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a b s t r a c t

In a production scheduling with delivery problem, there are different types of products processed by
a distribution center and then delivered to retailers. Each retailer order might be consisted of different
products. The resolution of this problem is to determine the production sequence, retailers' needs to
heterogeneous fleet of vehicles and the visiting sequence of each vehicle for delivery goods within time
windows. In this article, a nonlinear mathematical model is proposed with minimizing the total cost
which includes transportation cost, vehicle arrangement cost and penalty costs, subjected to satisfy all
demands of each retailer. Following, two adaptive genetic algorithms (AGAs) are designed and tested in
variety of production and delivery scenarios. The computational experiments show that the total cost
gradually decreases as the vehicle type employed in the delivery stage increasing. In addition, more kinds
of vehicle types provided in the delivery stage could reduce fixed vehicle cost and variable routing cost.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Under the current competitive environment, coordination produc-
tion and delivery problems have been widely discussed in many
industries. Consider the distributor stage and the retail stage of two
echelon supply chain; it is an important element of reducing the
retailer's inventory to achieve the goal of just-in-time. The distribution
center has to deliver the products within a limited time to fulfill their
order from retailers in order to be more competitive. This paper
investigates a practical scheduling and delivery problem of a distribu-
tion center (logistics plant). In the distribution center, handling of
a retailer's order is looked as an operation such as picking, packing,
processing, and should be completed on a single workstation. A vari-
ety of products which a retailer required in an order is processed as
a batch and put it into a container for delivery convenience. A com-
pleted batch might be delivered immediately or group delivered with
other batches (retailers' order) to the corresponding retailers depend-
ing on the required performance measures such as minimization of
total cost, minimization of total delivery distance or minimization of
total delivery time deviation. This kind of production scheduling and
delivery scenario between distribution center and retailers are popu-
larly seen in the real world such as two echelon supply chain of 7–11

convenience stores, and McDonald's corporation. Traditional research
has separately and sequentially investigated scheduling and order
delivery without effective coordination. However, making two indivi-
dual but uncoordinated decisions will not produce a global optimal
solution. Furthermore, a good scheduling plan or delivery plan cannot
guarantee a good performance of an integrated plan.

Besides, because the retailer's warehouse capacity is quite limited,
they prefer to receipt merchandise on time to increase turnover of
internal products. Hence, each order requires processing in the distri-
bution center and delivery it to a predetermined location within
a time window. The distribution center is required to pay the penalty
cost for retailer if the vehicle arrival time later or earlier than retailer's
time window. The decision maker has to decide howmany vehicles of
each type to use given a mix of vehicle types differing in capacity and
costs, when the producing orders should start to be picked up and
when they can be assigned to a vehicle so that the orders can be
optimized into a delivery route. The operational decision-making is to
determine the minimum total cost including fixed vehicles cost,
variable routing cost and penalty cost of violation time window.

In the recent years, for the two echelon supply chain problems,
most of articles focused on production and distribution planning such
as Liang (2008) and Safaei et al. (2010), Samaranayake et al. (2011) and
Steinrücke (2011). However, this study is related to research concerned
with production scheduling and delivery (Chang and Lee, 2004; Zhong
et al., 2007; Li and Yuan, 2009; Zdrzalka, 1995; Lu et al., 2008; Wang
and Cheng, 2009; Adulyasak et al., 2014a, 2014b). Chang and Lee
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(2004) studied machine scheduling problems with explicit transpor-
tation considerations. Each finished job has a different size during
delivery. Three scenarios of the problem are discussed. In addition, the
authors provide a proof of NP-hardness and a heuristic with worst-
case analysis. Zhong et al. (2007) dealt with two production environ-
ments, single machine and parallel machines, and delivery to single
customer set. For the first problem, in which jobs are processed on a
single machine and a best possible approximation algorithm with a
worst-case ratio arbitrarily close to 3/2 is proposed. An improved
algorithm with a worst-case ratio 5/3 is proposed where jobs are
processed in two parallel machines case. Lu et al. (2008) developed a
single machine scheduling problem incorporated the routing decisions
of a delivery vehicle which at most c jobs at a shipment. When the
preemption is not allowed, they showed that this problem is strongly
NP-hard for each fixed cZ1. Although the joint production and
delivery scheduling problem has received significant attention, the
previous research has focused on delivering to customers who are
located in a few areas ðno3Þ or where few vehicles are available
to deliver the products to specified customers. It may not occur in
every industrial environment in practice. Therefore, the detai-
led planning between each customer's ðnZ3Þ delivery will be
proposed in this study. In addition, a 5/3-approximation algorithm
was proposed for solving this problem. For the related research in pro-
duction routing problem, Adulyasak et al. (2014a) introduced an
optimization-based adaptive large neighborhood search heuristic for
this category. In the heuristic, binary variables representing setup and
routing decisions are handled by an enumeration scheme and upper-
level search operators, respectively, and continuous variables asso-
ciated with production, inventory, and shipment quantities are set by
solving a network flow subproblem. Adulyasak et al. (2014b) extended
the topic to inventory routing problem and branch-and-cut algorithms
were proposed to solve the different formulations.

Although the production scheduling with delivery problem has
received significant attention, few papers applied to practical pro-
duction environment. The literature on practical issues is discussed
as follows: Naso et al. (2007), Chen et al. (2009), Geismar et al.
(2008), Day et al. (2009), Bredström and Ronnqvist (2008), and Low
et al. (2013). In those papers, Naso et al. (2007) focused their work on
ready-mixed concrete delivery. In their work, a genetic algorithm is
applied to solve the integrated production planning and distribution
routing problem. The strict time-constraints forbid both earliness
and lateness of the supply to be taken into account as well. Chen
et al. (2009) addressed the integrated production and distribution
problem for perishable food products. The demands at retailers are
assumed stochastic and they will be a random variable with
a probability density function. The authors elaborate a solution
algorithm composed of the constrained Nelder–Mead method and
a heuristic is then proposed for solving the vehicle routing with time
windows problem. Low et al. (2013) developed an adaptive genetic
algorithm for solving integrated scheduling and delivery problem.

We first present an integer nonlinear programming model for the
addressed problemwhich is the integration of a production schedul-
ing and vehicle routing problem with a time window constraint.
Following, two evolutionary algorithms are developed for obtaining
better solution for the medium to large scale problems, and nume-
rical results are provided as well.

2. Model formulation

2.1. Description of problem

Considering a two echelon supply chain with one distribution
center and N retailers production scheduling – delivery problem.
In the distribution center, handling of a retailer's order is looked as an
operation such as picking, packing, processing, and should be

completed on a single workstation. A variety of products which
a retailer required in an order is processed as a batch and put it into
a container for delivery convenience. A completed batchmight be deli-
vered immediately or group delivered with other batches (retailers'
order) to the corresponding retailers depending on the required per-
formance measure, minimization of total cost. The total cost includes
transportation cost, vehicle arrangement cost and penalty costs. For a
set of retailers, N¼ f1; 2; 3; :::; ng; each has a geographic location and
a demand, di, iAN, to be satisfied within a time window [ai,bi]. The
heterogeneous fleet is taken into account in the delivery stage as well.

The vehicle capacity Qk determines the size of different type of
vehicles T , T ¼ f1; 2; 3; :::; tg, and corresponds to the fixed acquisition
cost of wk, kAT . We assume that as long as the total physical space of
the products loaded into the vehicle does not exceed Qk, they can be
arranged to fit in the physical space provided by the vehicle. Each trip
starts at the distribution center (location 0), travels to a sequence of
retailer locations, and returns to the distribution center. We assume
that each retailer is visited only once and that all demands must be
satisfied. Other assumptions in formulation are given as follows:

(1) The setup time for producing different batches is negligible.
(2) The vehicle loading time is negligible.
(3) The travel distances of delivery network are symmetric and

satisfy the triangle inequality.
(4) An infinite supply of each vehicle type is available.

2.2. Notations

The notations which are used to develop a mathematical model
of the problem are defined and interpreted as follows:

Decision variables:

Cik makespan of retailer i in the distribution center for vehicle
type k,

Zij a binary decision variable indicating if retailer i is
performed before retailer j in the distribution center,

y0i a binary decision variable indicating if retailer i is
delivered after depot,

xijk a binary decision variable indicating if vehicle type k
travels the arc ði ; jÞ,

ti arrival time at retailer i,
uij the penalty due to the violation the time windows at the

end of each arc ði ; jÞ.

Non-decision variables and parameters:

pi unit processing time of retailer i,
di demand of retailer i,
τij cost of travel from retailer i to j,
si service time at retailer i,
ri flow variables associated with retailer i,
wk fixed acquisition cost of vehicle k,
Pe early delivery penalty per order,
Pl late delivery penalty per order,
N retailer set,
N0 retailer set including depot,
M A very large positive number.

2.3. Mathematical models

The addressed problem with minimization of the total cost
objective can be formulated as follows:

min ∑
kAT

wk ∑
jAN

x0jkþ ∑
kAT

∑
iAN0

∑
jAN0

τijxijkþ ∑
kAT

∑
iAN0

∑
jAN0

uijxijk ð1Þ
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The constraints in the model are presented below in three sets,
each representing one type of system constraint.

Production scheduling constraints:

∑
kAT

Cik�pidiZ0; iAN; ð2Þ

∑
kAT

Cjk�pjdjZ ∑
kAT

CikþMðZij�1Þ; iAN; jAN; ð3Þ

ZijþZji ¼ 1; iAN; jAN ð4Þ

CikrM ∑
jAN0

xijk; iAN; kAT ð5Þ

Flow conservation constraints:

∑
iAN

∑
kAT

xijk ¼ 1; jAN; ð6Þ

∑
jAN0

xijk ¼ ∑
jAN0

xjik; iAN0; kAT ; ð7Þ

r0 ¼ 0; ð8Þ

rj�riZ ðdjþQtÞ ∑
kAT

xijk�Qt ; iAN0; jAN; ð9Þ

rjr ∑
kAT

∑
iAN0

Qkxijk; jAN: ð10Þ

Definitional constraints:

tjZtiþsiþτij�Mð1�xijkÞ; iAN; jAN; kAT ; ð11Þ

tiZy0iþτ0i�Mð1� ∑
kAT

x0ikÞ; iAN; ð12Þ

y0iZ maxð ∑
kAT

Cik; ∑
kAT

CjkÞ�Mð2� ∑
kAT

x0ik� ∑
kAT

xijkÞ; iAN; jAN;

ð13Þ

uij ¼
1
2
ðai�tiÞþ Peþðti�biÞþPl
� �þ1

2
ðaj�tjÞþ Peþðtj�bjÞþ Pl
� �

; iAN; jAN;

ðai�tiÞþ ¼ max f0; ai�tig
ðti�biÞþ ¼ max f0; ti�big ð14Þ

Nonnegative constraints:

CikZ0; iAN; kAT : ð15Þ

tiZ0; iAN; ð16Þ

y0iZ0; iAN; ð17Þ
Eq. (1) minimizes the total cost, the first term gives the total fixed

cost; the next gives the total routing cost; the last gives the penalty
cost. Constraints (2)–(5) are production scheduling constraints.
Constraint (2) ensures that the batch at the distributor stage can
be completed only after it has been processed on the workstation for
the necessary processing time. Constraint (3) imposes that the one
batch (retailer's order) at the distribution stage cannot start before
the previous batch has been picked for different batches. Constraint
(4) defines that a batch can only be performed either before or after
the other for any pair of batch i and j. Constraint (5) guarantees that
each retailer's order has to be processed in distribution center before
delivery.

Constraints (6)–(10) are flow conservation constraints of vehicle
route problems. Constraints (6) enforce that one vehicle arrives at
retailer j exactly once and every route starts and ends at the depot.
Constraint (7) allows that for each retailer i, the entering vehicle must
eventually leave this retailer. Constraints (8)–(10) guarantee that
vehicle capacities are not exceeded. The variable ri gives the total de-
mand that a vehicle has serviced on its route after it reaches retailer i.
Constraints (13)–(15) are definitional constraints. Constraints (11) and
(12) define the arrival time at retailer j. Constraints (13) describes the

relationship between two variables y0i and xijk. Constraints (14)
measures the penalty due to the violation of the time window for
each trip ði; jÞ. Constraints (15)–(17) are nonnegative constraints.

3. Developing evolutionary algorithms

Introduced by Holland (1992), genetic algorithms (GAs) apply
some techniques and procedures inspired by evolutionary biology to
solve complex optimization problems. In this article, each chromo-
some in GAs is encoded by integer with order (or permutation) based
on the priority assignment. An integer coding could keep the chromo-
some simple and reduce the overhead of coding/decoding (see e.g.
Michalewicz, 1996; Ishibuchi et al., 2003; or Iyer and Saxena, 2004).
The retailers are specified by a whole series of genes that have to be
presented. The decoding process is based on the characteristics of the
production scheduling problem with delivery. This article provides
a methodology for route first-cluster second heuristics to ensure the
feasibility of chromosomes and the efficiency of decoding. The
detailed process of the decoding is described in Section 3.1.

The basic structure of GAs is including selection, crossover opera-
tors, mutation operators and its detail process is described in Section
3.2. Crossover occurs only with some probability pc (the crossover
rate). When the solutions are not subjected to crossover, they remain
unmodified. Mutation involves the modification of the value of each
gene of a solutionwith some probability pm (the mutation rate). How-
ever, from the experience of using GAs, it is not hard to discover that
usually a lot of trial-and-errors need to be done to achieve good results
for a particular application. This article provides an efficient scheme to
avoid the computationally expensive from typical GAs. The adaptive
rates of crossover and mutation are adopted in the GAs to realize the
twin goals of maintaining diversity in the population and sustaining
the convergence capacity of the GAs. The proposed adaptive genetic
algorithm (AGA) starts with initial parameter values and dynamically
modifies its parameters set to eliminate time-consuming of the
experiment of setting parameters, is described in Section 3.3.

3.1. Decoding

In this section, we show the decoding process in the genetic
algorithm for a chromosome. For any chromosome s of N retailers,
this algorithm starts with a trip that begins from the central depot,
visits each retailer exactly once, and then returns to the depot. Assu-
ming a chromosome can be written as s(1)–s(2)–s(3)–…–s(N)
where sðiÞ is ith position in the chromosome sorting. The string 0–
s(1)–s(2)–…–s(i)–0–s(iþ1)–s(iþ2)–…–s(j)–0–s(jþ1)–…–s(N)–0
presents a set of feasible sub-trips. The sum of fixed vehicle costs and
variable routing costs between retailer sðiþ1Þ and sðjÞ is denoted by
πði; jÞ for io j. When heterogeneous fleet of vehicles are taken into
account, the vehicle type k is chosen as the cheapest vehicle type
with a capacity Qk not smaller than the load between retailer sðiþ1Þ
and sðjÞ.

In this article, the addressed production scheduling and delivery
problem is looked as a two stage flowshop scheduling problem, and
then solve it by the famous Johnson's algorithm. First, without the
timewindow restriction consideration, the vehicle routing plan for the
retailers are determined (Section 3.1.1) based on the retailers' and fleet
information. Following, sum the required processing time for each
retailer on the same route as the dummy processing time at distribu-
tion center (stage 1) to form a two stage flowshop scheduling
problem, and then solved by the Johnson's algorithm (Section 3.1.2).
Finally, adjust the obtained solution with the time window restriction
consideration (Section 3.1.3).
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3.1.1. Finding a set of feasible trips from a chromosome
To decode a sequence of a chromosome, we need to decide

number of retailers visited in a vehicle trip and vehicle type used
for the trip. Like in most GAs for vehicle routing problem (VRP),
a chromosome simply presents a sequence of N retailers, without
trip delimiters. This kind of method was put forward by Prins
(2004) and Liu et al. (2009) as the second phase heuristic for
solving a VRP in this article. In normative scenario studies, we
have to decode a chromosome into solution pool obtained many
feasible solution sets δj. For each set δj, many feasible trips δjðkÞ are
generated according to capacity limit of vehicle k. A procedure for
finding a set of feasible trips is described as follows.

A network for the a chromosome s can be presented by an
auxiliary graph H¼ ðX; A; ZÞ. X contains Nþ1 nodes indexed from
0 to N. A contains πði; jÞ if a trip visiting retailers sðiþ1Þ to sðjÞ is
feasible in terms of the capacity limitation of a vehicle. For each status
πði; jÞ, it computes two labels for retailer j¼1, 2,…., N of X:Vj, the cost
of the feasible path from sðiþ1Þ to sðjÞ in H excluding penalty cost,
and Pj, the predecessor of sðjÞ on this trip. In other words, each
retailer jmay be marked multiple group labels, depending onwhether
a feasible trip contain this node, i.e. if πð1; 3Þ and πð2; 3Þ are feasible
route, then sð3Þ would be marked as (V 0

3 ¼ πð1; 3Þ, P0
3 ¼ 1) and

(V ″
3 ¼ πð2; 3Þ, P″

3 ¼ 2). Through the enumeration process, all feasible
sub-sequences δjðkÞ are evaluated and the corresponding cost Vj and
path Pj are updated as well. The pseudo-code as this procedure as
follows.

procedure: Split algorithm
input: H¼ ðX;A; ZÞ
output: VN ; PN

begin
V0’0
for i : ¼ 0 to N do Viþ1’þ1 endfor
for i : ¼ 0 to N do

load’0; j’iþ1; πði; jÞ’0
while jrN and loadrQt do

load’loadþdsðjÞ
if i ¼ j�1 then

πði; jÞ’τ0;sðjÞ þτsðjÞ;0þw0;sðjÞ
elseπði; jÞ’πði; jÞ�τsðj�1Þ;0þτsðj�1Þ;sðjÞ þτsðjÞ;0þw0;sðjÞ
endif
if loadrQt then

Vj’Viþπði; jÞ; Pj’i
j’jþ1

endif
endwhile

endfor
return all feasible set of feasible trips of H

end

Example 1. Considered an integrated scheduling problem with
a distribution center and 5 retailers. There is one operation process
within distribution center and two types of fleet at depot. The required
information for each vehicle is shown in Table 1. The objective is to

minimize the sum of fixed vehicle costs and variable routing costs. The
required information for each retailer is shown in Table 2.

For a chromosome s¼ ð1; 2; 3; 4; 5Þ, an auxiliary graph is pre-
sented as Fig. 1(a). There are 5 retailers and two vehicle types. The
corresponding acyclic graph is constructed in Fig. 1(b). πð2; 4Þ
represents trip (0, 3, 4, 0) with a total cost, i.e. fixed vehicle costs
and variable routing cost, of 80þ40þ60þ300¼480 using vehicle
type 1. Fig. 1(c) and (d) gives two sets of feasible trips with its
corresponding information and the vehicle used for each trip. The first
set has a better performance 1270 to service requirements of each
retailer. The mix of vehicles in the fleet of second set use two larger
vehicles for its feasible set and the performance is 1330.

3.1.2. Minimizing the total cost for a given set of trips
According to the auxiliary graph H ¼ ðX;A; ZÞ for a chromosome s,

we could get all feasible solution set. Applying splitting procedure (in
Section 3.1.1), each trip not only would be calculated its routing costs,
but the lead time, operation time, in the distribution center could be
backward integrated by its corresponding retailers. Additionally, we
use the existing trip as production unit to obtain the optimization
processing sequence in integrated scheduling stage. In order to mini-
mize total cost, the proposed integrated production scheduling and
delivery problem is transformed as a two-stage flowshop system.
Thus, the Johnson's algorithm (Johnson, 1954) is introduced to com-
press the penalty cost. The processing time of δðkÞ at each stage can be
expressed to the operate time Mð1Þ

δðkÞ in the distribution center and
delivery time Mð2Þ

δðkÞ outside the plant. Johnson's algorithm can be
implemented as follows.

Johnson's algorithm. Divide K-trips into two disjoint subsets
S1 and S2, where S1 ¼ fKkjMð2Þ

δðkÞZMð1Þ
δðkÞg and S2 ¼ fKkjMð2Þ

δðkÞoMð1Þ
δðkÞg.

Order the jobs in S1 in nondecreasing order of Mð1Þ
δðkÞ and those jobs

in S2 in nonincreasing order of Mð2Þ
δðkÞ. Sequence jobs in S1 first,

followed by those in S2.
Using the Johnson's algorithm framework, we have to define Mð1Þ

δðkÞ
and Mð2Þ

δðkÞ in our situation. While retailers of a trip δðkÞ are known at
the distribution center stage, the operate time Mð1Þ

δðkÞ is the sum of the
processing times of the demands of each retailer on trip δðkÞ. And
Mð2Þ

δðkÞ is the sum of the variable routing cost and service time of each
retailer on trip δðkÞ.

Example 2. To facilitate the understanding of our decoding
procedure, the same data of Example 1 and two feasible sets by
its individual trips, Fig. 1(c) and (d), is considered. The necessary
information is collated in Table 3. The notations Mð1Þ within the
plant (distribution center) and Mð2Þ for outside the plant are used
throughout the example. After implementation of Johnson's algo-
rithm, the optimal production sequence in the distribution center
B-C-A(2-3-4-5-1) for Fig. 1(c) and A-B(1-2-3-4-5) for Fig. 1(d) are
obtained. The scheduling result (production schedule and delivery
schedule) is summarized and demonstrated in Fig. 2. It is noted
that the number in the parentheses denotes the arrival time, ti, at
retailer i; e.g. the partial schedule in Fig. 2(a) can be interpreted as
the demand orders for retailers 2, 3 and 4 should be processed
first, and delivered to retailer 2, 3, 4 sequentially after completed
the required processing at 480 in distribution center.

Table 1
Fleet information for Example 1.

Vehicle Capacity Cost

1 120 300
2 180 500

Table 2
Retailer information for Example 1.

i pi di si [ai, bi]

1 3 50 10 [300, 400]
2 2 60 10 [300, 400]
3 1 40 10 [400, 500]
4 4 80 10 [700, 800]
5 2 70 10 [700, 800]
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From the result of Fig. 1, it can be observed that the first feasible set
has a better performance regardless of the VRP stage. However, when
the operation sequence and the time window restriction is taken into
consideration, the penalty cost for the retailers in each trip have to be
recalculated based on their corresponding arrival time. For example,
when two penalty costs per order pe and pl are set as 0.5, the arrival
time at retailer 1 is 790 and the penalty cost is equal to 195 in the first
feasible set of trip A, δ1ðAÞ. Compared to the second feasible set of trip
B, δ2ðBÞ, the arrival time at retailer 4 is 830 and the penalty cost is
equal to 15. After recalculation process for each individual retailer in
the trip, these objective values will be amended to 1605 and 1380,
respectively. It can be obviously observed that a decision investigates
production scheduling and orders delivery separately and sequentially
without coordination under the trade-off of three costs can not obtain
the global optimum performance for a production scheduling and
delivery problem. Thus, when time window restriction is taken into
the addressed problem, a revision process for recalculation of the
objective value and a local search procedure for pursuing a better
delivery sequence are introduced and described in the Section 3.1.3.

3.1.3. Enhancing the algorithm
Although a large number of feasible solutions might be generated

and evaluated in the decoding procedure, it is still in a small fraction of
all feasible solutions. Thus, some enhancing procedures are proposed
to examine the potential improvement for a solution generated from
Section 3.1.2. When the penalty cost is not taken into consideration,
the addressed problem can be facilitate solved by applying the
Johnson's algorithm. However, introducing the penalty cost term in
the objective function emphasizes timely delivery and it is consistent
with the just-in-time philosophy. In order to have the better perfor-
mance for the address problem, minimization of total tardiness for the
given set of retailers becomes an important issue. When the time
windows of most retailers are more loosen compared to their corres-
ponding completion time in the first stage of a specific vehicle.
The delay optimization concept is applied to introduce a procedure
(called revision process) for resolving the address problem with time
windows.

When the feasible trips and the operation sequence would be
generated from Sections 3.1.1 and 3.1.2 respectively, the difference
between the arrival time ti for each retailer i and its corresponding
time window ½ai; bi� could be calculated. The variables h�

i and hþ
i

stand for the corrected value of retailer i after or before its corre-
sponding time window respectively, i.e. it is necessary for only one of
the two variables availability. The variable hn

i determine the flexibility
could still be regulated when the adjustment does not violate time
window restriction, i.e. bi�ti� min h�

i . In addition, the binary
variables d�

i and dþ
i determine the arrival time for vehicle of retailer

i after or before its corresponding timewindow. These binary variables
indicate whether h�

i or hþ
i is non-zero respectively. The pseudo-code

of the revision process is described as follows.

Fig. 1. Decoding of a chromosome. (a) Example data, (b) graph, (c) and (d) set of feasible trips.

Table 3
Trip information for Example 2.

(a) δ1ðkÞ (b) δ2ðkÞ

Tripðδ1ðkÞÞ Mð1Þ Mð2Þ Tripðδ2ðkÞÞ Mð1Þ Mð2Þ

A(0, 1, 0) 150 50 A(0, 1, 2, 3, 0) 310 230
B(0, 2, 3, 4, 0) 480 240 B(0, 4, 5, 0) 460 150
C(0, 5, 0) 140 90
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procedure: Revision process
input: δðmÞ
output: f ðδðmÞÞ
begin

dþ
i ’0; d�

i ’0; hþ
i ’0; h�

i ’0; hn

i ’0
for i : ¼ 1 to nδðmÞ do

if tioai then
d�
i ’1; h�

i ’ai�ti
else if ti4bi then

dþ
i ’1; hþ

i ’ti�bi
end if

end for
update min h�

i

while ∑id
�
i 4∑id

þ
i do

for i : ¼ 1 to nδðmÞ do
while airtirbi and tiþ min h�

i 4bi do
hn

i ’bi�ti� min h�
i

end while
end for
if ð∑id

�
i Þmin h�

i 4 ð∑id
þ
i Þmin h�

i þ∑ih
n

i then
for i : ¼ 1 to nδðmÞ do ti’tiþ min hi
end for

end if
end while

return the best scheduling of f ðδðmÞÞ
end

The second enhancing procedure is an adaptation of the 2-opt
algorithm. In decoding process, a mechanism that converts
N retailers into k trips to form a k-job two-stage flowshop
scheduling problem is designed. The processing time for each
job (trip) within each stage has to be estimated. In the production
stage (the first stage), the processing time for a job (trip) can be
easily calculated by sum of the corresponding processing time for
all members (retailers) in the trip. However, a lack of the optimal
service sequences of retailers through a set of feasible trips in the
delivery stage. All exchanges in the feasible solutions are exam-
ined until there is no feasible exchanged that improves upon the
current solution in the second stage.

The pseudo-code of decoding process is formally stated as
follows.

procedure: Decoding process
input: s¼ fsð1Þ;sð1Þ; ::::;sðnÞg
output: f ðsÞ
begin

Split algorithm to find all feasible δj
for k : ¼ 1 to nδj do

Mð1Þ
δjðkÞ’∑iA δjðkÞpi

Mð2Þ
δjðkÞ’∑iA δjðkÞsiþτδjðkÞ

local search: 2-opt

update Mð2Þ
δjðkÞ

Johnson's algorithm to schedule the solution set
Revision process to δj

end for
return f ðsÞ and it's scheduling

end

3.2. Genetic operators

The solving process of each chromosome can be treated as a two-
stage flowshop scheduling after decoding procedure is performed.
Plenty of researchers apply GAs for solving the flow shop scheduling
problems, such as Reeves (1995), Murata et al. (1996) and Cheng and
Chang (2007). The parameters used in the proposed adaptive genetic
algorithms (AGAs) are now presented as follows.

(1) Select a new population
Selection strategy is important in GA search which can guide
the solutions into a better performance direction. One effective
way of determine the candidates for chromosomes is roulette
wheel selection. The purpose of this selection scheme is to
propagate high fitness characteristics in the population and to
eliminate from the population the weaker chromosomes, thus
keeping the search directed toward the optimization of the
object function.

(2) Crossover
The chromosomes in the candidate population go through
crossover and mutation processes to produce offspring for the
next generation. The longest common subsequence (Cormen
et al., 1990) is applied to the mating system. Suppose that A and
B are the individuals chosen for crossover A¼ ð5 1 6 2 3 9 4 7 8Þ

1

3

2 4

5

Trip A
Trip B

1

3

2 4

5

Trip A Trip C

Trip B

B
480

[530]

[600]

[650]

[790] [660]

A
310 

[330]

[380]

[450]

[830]

[870]

770620 770

Fig. 2. Production schedule and delivery schedule of Example 2.
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and B¼ ð1 8 6 3 2 9 4 5 7Þ. First, locate the longest common
subsequence, LCS¼ ð1 6 2 9 4 7Þ, of two candidate individuals.
Then, copy common subsequence positions to each offspring and
make exchanges for the remaining genes according to their
original sequence. The resulting individuals are A0 ¼ ð8 1 6 2
3 9 4 7 5Þ and B0 ¼ ð1 5 6 3 2 9 4 8 7Þ. The advantage of this
mating system is that it will not produce infeasible solutions,
and requires no additional time to adjust the structure of
individuals.

(3) Mutation
After crossover operation, individuals go through a mutation
operation with certain mutation rate. The displacement muta-
tion is implemented in this article. For instance, if the segment
ð3 9 4Þ of individual A0 were chosen to be mutated, this
segment could be randomly selecting an inserting point
for its new placement. Hence, the new string becomes
A″¼ ð8 3 9 4 1 6 2 7 5Þ.

3.3. Design of adaptive pc and pm

When AGA is implemented, it is essential to be able to identify
whether the search is converged prematurely to a local optimum. One
possible mechanism is observing the average population fitness value

f relation to the best value at present f n. f � f n is likely to be less for
a population that has converged to an optimum solution than that for
a population scattered in the solution space. In addition, the value of
pc might depend on the fitness of present solutions, i.e., pc should be
directly affected by f 0 � f n, where f 0 is the better fitness of candidates
to be the crossover. Similarly, the value of pm depends on the fitness
f of offspring. The closer f and f n, the pm should be smaller. The
expressions for pc and pm take the forms

pc ¼ k1ðf 0 � f nÞ=ðf � f nÞ; f 0r f ; ð18Þ

pc ¼ k3; f 04 f ð19Þ
and

pm ¼ k2ðf � f nÞ=ðf � f nÞ; f r f ; ð20Þ

pm ¼ k4; f 4 f ð21Þ
where k1, k2, k3, k4r1:0.

The significance of pc and pm in controlling GA performance has
long been acknowledged in GA search. From the past studies such as
Grefenstette (1986) and Srinivas and Patnaik (1994) have been devo-
ted to identify optimal parameter setting for GAs. Thus, in this article,
we assign k1 and k3 a value of 1.0 for ensuring implementation of
crossover when both parents' fitness values are inferior compared to
the average fitness value. For further control on the crossover rate,
pc decreases as the fitness of the adapter of parents tends to f n. More-
over, as pm increases, the next candidate have more opportunity to
escape the local optimum.When a parent with inferior average fitness
is obtained, it might be completely disruptive and we use a value of
0.5 for k4. We assign a value of 0.5 to k2 because of parent's fitness

value of f should also escape the local region to another highly
diversified manner. The proposed framework of the AGA is shown as
follows.

procedure: Adaptive Genetic algorithm
input: Integrated scheduling problem data set, AGA parameters
output: a near-optimal schedule
begin

t’0
initialize population Pt with integer coding
fitness evalðPtÞ by decoding procedure

while (: termination condition ) do
use genetic operators to create new chromosomes

Nc randomly
fitness evalðNcÞ by decoding procedure
create a set S¼Nc [ Pt

t’tþ1
adopt a strategy to select chromosomes out of S to

form Pt

update pc, pm
end
output a near-optimal schedule;

end

4. Computational results

In this section, three computational experiments were conducted
to test the performance of the AGA for solving the proposed
integrated production scheduling and delivery problem. The first
experiment was performed to compare the result of the proposed
methods with mathematical programming and AGA heuristics.
In this experiment, these methods were be evaluated in the sixteen
problems ðNr5Þ. The second experiment was conducted in order to
evaluate performance of these heuristics for the medium and large
size problem ðNZ20Þ. The last experiment was illustrated the detail
search process and logic of AGA heuristics.

In addition, the initial setup of the algorithms after preliminary
tests is introduced as well. The initial populations were randomly
chosen for each heuristic, each generation had 30 members and the
process was continued through 300 generations. The performance of
each test problem was presented by averaging the experimental
results of 10 replicates. The AGA heuristic with a local search, as the
mentioned before, is called AGA-2opt. The alternative without local
search is named simple adaptive genetic algorithm, SAGA. For each
AGA heuristic, the values for k1, k2, k3 and k4 are set to be 1.0, 0.5,
1.0 and 0.5.

4.1. Testing data sets generation

In this article, some computational experiments were carried
out to observe the searching capabilities of proposed adaptive
genetic algorithms. The algorithms were implemented in Visual
Cþþ and run on a personal computer with an Intel Pentium D
CPU at 3.40 GHz with 1.00GB of memory. The retailers' informa-
tion including locations, demands and service times were directly
adopted from Solomon's problem set (Safaei et al. (2010), data set
contained C, R and RC. The other data were randomly generated, e.
g. the unit processing time of each retailer followed Uð1; 10Þ and
the total pick-up time was obtained by multiplying demands by
the unit processing time. The time window ½ai; bi� for each retailer
i is presented as

ai: Using the same ai from Solomon's problem set
bi: Original biþ group number �50% ∑iANpidi

Where all retailers in each test problem set were divided into
four groups, and each group had a group number should be 1, 2, 3,
or 4. Each retailer in the test problem was randomly assigned into
a group, thus, the time window for each retailer can be defined.
For example, for a retailer i in the first group, the time window
limit bi of the retailer i was defined as the original bi plus 50% of
the total pick-up time and was plus 100% of the total pick-up time
second group when the retailer was assigned into the second
group, and so on.
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4.2. Performance of the proposed AGA heuristics

To perform the feasibility and the adaptability of the proposed
AGA heuristics, an experiment with 16 small size test problems are
evaluated, and the results are summarized in Table 4. It was noted
that the optimal solutions were obtained by running the commer-
cial mathematical programming software Lingo (the mathematical
model is provided in Section 2.3). The results shown in Table 4
revealed that in each case, SAGA and AGA-2opt had the same
searching ability and the efficiency to find the solutions was not
discernible.

Although the mathematical programming model could provide
an accurate optimal solution when the solution space was small,
e.g. the case of four retailers with two vehicles, the influence of the
trace expansion of solution space made the searching efficiency
into unstable. When solving the cases of five retailers with two
vehicles, the optimum solutions were searched over 24 running
hours and could not been solved. Moreover, the accurate solution
was not been found under the commercial software when the
demand point growth over five retailers. From the above experi-
mental results, the proposed heuristics could efficiently solve the
proposed integrated production scheduling and delivery problem
and return a reliable solution. The efficiency of the algorithm
makes it suitable for solving real larger cases.

4.3. Performance comparisons of proposed adaptive genetic
algorithms

In this section, the performance of two proposed AGA heuristics
in a variety of production and delivery environments are evaluated
and compared. The experimental environment is defined as a
retailer/geographical characteristic flexibility scenario ðn=gÞ in which
retailer n can be (20, 50, 80), geographical characteristic g can be
(C, R, RC). Five different test problems for each scenario were
evaluated for each of AGA heuristic and ten replicates runs for each
of test problem. The computational results are summarized in
Table 5. The results shown in Table 5 indicated that AGA-2opt
performs better when number of retailer equals to 50 or 80. SAGA
performs a little better than AGA-2opt with n equals to 20 but
insignificance.

For the computational efficiency, the CPU time is usually taken as
an efficiency index. With increasing problem size, the experimental
results from Table 5 indicated that SAGA has lower CPU time than
AGA-2opt performed. It is obvious that the local search took a lot
of extra computation time, as a result of experiencing a deterioration
of efficiency that both algorithms were efficiency deterioration in the
group R especially in AGA-2opt. It is conjectured that variability of

Table 4
Comparison of three search heuristics.

N K Lingo SAGA AGA-2opt

Object
function

CPU time
(s)

Object
function

CPU time
(s)

Object
function

CPU
time(s)

4 2 115.5 93 111.5 0.031 111.5 0.015
2 122.5 68 122.5 0.031 122.5 0.015
2 198.5 40 198.5 0.015 198.5 0.025
2 327.5 52 327.5 0.015 327.5 0.016
2 558.0 34 558.0 0.015 558.0 0.020

4 3 103.0 88 103.0 0.015 103.0 0.023
3 97.0 235 97.0 0.015 97.0 0.015
3 123.5 440 123.5 0.015 123.5 0.015
3 118.5 793 118.5 0.015 118.5 0.015
3 159.5 27,406 159.5 0.015 159.5 0.016

5 2 172.0 13,647 172.0 0.031 172.0 0.031
2 312.5 1407 312.5 0.031 312.5 0.031
2 – – 119.0 0.031 122.0 0.031
2 – – 462.0 0.046 463.0 0.029
2 – – 147.0 0.031 147.0 0.034
2 – – 300.0 0.026 300.0 0.031

Table 5
Performance comparisons of two search methods.

n g Ex SAGA AGA-2opt

Object function
CPU
time(s)

Object function
CPU
time(s)

Average
Standard
deviation

Average
Standard
deviation

20

C 1 1163.1 35.40 1.3 1160.5 46.24 2.9
2 1148.8 30.90 1.2 1155.5 39.45 2.6
3 1152.6 58.37 1.2 1168.1 40.98 3.1
4 1159.7 44.28 1.3 1161.3 34.09 2.7
5 1140.6 43.02 1.2 1150.4 36.49 2.9

R 1 1272.6 44.24 2.3 1261.9 43.94 5.8
2 1213.1 49.32 2.2 1203.7 40.22 4.7
3 1182.3 47.92 2.6 1174.4 64.48 6.7
4 1226.2 48.71 2.6 1211.1 55.22 5.8
5 1455.5 51.31 2.5 1438.5 61.37 6.3

RC 1 2163.9 90.01 1.3 2201.8 67.28 2.5
2 2285.8 103.13 1.3 2341.9 112.85 2.1
3 2267.2 81.51 1.3 2324.2 95.60 2.8
4 2175.6 94.63 1.2 2179.5 75.23 3.1
5 2236.3 107.79 1.3 2264.9 83.20 3.0

50

C

1 4211.9 227.90 12.2 4183.3 79.92 29.4
2 4117.5 167.96 9.2 4091.9 160.72 36.9
3 3851.6 52.41 9.9 3813.6 54.09 36.7
4 3785.8 44.47 12.7 3786.1 51.94 43.2
5 4230.8 149.03 11.8 4226.7 161.10 37.6

R 1 5350.8 322.01 18.3 4956.4 360.29 50.9
2 4136.7 176.30 15.2 4169.7 170.19 41.0
3 4783.8 306.02 15.6 4745.6 425.48 82.2
4 4769.4 281.76 18.6 4790.8 178.56 68.5
5 4672.9 510.95 15.6 4538.7 425.45 75.2

RC 1 6551.8 149.47 10.4 6580.3 140.31 35.3
2 6416.7 76.58 10.4 6379.2 98.08 47.9
3 7005.6 323.87 9.2 7037.9 444.18 21.7
4 6672.7 246.69 10.3 6628.8 188.31 30.3
5 7740.3 292.38 9.8 7812.5 320.83 28.4

80

C 1 7801.5 161.39 36.6 7877.9 153.43 119.5
2 8304.8 178.05 37.7 8275.8 183.60 121.1
3 8763.2 244.38 40.6 8682.3 249.64 169.0
4 8859.7 214.10 49.7 8863.1 225.83 163.0
5 9923.8 101.10 50.7 9802.1 279.94 213.4

R 1 9738.6 484.78 54.0 9583.1 447.24 238.1
2 10,104.4 513.88 46.2 10,062.8 524.65 285.4
3 9859.2 568.29 58.5 9684.9 599.95 270.9
4 9682.1 689.52 59.5 9781.1 704.49 199.1
5 9768.7 614.98 63.4 9693.5 410.77 267.5

RC 1 12,974.3 720.26 18.7 12,930.0 873.92 108.4
2 15,256.0 587.26 31.2 15,027.6 684.62 110.8
3 14,837.0 588.22 33.9 14,880.4 705.99 89.6
4 15,042.0 869.90 19.8 14,635.4 764.80 96.8
5 15,859.2 911.78 30.2 15,407.2 893.34 132.8
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the retailers scattered was an important factor in the expansion of
the solution space for our proposed searching mechanisms.

4.4. Comparison with other heuristics

In this section, the performance of the proposed heuristics is
compared with the H3 heuristic reported by Chang and Lee (2004).
The scenario of the testing problems is set same environment as in
Chang and Lee (2004) which is N orders are processed on a single
machine and then delivered to two areas. A group of customers
are located in close proximity to each other as one customer area.
The coordinates of each retailer are randomly generated in the
interval [0, 30].

When we relax the time window restriction and taken homo-
geneous fleet into consideration, three scenarios with the number
of the retailer equals to 30, 50, and 80 are evaluated, respectively.
Six testing problems are run in each scenario. The computational
results are summarized and shown in Table 6. The results in
Table 6 reveal that both GA and AGA perform better than H3 in
each scenario. On average, GA and AGA are more efficient than H3
by 11.38% and 13.19% respectively. Paired t-tests reveal that the
performances of the proposed GA based heuristics are statistically
better than H3 at the 95% significance level. It is noted that the
performance of both GA and AGA is not discernible.

4.5. Analysis of multi vehicle types

To investigate the impact of heterogeneous fleet provided in the
delivery stage, an experiment is conducted. The starting point for the
construction of the instances used in our computational experiment is
extracted from the Solomon benchmark data set (Solomon, 1987) for
the vehicle routing problemwith time windows. The data set includes
geographic information, demand and service time, vehicle capacity
and fixed cost. As the magnitude of the potential savings from
combination of multiple vehicle types, we have taken an experiment
with 20, 50, 80 retailers. Where the vehicle fleet in test problems is
divided into five groups, and each group has its corresponding
number of vehicle types. Vehicle capacity increasing in the order
Q1oQ2o :::oQ5; e.g. vehicle group equal to 3 means that the
addressed problem is solved by a combination of the first three types
of vehicles. The computational results are summarized and shown
in Fig. 3.

The results from Fig. 3 reveal that the total cost gradually decreases
as the vehicle type employed in the delivery stage increasing. For
example, in the 80 retailers case, the total cost with five kinds of
vehicle type is lower than four types 13% and lower than homo-
geneous fleet 32%. In addition, more kinds of vehicle types provided in
the delivery stage is not only reduced the total cost but fixed vehicle
cost and variable routing cost. However, the penalty cost would not
validity of any inference in favor of a trend of heterogeneous fleet
strategy.

5. Conclusions

This article proposes an integration concept for a production
scheduling and delivery problem with the minimization of total

cost which includes transportation cost, vehicle arrangement cost
and penalty costs, subjected to satisfy all demands of each retailer.
In the delivery stage, heterogeneous fleet of vehicles is assumed.

For the addressed integrated production scheduling and delivery
problem, an integer nonlinear programming model has been pre-
sented. However, solving the mathematical model can provide the
benchmark solution for the small scale problem ðNr5Þ, but the
influence of the trace expansion of solution space made the search-
ing efficiency into unstable. Therefore, two adaptive genetic algo-
rithms have been proposed for solving medium/large size problems.
The solution quality and efficiency of these heuristics were evaluated
through randomly generated test problems in various environments.
The results indicated that these two heuristics could obtain the
benchmark solution for small sized test problems.

For the medium/large size problems, the results from the compar-
isons of the proposed algorithms revealed that simple adaptive genetic
algorithm is more efficient for solving the addressed problems.
However, adaptive genetic algorithm with 2-opt has better search
ability when the number of retailer increasing. Although the search
scheme between the two heuristics was not identical but achieved
similar search quality when the number of retailer is less than fifty.

Table 6
Comparison with other heuristics.

N SAGA/H3 AGA-2opt/H3 SAGAoH3 AGA-2optoH3

20 0.89 0.86 o0.001 o0.001
50 0.89 0.87 o0.001 o0.001
80 0.89 0.88 o0.001 o0.001

Note: Columns SAGAoH3 and AGA-2optoH3 lists p-values for the comparison.
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Fig. 3. Object function under different vehicle type. (a) Cost structure analysis
(N¼20), (b) Cost structure analysis (N¼50), and (c) Cost structure analysis (N¼80).
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Hence, when the number of retailer is less than 50, the standard
adaptive genetic algorithm is recommended for solving the problem
owing to the searching efficiency consideration. Otherwise ðN450Þ,
adaptive genetic algorithm with 2-opt is recommended to ensure the
solution quality.

To ensure the proposed AGA heuristics have sufficient solving
ability, a performance comparison with existing heuristic, H3, is
investigated. The computational result indicates that the SAGA and
AGA-2opt are both better than the existing H3 without taking the
time window restriction into consideration.

Finally, an experiment is conducted for analyzing the impact of
heterogeneous fleet provided in the delivery stage as well. The
experimental results indicate that more kinds of vehicle types
provided in the delivery stage is not only reduced the total cost
but also fixed vehicles cost and variable routing cost. However, the
penalty cost would not validity of any inference in favor of a trend of
heterogeneous fleet strategy.

In the future study, the proposed coordination of production
scheduling and delivery model can be further improved by taken
setup cost and inventory holding cost into the model. Further-
more, more kinds of picking procedure can be expanded in the
coordination model.
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