] as a sequential optimization
problem except that the break-syntax model and the two
prosodic state sub-models in the function becomes SR-de-

pendent. In this study, the SR-dependent break-syntax model
is constructed by two steps. Note that the

subscript additionally added is to specify utterance. In Step 1,
the marginal probability is firstly estimated
from the labeled by the CART as in the original PLM
algorithm [21]. In Step 2, the scatter plot of the occurrence
frequency vs. for each break type in each leaf node of the
decision tree constructed in Step 1 is formed, and then linearly
fitted and normalized to obtain , i.e.,

all break types

(18)

where denotes the index of the leaf node associated with the
linguistic features ; and and are linear regression
coefficients estimated from the histogram of break type in
leaf node . The two SR-dependent prosodic state sub-models
for syllable pitch contour and duration are constructed by a bin-
based normalization scheme, i.e., (see equation (19) shown at
the bottom of the page), where is a type of prosodic
state; and is a bin of the histogram of for the
triplet ( ).
In summary, the following objective likelihood function is

used in the modified PLM (see equation (20) shown at the
bottom of the page), where is the total number of utterances
in the training set.

D. Experimental Results of Speaking Rate Modeling

The performance of the proposed speaking rate modeling
scheme was examined via investigating the modeling er-

all states

(19)

(20)
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TABLE I
MODELING ERROR BY THE PROPOSED, HPM AND Z-SCORE NORMALIZATION
METHODS: (A) VARIANCES FOR SYLLABLE PITCH CONTOUR, DURATION AND
ENERGY LEVEL; (B) RMSE (MS) OF RECONSTRUCTED PAUSE DURATION.
I:INSIDE TEST USING TRAINING SET; O: OUTSIDE TEST USING TEST SET.

rors, the parameters of the trained SR-HPM model and the
prosody labeling results on the speech database discussed
in Subsection III-A. The modified PLM algorithm took 94
iterations to reach a convergence.
Table I lists the modeling errors of syllable pitch contour,

syllable duration, syllable energy level, and syllable-juncture
pause duration for the inside test (I) using training set and the
outside test (O) using test set by the proposed method and
the two comparing methods: the original HPM without SR
normalization (HPM) and the SR-HPM using utterance-based
z-score normalization (z-score). Here local averages of mean
and standard deviation are used for z-score denormalization.
As shown in Table I(A), the variances of modeling residuals
of the three syllable-based prosodic-acoustic features became
very small for both inside and outside tests by the proposed
method as compared with the variances of the original unnor-
malized features (Original). This showed the effectiveness of
the modeling scheme by the proposed SR-HPM method. We
also find from the table that the proposed method outperformed
both the HPM and z-score methods. Without considering the
effect of speaking rate, the modeling efficiencies of the HPM
method were degraded on pitch mean and syllable energy
level, and largely on syllable duration. It is a surprise that
the modeling error of syllable energy level was smaller for
SR-HPM which didn’t consider the effect of SR on its feature
normalization. This might result from the better modeling of
break in the SR-HPM. For the z-score method, the modeling
efficiencies degraded seriously on pitch mean and syllable
duration. This mainly resulted from the inconsistencies on
the feature normalizations and denormalizations. Table I(B)

TABLE II
TRES OF SYLLABLE PITCH CONTOUR, DURATION, AND ENERGY LEVEL

MODELING FOR DIFFERENT AGGREGATION OF APS

displays the RMSEs of the reconstructed pause duration for
different break types. It is noted that the data counts of these
seven break types are different for all cases. It can be found
from Table I(B) that RMSEs were large only for - ,
and for the proposed SR-HPM method. Since the pause
durations of these three break types were inherently longer with
much larger dynamic ranges, these results were reasonable. We
also find from the last column of Table I(B) that the overall
performance of the proposed method was better than these
of the HPM and z-score methods. The performance of HPM
degraded seriously for - , and because of the wide
spreading of the original pause durations without performing
SR-normalization. Actually, many fast-speech utterances in
the normal and fast corpora had no syllable junctures being
labelled as by the HPM method. The z-score method had
large RMSEs for and resulting from the inconsistencies
of the pause duration normalizations and denormalizations.
Based on above discussions, we concluded that the proposed
SR-HPM method outperformed both the conventional HPM
method and the z-score normalization method. In the following,
we analyzed the parameters of the SR-HPM in more detail.
Table II displays the total residual errors (TREs) of the

SR-HPM modeling for the three reconstructed syllable-based
prosodic-acoustic features using different combinations of
affecting patterns (APs) with denormalization. Here, TRE is
defined as the ratio of the variance of the modeling residual
with respect to that of the original unnormalized feature [21],
[23]. Values in the table show the effects of removing the
influences of APs of some affecting factors considered on ,
, and . These results generally agreed with those achieved

in our previous study of building individual HPMs for the four
parallel speech corpora [10].
Fig. 7 displays the denormalized values of means of pause du-

ration at the root nodes of 7 break-type decision trees vs. .
They were averaged values to show the overall trend with re-
spect to speaking rate. Those values could be further refined by
tracing down their corresponding decision trees as the contex-
tual linguistic feature was considered. It is found from the
figure that - , and had significantly large pause du-
rations which increased nonlinearly as decreased. These
values matched well with the results of 4 individually-trained
HPMs (shown as , o and ) [10] and agreed well with our
prior knowledge about break’s pause duration [1], [26].
Fig. 8 displays the basic tone patterns (after denormaliza-

tion) of the SR-HPM for two typical speaking rates of fast
( syl/sec) and slow ( syl/sec) speeches.
This demonstrated how the SR-HPM shrank and expanded the
five tone patterns for fast and slow speeches. As shown in the
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Fig. 7. Average pause durations of 7 break types of SR-HPM vs. . Here, ,
o and denotes the values in the HPMs individually trained from 4 databases.

Fig. 8. Basic tone patterns (after denormalization) of SR-HPM for two
speaking rates of fast ( syl/sec) and slow ( syl/sec) speech.

Fig. 9. Distributions of 7 break types labeled for all non-PM inter-word syllable
junctures. Darker nodes represent higher probabilities.

figure, all five pitch contours of the slow speech were longer
and spanned to larger ranges as compared with their counter-
parts of the fast speech. If we normalized the two pitch contours
of the two speaking rates with the same tone (e.g. tone 4) to the
same length, the one of the fast speech becomes more flat. This
showed that pitch contours of faster speech were pronounced
shorter with similar slope or more flat with similar length. We
note that these patterns would be further refined by aggregating
other APs as more affecting factors were considered.
Fig. 9 shows the distributions of the break types labeled for

all non-PM inter-word syllable junctures. It is found from the
figure that they were largely labeled as non-pause breaks (i.e.,
, , - ) for fast speech; while more short- to long-pause

Fig. 10. Two examples of occurrence probability of break type: (left) - in
a non-PM inter-word node and (right) in a PM node.

Fig. 11. An excerpted break labeling results of text-parallel utterances in dif-
ferent speaking rate (from second raw to bottom, fast to slow). Note that only
pause-related break types, i.e. (\@), and - are displayed.

breaks (i.e., - , , ) occurred for slow speech. This gen-
erally agreed with the prior knowledge that speakers tend to in-
sert more breaks within a sentence as they speak slower [1],
[26]. It is worthy to note that the proper break-type labeling was
ascribed in part to the pause-duration normalization. Without its
contribution, break-type tags will be largely down-graded to the
break types of shorter pause for fast speech and up-graded to the
break types of longer pause for slow speech, respectively.
Fig. 10 displays two examples of the SR dependency of the

parameters of the SR-dependent break-syntax model: one for
short-pauseminor break - in a node associatedwith non-PM
inter-word and another for long-pause major break in a PM
node. The left panel shows that the occurrence probability of
- at the non-PM inter-word juncture increased linearly as SR

increased. This matched well with the results of - labeling
for non-PM inter-word syllable junctures shown in Fig. 9. The
right panel shows that the occurrence probability of at the
PM juncture had high average value of 0.52 and was weakly
correlated with SR. This was resulted from the fact that almost
all major PMs (i.e., period, semicolon, colon, exclamationmark,
questionmark) and some commaswere labeled as regardless
of the speaking rate. These findings agreed well with the prior
knowledge about Mandarin speech prosody [1], [26].
Fig. 11 illustrates an example of break labeling for four par-

allel utterances. It shows that all PMs were labeled as or ,
while more inter-word junctures were labeled as - or as

decreased. This agreed with the trend shown in Fig. 10.
Since the z-score normalization method is not better in

SR-HPM modeling and has the problem of selecting a proper
denormalization function from a given SR for prosody gener-
ation, we therefore do not consider using it in the following
study on SR-controlled Mandarin TTS.
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IV. AN APPLICATION TO SR-CONTROLLED MANDARIN TTS

In this section, we use the SR-HPM to design and implement
a speaking rate-controlled Mandarin TTS system. The study fo-
cuses on the prosody generation to synthesize natural speech for
any input Chinese text with the speaking rate given in the range
of 3.4-6.8 syl/sec.

A. Review of Prosody Generation methods

Many existing methods of prosody generation for TTS were
proposed in the past [27]–[37]. They can be roughly grouped
into two categories: direct modeling methods and multi-com-
ponent representation methods. A direct modeling method
adopts a data-driven approach to construct mapping functions
from input linguistic features to output prosodic-acoustic
features [27]–[34]. Nowadays, the popular direct modeling
approach is to simultaneously construct spectrum, F0 and dura-
tion model by using the HMM-based speech synthesis system
(HTS) [31]–[34]. The HTS adopts the decision tree method for
state duration modeling and HMM with multi-space distribu-
tion for F0 modeling. It is worthy to note that HTS can generate
synthesized speech with various speaking rate via setting the
factor in the HTS engine API [34]. A multi-component repre-
sentation method superimposes several prototypical contours
of multi-level prosodic constituents or syntactic units for each
prosodic-acoustic feature in a hierarchical way [30], [35]–[37].
From above literature review, we claim that the proposed

method is different from those previous studies on two aspects.
First, none of those studies considered the method of speaking
rate control other than the methods of proportional duration ad-
justment and changing the factor in HTS. Even though some
studies [10], [15], [19] adopted the model interpolation method
for speaking rate control, they did not sophisticatedly model the
effects of speaking rate as a continuous input variable in prosody
generation. Second, the construction of prosodic models in the
literatures generally relied on the availability of prosody-labeled
speech corpora which were manually prepared in advance. On
the contrary, the proposed method uses the SR-HPM model
trained automatically from a large unlabeled speech corpus by
the modified PLM algorithm.

B. The Proposed TTS System

Fig. 12 displays a block diagram of the proposed TTS
system. The system consists of three parts: text analysis,
prosody generation, and speech synthesis. The text analyzer
used is a conditional random field-based linguistic processor
specially designed to generate the linguistic features of

from the given raw
input Chinese text. The prosody generation is powered by the
following three blocks: break type prediction, prosodic state
prediction and SR-dependent prosodic feature generation. The
prosodic features generated by the proposed method are the
predicted syllable pitch contour , syllable duration ,
syllable energy-level and syllable-juncture pause dura-
tion . These three blocks are driven by the sub-models of
the SR-HPM trained in Section III, a refined SR-dependent
break-syntax model, and a newly-added prosodic state-syntax
model. The need of the latter two models is explained as fol-

Fig. 12. A block diagram of the proposed speaking rate-controlled Mandarin
TTS system.

lows. In the prosody modeling discussed in Section III, we train
the SR-HPM and label prosodic tags simultaneously from a
prosody unlabeled database with the prosodic-acoustic features
available for use. A strategy of using simpler break-syntax
model and prosodic state model is adopted to let the prosody
labeling rely more on prosodic-acoustic features and less on
these two models. In TTS application, the task is to predict
prosodic tags purely from linguistic features. These two trained
simpler models are not good enough for the task without the
help of prosodic-acoustic features. An additional training phase
is hence engaged to refine the simpler break-syntax model
and train the new prosodic state-syntax model for assisting
in predicting prosodic tags in the TTS application by using
the prosody labeling results of the training set obtained in
Subsection III-D. The speech synthesis is implemented by an
HMM-based speech synthesizer. The synthesized speech is
generated according to the predicted prosodic-acoustic features
by the proposed prosody generation method. The details of the
system are described in the following subsections.
1) Prosody Generation: In most prosody generation

methods, break prediction is used to generate prosodic struc-
ture from given linguistic features. Many break prediction
methods have been proposed in the past, including hierarchical
stochastic model [38], N-gram model [39], classification and
regression tree (CART) [40], [41], Markov model [42], etc. In
this study, we simply apply a refined version of the SR-depen-
dent break-syntax model to the break prediction. Recall that the
SR-dependent break syntax model was trained by a specially
designed training procedure based on the CART algorithm
as illustrated in Subsection III-C. The proposed approach is
advantageous over all previous studies [38]–[42] on properly
modeling the relationship between break type frequencies
and SR. Therefore, we believe that the use of the SR-depen-
dent CART in the current study is novel and promising. The
break type of each syllable juncture is firstly predicted using
the refined break-syntax model and the given speaking rate

by

(21)
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where is the refined break-syntax model
obtained by further growing of the break-syntax model

obtained in Section III. This refinement is mo-
tivated by the need of a sophisticated decision tree to more
accurately predict break types from linguistic features in the
test phase without the help of prosodic-acoustic features. The
refinement is realized via applying the same CART algorithm
described in Sub-section III-C to the existing tree of the original
model with a relaxed split criterion of a smaller
ML gain and a smaller minimum sample size so as to let the
tree grow deeper.
After performing the break prediction, we then execute the

prosodic state prediction by using the three prosodic state
sub-models and the three newly-trained prosodic state-syntax
models , and :

(22)

where is a bin of the histogram of defined in
Eq. (19). Here, the three prosodic state-syntax models are
incorporated into the prosodic state prediction because they
additionally introduce linguistic information to assist in pre-
dicting the three types of prosodic-state tags of pitch, duration
and energy level. In this study, the three new models are
respectively obtained by the CART algorithm [24] using the
prosodic-state labeling results of the training data set. The node
splitting criterion is also the ML gain with a minimum sample
size constraint.
After the predictions of break type and prosodic state,

the SR-dependent prosodic-acoustic feature generation is
performed in two steps: (1) reconstruction of normalized
prosodic-acoustic features, and (2) SR-denormalization of
prosodic-acoustic features. First, the normalized versions of
syllable pitch contour, syllable duration, syllable energy level,
and syllable-juncture pause duration are generated by

(23)

(24)

(25)

(26)

Here , and are generated using the syllable-based
prosodic-acoustic sub-models without the residual terms. Since
most residuals are quite small, their neglects do not cause much
degradation. The pause duration is generated from themean
of the Gamma distribution with parameters and found
from the leaf node of the break-acoustic model specified by the
predicted break type and the contextual features .
The final four prosodic-acoustic features are then obtained by

performing the denormalization operations to , , and

using the inverse functions of the normalization functions
found in the training of the SR-HPM, i.e.,

for (27)

(28)

(29)

(30)

It is noted that and the reconstructed energy
level is not SR-dependent. By incorporating these prosodic fea-
ture estimates with the spectral parameters generated from the
HMM-based speech synthesizer [31], the synthetic speech can
be generated.
2) Speech Synthesis: An HMM-based synthesizer is con-

structed, by using the HTS-2.2 toolkit [34] with the training set
of the normal-rate speech corpus (containing 52,192 syllables),
for providing the spectral features and the state duration infor-
mation to the proposed SR-controlled Mandarin TTS system.
Many literatures in Mandarin speech synthesis have reported
that sub-syllable units of initials and finals were taken as basic
synthesis units ofMandarin HTS systems [43][44]. Those litera-
tures generally agreed that an HMMwith five states, left-to-right
transition and diagonal covariance matrix was suitable for mod-
eling phonetic variation of an initial or a final. Therefore, in this
study, we also adopt this HMM topology to model sub-syllable
synthesis units of 21 initials and 39 finals. Speech signal is con-
verted into a sequence of 25-dimensional mel-generalized cep-
stral (MGC) (including the 0th coefficient) vectors in 5 ms in-
terval. The context-dependent HMM (CD-HMM) training for
speech synthesis [32] is adopted to simultaneously construct
spectral, F0 and state duration models. Note that the F0 model
and the state duration model trained by the HTS toolkit are re-
spectively used in our system to determine the voiced/unvoiced
status of an HMM state and the state durations of a syllable
with duration being predicted by our method. A question set
containing 399 questions for decision tree-based context clus-
tering of HMMs is formed from the following features: (1) left,
current and right initial/final types, (2) contextual break types,
and (3) prosodic state. After training, 511, 2,063 and 9,672 leaf
nodes are obtained for the decision trees of state duration, MGC
and F0, respectively.
The synthesized speech is generated by a modified version of

the HTS engine API of the HTS-2.2 toolkit [34]. Several modi-
fications of the original HTS engine API are performed to make
it operable on the syllable-based prosodic-acoustic features pro-
vided by the proposed prosody generation method. First, du-
rations of HMM states in a syllable or an inter-syllable pause
are determined by maximizing the summed log likelihood of
Gaussian distributions in the state duration model of the HTS
under the constraint that the sum of state durations in a syl-
lable/pause duration equals the predicted syllable duration
or the predicted pause duration . Second, the multi-space
distribution (MSD) F0 model in the HTS provided the informa-
tion about the voiced/unvoiced indicators of the HMM states.
Hence, the length and place of syllable pitch contour can be
simply determined using the information of the estimated state
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TABLE III
CONFUSION MATRIX OF BREAK TYPE PREDICTION FOR THE TEST SET. (UNIT:%)

durations and the voiced/unvoiced indicators. Using the gen-
erated syllable pitch contour parameter , the frame-based
pitch contour of syllable can be reconstructed by orthogonal
expansion [22]. Third, the maximum energy calculated from the
spectral features (i.e., MGC) in a syllable CD-HMM (i.e., an
initial CD-HMM connecting with a final CD-HMM) is scaled
to the predicted energy level before executing the param-
eter generation algorithm [32] so as to make the generated en-
ergy contour smooth and approximate the desired syllable en-
ergy levels.

C. Experimental Results

1) Objective Evaluations: The speaking rate-controlledMan-
darin TTS system was implemented by the training processes
discussed in Subsection IV-B using the SR-specific feature nor-
malization functions, the SR-HPM and the prosody labeling re-
sults of the training set obtained in Subsection III-D. We note
that the labeling of the training set was done automatically by
the modified PLM algorithm. The training set was firstly used to
generate the refined break-syntax model to make its leaf nodes
increase from 42 to 265. The questions used in the CART al-
gorithm [24] for tree growing were contextual linguistic fea-
tures related to POS, PM, word length, and syllable’s initial
type. The total number of questions was 336. Table III shows
the confusion matrix of the break type prediction for the test
set. It can be seen from the table that the predictions for ,

and were good, while all others were fair or poor. The
overall accuracy rate was 71.1%. By more detailed analyses, we
find that was mainly misclassified as and - . Due to
the similarities of acoustic characteristics and functionalities for

and , and for and - , these prediction errors were
not fatal. Other serious errors were to classify - as and
- ; - as and - ; and - as , - and - .

These prediction errors were also not fatal. The real effect of
the break type prediction on the SR-controlled TTS will be fur-
ther evaluated latter via checking the accuracy of generating the
four prosodic-acoustic features of syllable pitch contour, syl-
lable duration, syllable energy level and syllable-juncture pause
duration.
We then trained the three prosodic state-syntax models,

, and , by the CART algorithm.
The question set contained in total 536 questions formed by
contextual linguistic features related to POS, PM, word length,
and syllable’s initial type. The numbers of leaf nodes for the
resulting , and were 273, 244
and 269, respectively. Using these three prosodic state-syntax
models and the prosodic state model of SR-HPM, we can

TABLE IV
RMSES OF FOUR PROSODIC-ACOUSTIC FEATURES

ESTIMATED BY SR-HPM AND HTS

predict the three types of prosodic states for each syllable by
Eq. (22).
Lastly, the four prosodic-acoustic features were firstly con-

structed by Eqs. (23)–(26) using the predicted break types and
prosodic states as well as the linguistic features specified in
these 4 equations, and then denormalized by Eqs. (27)–(30) to
generate the final values. Table IV displays the performances of
prosodic-acoustic feature predictions for the test set. RMSEs of
48.9 ms, 0.18 log-Hz, 3.64 dB, and 88.5 ms were achieved re-
spectively for syllable duration, syllable pitch contour, syllable
energy level, and syllable-juncture pause duration. We also find
from the table that, except the pause duration, these values were
insensitive to the break type prediction error. This mainly re-
sulted from the fact that only few fatal break type prediction
errors, say between non-pause breaks of ( , , - , - )
and long-pause breaks of ( , ), were found from Table III.
By a more detailed analysis, we found that the large pause du-
ration error mainly resulted from the pair-wise confusions of
( , ) and ( - , ). Actually, these two types of confu-
sions were not perceptually annoying.
For performance comparison, an HMM-based Speech

Synthesis System (HTS) [31]–[33] was implemented by the
HTS-2.2 toolkit [34] using the normal speech corpus. The
same 60 sub-syllables, including 21 initials and 39 finals, were
also taken as basic synthesis units and modeled by five-state,
left-to-right transition HMMs. The question set with 1,179
questions for decision tree-based context clustering of HMMs
was formed from the contextual linguistic features related to
POS, PM, lexical word (LW) length, lexical tone, and syllable’s
initial/final type. The trained decision trees for state duration,
MGC and F0 contained respectively 774, 2,835, and 10,171
leaf nodes. The synthesized speech utterances of the baseline
HTS were generated by the HTS engine API in the HTS-2.2
toolkit [34]. Via setting various factors, speaking rates of the
synthesized speech can be controlled.
The results of prosodic-acoustic feature estimation by the

HTS system are also listed in Table IV. It can be found from the
table that the SR-HPM model outperformed the HTS system on
the predictions of syllable duration, syllable pitch contour, and
syllable-juncture pause duration. It is noted that the RMSE of
energy of the HTS system was not calculated because of the use
of global variance.
A typical example of the estimated syllable pitch level

and syllable duration for four speaking rates of fast
( syl/sec), normal ( syl/sec), medium
( syl/sec), and slow ( syl/sec) is shown
in Fig. 13. It can be found from these two figures that most
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TABLE V
THE RESULTS OF MOS TEST

TABLE VI
THE RESULTS OF PREFERENCE TEST

Fig. 13. An example of estimated (a) syllable pitch level and (b) syllable du-
ration for four speaking rates of fast ( syl/sec), normal (

syl/sec), medium ( syl/sec) and slow ( syl/sec).
“CB-predicted” denotes prediction using correct break tags. The four horizontal
lines in (b) are the syllable duration means of original utterances.

estimated values matched well with their original counterparts.
So, the predictions of these two features were reasonably good.
An example of break type prediction for a paragraph with

8 different speaking rates is given in Fig. 14. The figure dis-
plays the break type predictions and their pause duration es-
timates for parts of these 8 synthesized utterances. It can be
found from the figure that not only more short- and long-pause
breaks (i.e., - , , ) were found as SR decreased, but
also their pause durations increased as SR decreased. These re-
sults matched with the prior knowledge about the relationship
between syllable juncture break pause and speaking rate [1],
[26]. To the best of our knowledge, this sophisticated pause gen-
eration is a distinct feature of the proposed system not found in
all other existing systems.
2) Subjective Evaluations: Two subjective tests were con-

ducted to examine the naturalness of the synthesized speech.
One was Mean Opinion Score (MOS) in which listeners rated

Fig. 14. An example of the break type predictions and their pause duration
generations for parts of 8 synthesized utterances.

each utterance on a scale from 1 (bad) to 5 (excellent). An-
other was Preference Test in which two synthetic utterances of
a text, generated by the proposed system and the HTS system,
were rated with 3 scores representing “prefer A”, “prefer B” and
“equal”. 15 subjects were involved in these two tests. They were
all graduate students. 15 short paragraphs with length from 24 to
45 syllables were selected from the outside test data set.1 These
two subjective tests were performed simultaneously in which
each subject was asked to give MOS and preference scores to
the two utterances of each paragraph synthesized by the pro-
posed system and the HTS system. In each test, the two utter-
ances were randomly assigned as A and B. The original speech
of the normal speaking rate was always provided to the sub-
ject for his reference. Table V lists the average MOS scores of
the two methods for eight speaking rates varying from very fast
( syl/sec) to very slow ( syl/sec). As shown
in the table, the MOS scores of the proposed system were in
the range of 3.58-3.83, while they were in 3.09-3.43 for the
HTS system. The -test was used to measure the significance
of the difference between the MOS scores of the two systems.
The difference was significant ( ) for the three cases of

, 5.3 and 4.8 syl/sec; highly significant ( ) for
, 4.3 and 4.0 syl/sec; and extremely significant (

) for and 3.3 syl/sec. Table VI lists the results of
the preference test. It shows that the proposed system had higher

1This paper has supplementary downloadable material available at http://iee-
explore.ieee.org, provided by the authors. The material includes the synthesized
speeches of one test short paragraph, totally 16 WAV-format sound clips, which
show the synthesized speech samples of both proposed and baseline HTS sys-
tems for 8 different speaking rates. This material is 14.46 MB in size.
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preference scores (49.8%-79.6%) than those (9.8%-30.7%) of
the HTS system with highly or extremely significant. These re-
sults confirmed the effectiveness of the speaking rate control
method of the proposed system.

V. CONCLUSIONS

A new approach to modeling the influences of speaking rate
on Mandarin speech prosody has been discussed. It provided a
systematic way to automatically construct a speaking rate-de-
pendent hierarchical prosodic model (SR-HPM) from a large
speech database containing utterances of various speaking
rates without human prosody labeling. Experimental results
confirmed that the SR-HPM interpreted well the effects of
speaking rate on many prosodic phenomena of Mandarin
speech. A speaking rate-controlled Mandarin TTS system
designed based on the SR-HPM has been realized to illustrate
the effectiveness of the speaking rate modeling. The proposed
system has showed to have good prosody generation capability.
A distinct feature of the system to control the occurrence
frequencies of different break types as well as their pause dura-
tions according to the given speaking rate was demonstrated.
By two subjective tests, the system was shown to outperform
the popular HTS method significantly. High performance of
the speaking rate control method of the system has therefore
been confirmed.
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