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We consider a system of two coupled particles fluctuating between two states, with different interpar-
ticle interaction potentials and particle friction coefficients. An external action drives the interstate
transitions that induces reciprocating motion along the internal coordinate x (the interparticle dis-
tance). The system moves unidirectionally due to rectification of the internal motion by asymmetric
friction fluctuations and thus operates as a dimeric motor that converts input energy into net move-
ment. We focus on how the law of interaction between the particles affects the dimer transport and,
in particular, the role of thermal noise in the motion inducing mechanism. It is argued that if the
interaction potential behaves at large distances as x*, depending on the value of the exponent «, the
thermal noise plays a constructive (o > 2), neutral (o = 2), or destructive (¢ < 2) role. In the case of
o = 1, corresponding piecewise linear potential profiles, an exact solution is obtained and discussed

in detail. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4880416]

. INTRODUCTION

Directed transport of Brownian particles induced by
unbiased nonequilibrium fluctuations is now a well estab-
lished phenomenon in various nonlinear systems. Substantial
progress has been made in understanding this phenomenon
over the past two decades (see Refs. 1-3 for a comprehen-
sive review). Much of the motivation behind studies in this
area comes from the challenge of uncovering the operational
mechanisms of molecular motor proteins* and ion pumps,’
involved in regulating diverse cellular functions. Transport of
biological motors in the molecularly crowded environment of
living cells can be either normal or anomalous depending on
the cargo size.% Another source of motivation arises from the
need to build artificial motors and machines of molecular’ and
nano® dimensions. Among a vast number of other promising
applications,” it is worth noting novel methods for particle
sorting at the nanoscale.’

The early studies were mainly concerned with searching
for directed motion scenarios of a point-like particle with-
out internal degrees of freedom. Research over the past 10—
15 years has focused on the emergence of directed motion in
more complex systems. The interplay between different dy-
namic modes, nonlinearity, and noise is an intriguing topic to
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investigate. For motile objects with internal structure, experi-
mental evidence'? and theoretical arguments''~!3 indicate that
the intrinsic properties of such objects, as well as the coordi-
nation and interaction between their subunits, play a promi-
nent role in various motion inducing mechanisms. In partic-
ular, it was demonstrated experimentally'# that multidomain
motor proteins can move significantly faster than their indi-
vidual subunits, which also operate as motors.

A dimer is one of the simplest objects, where the in-
ternal degree of freedom may play a prominent role in the
emergence of directional motion. Dimeric models are partic-
ularly relevant to studies of intracellular transport.* A con-
ventional motor protein consists of two globular domains (re-
ferred to as “heads”) joined by a coiled coil @-helical domain,
each of which can be attached to filaments of the cytoskele-
ton and hydrolyze adenosine triphosphate. Bio-inspired ar-
tificial dimeric nanowalkers capable to walk directionally
along extended tracks have been attracted considerable at-
tention as prototypes of real nanomechanical devices.'> Two
possible mechanisms of the coordinated motion of the mo-
tor heads during their walking along the track have been
proposed: hand-over-hand,'® where the motor domains alter-
nate between trailing and leading positions, and inchworm,!”
where one motor domain is always ahead of the other. Noise-
induced transport of two coupled particles has been consid-
ered in several different ways.'®3° Most of them are based on
rectifying Brownian motion by periodic, asymmetric (ratchet)

© 2014 AIP Publishing LLC
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potential in which the dimer moves.'®"'® Other approaches, in
which the necessary spatial symmetry breaking is provided
by an asymmetry inherent to the system itself rather than
to its environment, are also available.!? In this way, the di-
rected transport can be achieved in a symmetric potential'®2°
and, moreover, without any effective potential. The latter sce-
nario has been naturally implemented by considering var-
ious systems with broken friction symmetry.>!>’ A com-
bined effect of a spatially periodic potential, whose ampli-
tude is time-periodically modulated, and friction asymmetry
has been demonstrated in Ref. 28. The rectification mecha-
nism in protein translocation through a pore into a cell may
be effected by binding intracellular particles.!

Interaction between coupled particles has a strong effect
on dynamic properties of dimeric motors.'2%2%30 The origin
of such interaction is, generally speaking, unknown. How-
ever, one may speculate that the coiled coil domain (or an-
other agent joining the dimer heads), as well as an implicit
influence of one head on the other due to their attachment
to the track, coordinate the dynamics of the heads thus lead-
ing to an effective interaction between them. Additionally, the
dimer heads can interact via many non-covalent interactions,
including electrostatic, dipole, van der Waals, etc. Finally, the
effective interaction incorporates effects due to the dimen-
sion reduction of the full three-dimensional dimer dynam-
ics to an approximate one-dimensional description. Clearly,
it is a formidable task to take all these factors into account.
In theoretical modeling, one typically postulates that the par-
ticles are coupled linearly, which is a gross oversimplifica-
tion. There are several attempts to go beyond the linear cou-
pling approximation,’*2%3% which convincingly demonstrate
that a non-linear coupling gives rise to much richer dynamic
behavior of the dimer, with many effects unmodeled in the
simplified representation of linearly coupled particles. A first
example is two coupled identical particles moving along a
periodic symmetric substrate potential. In the deterministic
limit, a harmonic external driving may lead to spontaneous
symmetry breaking in the form of a permanent directed mo-
tion of the dimer, provided the interparticle interaction poten-
tial is nonconvex.?’ Another example is furnished by consid-
ering transport of two coupled particles moving in a flashing
ratchet potential and comparing the results for Lennard-Jones
and spring-type interactions between the particles.”® A study
of two particles coupled nonlinearly through a bistable poten-
tial on a periodically rocked ratchet has shown®” that with this
type of interaction the particles are allowed to alternate in the
lead, operating in a hand-over-hand manner, that cannot be
obtained in models with linear coupling.

In this paper, we continue to explore the effect of the
interparticle interaction on the dimer transport. In so doing,
we make use of a simple two-state model, consisting of two
coupled Brownian particles walking along a linear track. The
particles can exist in two conformational states, with different
interparticle interaction potentials and particle friction coef-
ficients. External perturbations cause transitions between the
states, so reciprocating motion along the internal coordinate
(the interparticle distance) emerges. The motion of overall
system is coupled to the internal motion. Thus by rectifying
the internal motion (by asymmetric friction fluctuations), the
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dimer moves unidirectionally, functioning as a two-headed
motor. As a conventional combustion motor, this motor is
composed of a reciprocating engine (represented by the dy-
namics of the internal degree of freedom) capable to convert
part of the energy supplied by the noise source into recip-
rocating mechanical motion and a symmetry-breaking mech-
anism (based on asymmetric friction fluctuations resulting
from transitions between the conformational states). In the
initial version of this model,”! a linear elastic coupling be-
tween the particles is considered.

Here we exploit another formulation of the model,>* fo-
cusing on the effect of the interparticle interaction. We con-
centrate on the operation of the reciprocating engine whose
performance is quantified by the reciprocating velocity. Our
main result is that if the interaction potential behaves as x*,
thermal noise has a positive, neutral, or negative effect on this
velocity depending on the value of exponent «.

The outline of the paper is as follows. To make the paper
self-contained, in Sec. II we briefly review the major points,
which are needed for understanding the model and in further
calculations (for a more detailed description see our previous
papers>*2%). Then, using different approaches, we consider
the engine operation in the low (Sec. III) and high (Sec. IV)
switching frequency regimes. Section V presents an exact so-
Iution for the reciprocating velocity in the case of piecewise
linear potential profiles. Finally, we discuss and summarize
our findings in Sec. VL.

Il. THE MODEL

Consider a system composed of two coupled overdamped
particles moving at temperature 7 along a linear track.
The system can exist in one of two conformational states,
o =+ and 0 = —. The discrete variable o (¢) denotes the po-
tential of the interparticle interaction, U, (x = x, — x1), where
x1 and x are the particle positions along the track, and the
particle friction coefficients, ¢1(o) and ¢,(o). As the parti-
cles approach each other, an increasingly strong repulsion be-
tween them will appear, so the particles cannot overtake one
another (inchworm mode). We also assume that the potentials
U, (x) and U_(x) diverge as x — 00.

An external signal triggers transitions between the states.
The dynamics of o (f) (which synchronizes the potential and
friction fluctuations) is modeled by a dichotomic Markov pro-
cess

< [} g

where y . are the transition rate constants. The system dy-
namics is governed by two coupled Langevin equations,*

dx; AUq (x) — .
§i(o) );t(t) = - (;i ) +V26(0)TE(r), i=1,2,
' @)

together with the rate equation (1). The thermal noise is mod-
eled by uncorrelated standardized Gaussian white noises & (f)
and £,(7), &(1) = 0, & (1)&(s) = 8:x8(¢ — s), where the over-
bar indicates the average over the thermal noise. The problem
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becomes separable by introducing the relative coordinate x
= xp — x1 and the center-of-mass coordinate X = (x; + x,)/2.

The first from the two stochastic equations written
in terms of the new variables is simply the Langevin
equation

{oX = U, (x) + /28, TE(1), 3

where a dot and a prime denote derivatives with respect to
time and position, the effective friction coefficient ¢, is de-
fined by the relation g“g_l = ;fl(a) + {{1(0) and £(¢) is a
Gaussian white noise with zero mean and the correlation
E(1)E(s) = 8(t — s). Equation (3) jointly with Eq. (1) de-
scribes the internal dynamics, that is Brownian motion in a
fluctuating confining potential (this is why, in what follows,
the term “Brownian particle” refers to the internal coordinate
x). The internal dynamics proceeds independently of the sys-
tem dynamics. The corresponding equation for the time evo-
lution of joint probability densities p,(x, 1),0 = +, —, for
finding the Brownian particle in state ¢ near point x at time f,
reads

0ps(x, 1) _ 0Jo(x,1)

— U[]/+,O+(x, t) - )/—,O—(x’ t)]v

dt 0x @
where
U v, 9 pu,m
J{,(x,t)z—ﬁe ’ a[e Fpe(x, )] (5)

is the probability current along the x-coordinate in state o and
B = 1/T. The average velocity of the motion in state o is de-
fined as

o0

Ve (1) = / Jo(x,t)dx. 6)

—00

The second from the two stochastic equations written in
terms of x and X relates the system velocity X to the internal
velocity x, pointing to the fact that the system and the internal
dynamics are coupled. At long times, the velocities converge
to their steady state values, v (#) — vy and X — V. In this
regime, the net current is identically zero, J (x) + J_(x) =0,
as it must be for bounded motion, so the Brownian particle ex-
hibits back and forth movement, keeping the absolute value of
the average velocity fixed, v = |v4|. The relation between the
system velocity and the velocity of internal motion, averaged
over the noises, reads**2°

V= e, c— 51(H)2 (=) — &1(—)o(+) )

[51(H) + L BHIE1(=) + L2(—)]

Thus, an external perturbation does not directly affect
the system variable X, but excites only the internal degree of
freedom x, thus generating back and forth motion along x co-
ordinate, on scales large compared to those of thermal fluctu-
ations. The reciprocating motion is rectified by friction fluc-
tuations, that is controlled by the rectification coefficient €.
As a result, the system works as a two-headed motor. The
principal components of the motor are the engine converting
input energy from an external source into the reciprocating
motion and a symmetry-destroying mechanism. In contrast to
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FIG. 1. Scheme of the reciprocating engine. Brownian particle is moving
in the potential that fluctuates between two profiles U, (x) and U_(x) (solid
lines), which are identical but shifted (by a distance +L/2) copies of the po-
tential U(x) (dashed line). The arrows represent the working cycle of the re-
ciprocating engine.

the commonly used flashing ratchet,'®!® where an asymmet-
ric periodic potential is required to produce directed trans-
port, the model at hand relies on rectification due to broken
friction symmetry and hence needs no effective potential in-
teraction between a motor and its track. Several symmetry-
breaking scenarios based on the friction asymmetry have been
suggested and discussed in the literature.?'~>” All of them do
not involve the interaction between the dimer heads. On the
contrary, this interaction plays an important role in the opera-
tion and performance of the reciprocating engine. So the con-
sidered problem is reduced to the analysis of the reciprocating
engine.

A. Reciprocating engine

Consider the steady state dynamics of a Brownian par-
ticle fluctuating between two states 0 = + and 0 = — (see
Eq. (1)), with different confining potential profiles, U, (x)
and U_(x). This is the model of a nanoscale reciprocat-
ing engine.>* The present paper places an emphasis on the
role played by the confining potential in the motion-inducing
mechanism. In order to make the analysis more clear and
compact, we will restrict ourselves to the simplest case of a
fully symmetric model, where y,. = y_ =y and {, = ¢_
= ¢.% We also assume the potential profiles U, (x) and U_(x)
to be identical but shifted (by a distance +L/2 along the x axis)
copies of the potential U(x) (see Fig. 1), i.e.,

Ui(x)=U(x —L/2), U_-x)=Ux+L/2). (8)

It is convenient to introduce the normalized-to-unity
probability densities p,(x) = 2p,(x), 0 = 4+, —, describing
the particle position distribution in state o. In terms of p4(x),
the master equation (4) takes the form

J;(x) = —oy[p(x) — p-(0)]/2, C))

where

Jo(X) = —5—

TT; e’ﬂU"(")%[eﬁU"(x)pa ()] (10)
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is the stationary probability current in state o. The quantity of
interest, that is the reciprocating velocity v defined by Eq. (6),
can be expressed as

b=y A2 (1)

Here the notations A = ((x); — (x)_) and {(--)s
= ffooo -+ po(x)dx have been introduced for future conve-
nience.

When the potential U(x) is parabolic, U(x) = kox? (which
implies a linear coupling between the particles in the dimer)
an exact solution for v is easily obtained. It is straightforward
to show?* that in this case

v = E; (12)

2 1+ 144 / kz

Equation (12) combined with Eq. (7) yields the expression
for the motor velocity V, which coincides with that obtained
by Fogedby et al.?® within the model of linearly coupled
particles.”! In the presence of an external load force, the
motor velocity is monotonically decreasing with increasing
load. The velocity-force dependence and the stalling condi-
tion, which are important operational characteristics of any
motor, have been found within the Mogilner et al. model.?!»%3

The temperature-independent velocity in Eq. (12) implies
no contribution to the reciprocating motion from the thermal
noise. This is a consequence of the linear coupling approxi-
mation: external and thermal noises are not coupled. In what
follows, we show that nonlinear interaction between the dimer
heads leads to noise coupling and the temperature-dependent
velocity.

lll. LOW FREQUENCY REGIME

Consider the engine described above operating in the low
frequency regime. In this case the state’s mean residence time
y ! is large compared with other characteristic times in the
problem. As a starting point, it is expedient to rewrite Egs. (9)

and (10) in the form

pa(x) = pa,O(x){] + U[dDU(x) - <<Da(x))a,0]}v (]3)

where p, o(x) is the equilibrium probability density for the
particle position in the potential Uy (x), p,.o(x) = e V=™ /Z,
Z=[2 e Ndx, (a0 = [ Poolx)dx, and

x 3
¢GUJ==ﬁV§Z‘/6@eﬁ“@)/md&[P+@D-—p_@OL

(14)
In this transformation we have made use of the facts that
(i) the probability density and the probability current van-
ish as x| — o0, (ii) ps(x) is normalized to unity, and (iii)
[, e PU=0) = Z in view of Eq. (8). Then the quantity A,
determining the reciprocating velocity in Eq. (11), reads

A= ((x)4.0 = (x)—0) + ((x = (x)1.0)P1(x)) 1.0
+{(x = (x)—.0)P_(x)) 0. 15)

In the low frequency regime, transitions between states
represent the slow component of the system dynamics, while
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the relaxation within the states constitutes the fast part of the
dynamics. So at steady state the system is close to a local equi-
librium, in the sense that the particle distribution in state o (o
= +, —) can be described, to a quite good approximation, by
the equilibrium probability density p, o(x). The effect of in-
terstate transitions can be regarded as a small perturbation to
the equilibrium situation. Based on perturbation theory, the
first order corrections to py o(x) and to A are obtained by
approximating ®4(x) in Eq. (14) with ®4 ((x), in which the
unknown probability densities p(x) and p_(x) are replaced
by the equilibrium functions p o(x) and p_ o(x), respectively.
Then, in view of the symmetry condition in Eq. (8) that im-
plies p+ o(x) = po(x F L/2) = e PUCTFLI2 /7 Eq. (14) can
be approximated as follows:

E+L)2

@)= o) = —py¢ [deetC oL [ ey,
—00 E—L/2

(16)

We consider high enough temperatures so that the po-

tential variation along the length L is small (compared to

the thermal energy 7T) and can be neglected. Then &, o(x) in

Eq. (16) may be written in the following approximated form:

®, o(x) =~ —By¢ L x + const. Combining this with Egs. (11),

(15), and the identity (x)1 o = £L/2 + (x)¢ gives eventually
the reciprocating velocity in the low frequency regime

v~ yL[1 —2By¢((x%)o — (x)))1/2, (17)

where (---)g = f_oooo .-+ po(x)dx. Thus here the velocity is
directly related to the variance of the particle’s position distri-
bution determined by the potential U(x) and the temperature.
To proceed further, an explicit form of the potential is
required. Let the potential function U(x) be symmetric

U(x) = kolx|%, (18)

with k, characterizing the steepness of the potential and the
exponent o > 1. The variance ((x2)o — (x)(z)) is easily calcu-
lated. Substituting the result into Eq. (17) yields the desired
solution, which can be expressed as follows:

v~ vl — Ag@ /ey, (19)

where v =k, L% '/(2¢) is the characteristic velocity as-
sociated with a particle sliding in the potential U(x) and
A = 2~ 'T'(3/a)/T(1/er) with T'(x) the gamma function.
Equation (19) is written in terms of two appropriate dimen-
sionless parameters,

_ vt
ko L*2

& = Bko(L/2)%, ) (20)
which have a clear physical meaning. The former compares
the potential variation along the length L/2 with the thermal
energy T, while the latter compares the characteristic sliding
time in the potential with the typical switching time. In the
particular case of « = 2, A = 1 and the approximate solution
(19) coincides, as it should be, with the low-frequency asymp-
totics of the exact solution for the parabolic potential, given
in Eq. (12).



214108-5 Makhnovskii et al.

The second term in square brackets in Eq. (19) represents
the first order correction. In the regime under consideration,
o K € K 1, the correction is small as compared to unity.
However, this correction has a qualitative effect on the veloc-
ity because, with it, new physical factors come into play. In-
deed, the first order correction is always negative. Generally,
its magnitude depends on the temperature. However, if the po-
tential is parabolic, « = 2, the correction (and hence the ve-
locity v) is temperature independent implying, in agreement
with the previous work,?*2® no contribution to the reciprocat-
ing velocity from thermal noise. In order to exhibit nonlinear
effects, it is natural to choose this case as the reference case
for comparison. If the exponent « > 2, the correction term be-
comes smaller (compared to the reference case) and the veloc-
ity increases with temperature. On the contrary, if « < 2, the
negative correction is greater and the velocity decreases with
temperature. Thus, a nonparabolicity of the potential leads to
a coupling between external and thermal noises, so that ther-
mal noise is involved as a component of the mechanism by
which the motion occurs. Depending on the value of the ex-
ponent «, the thermal noise plays a constructive (o« > 2),
neutral (¢ = 2), or destructive role (¢ < 2) in the operative
mechanism.

Our last remark in this section concerns the effect of
asymmetry of the potential. Consider an asymmetric poten-
tial

ke, x%, forx >0

v = {ka,|x|°”, forx <0 @D

For the sake of definiteness we suppose that
o > o > 1. (22)

Then the velocity, Eq. (17), can be written as
v yL[1 =248/ k2 yc] /2, (23)

where

4 _DG/a) 1B (1/1,) [Hz/ar) 1—32(11/1»2}2
1 - 5

_F(l/ar) 1+Blll/lr F(l/ar) 1+Blll/lr
(24)

B; = I'(ifap)/T (ila,) (for i =1, 2, 3), and [; =aj(,8k(,,j)*1/°‘f
(for j = r, I). Note that the coefficient A; is positive, A} > 0,
and in fact temperature independent, in view of the smallness
of 8 and condition (22). Obviously, when k,, = k,, = k, and
o, = a; = o, Eq. (23) is simplified into Eq. (19). As Eq. (23)
indicates, the temperature dependence of the velocity is con-
trolled by the relatively gradual branch of the potential (char-
acterized in our case by the exponent «,.).

IV. HIGH FREQUENCY REGIME

Consider the engine operating at high switching rates,
where the state’s mean residence time y ~! is the shortest char-
acteristic time scale in the overdamped regime, i.e., in par-
ticular w > 1. When y — oo, the particle jumps from one
state to the other many times before being moved on an ap-
preciable distance along x axis. This suggests that in the high
frequency limit the particle position distributions in states +

J. Chem. Phys. 140, 214108 (2014)

and — approach to each other. As follows from Eq. (9), in the
zero order approximation (with respect to y~!') one can ne-
glect the difference between the distributions and take p (x)
>~ p_(x) 2~ poo(x). Then, using the condition of zero net steady
state current, J (x) + J_(x) = 0, and Eq. (10), an equation for
Poo(x) is derived:

Pho(X) + BUcsi(x) poo(x) = 0,
Ueii(x) = [Uy(x) + U_(x)]/2. (25)

Thus, in this regime, the local equilibrium in the effective po-
tential Uegg(x) is established:

)
Poo(x) = e*ﬁUcrr(X)// e BUenr() g (26)

The particle actually feels the effective potential, since it is
not capable of following the rapid potential changes. In this
way, we find, using Egs. (10), (25) and the notation (- - - )
= f_oooo -+ Poo(x)dx, that the reciprocating velocity, Eq. (6),
can be written as

v %(UL(X) = U ()0 (27
¢

We consider the state potential profiles, which are iden-
tical but shifted copies, as stated in Eq. (8). We also consider
the case of high temperatures, where the potential variation
along the length L/2 can be neglected because it is small as
compared to T, i.e., € < 1. With these assumptions, (i) the
effective potential in Eq. (25) is reduced to U(x), (ii) poo(x)
in Eq. (26) can be approximated by the equilibrium proba-
bility density for the particle position in the potential U(x),
Poo(x) 2 po(x)= e PU® / [ ¢=BUNdx | and (iii) the dif-
ference U (x) — U} (x) in Eq. (27) can be approximated by

LU (x). As aresult, Eq. (27) is simplified, yielding

L 2
v~ i BU" (x))o. (28)

To proceed further, we first use the symmetric potential
given in Eq. (18). Then it follows from Eq. (28) that the lead-
ing term of the asymptotic expansion of v for @ > 1 is w-
independent and given by

v~ Apg?/e, (29)

with 0 = ko L*7!/(2¢) and A=2'"%a’T' (2 — 1/a)/ T'(1/a).
In the particular case of @ = 2, A=1 and the €-independent
estimate of the velocity given in Eq. (29) coincides, as it
should be, with the high-frequency asymptotics of the exact
solution for the parabolic potential, Eq. (12). As Eq. (29) in-
dicates, the velocity grows with temperature if the exponent o
> 2. Butif o < 2, v goes to zero as T — oo. Thus, the coop-
eration between the external and internal fluctuations is mani-
fested differently, depending on the exponent « that character-
izes the potential profile. Just as in the low-frequency regime,
thermal noise enhances (weakens) the system response when
o > 2 (a < 2) or contributes nothing into the motion inducing
mechanism when o = 2.

In order to demonstrate the effect of the asymmetry, let
us take the potential to be of the form given by Eq. (21), with
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exponents o, and «; satisfying condition (22). Then it follows
from Eq. (28) that

~ L 1oy 1.1/a, p2—a)/a
U_A1Ekal/ Ty B, (30)

where @' = (¢; ' +a;1)/2 and
rQ—1/a) 1+ Byl /1
C(l/a,) 14 Bl /I’
with B; = ['2—1/a,)/ T2 ~1/a), By = T(1/ay)/ T(1/at,),
and [; = ozj(ﬂkaj)’l/"‘f (for j = r, I). The coefficient A,
is in fact temperature independent, in view of the small-
ness of B and condition (22). For the symmetric poten-
tial, Eqgs. (30) and (31) are simplified into Eq. (29). As
Eq. (30) indicates, both the left and right branches of the
potential contribute on the same footing to the tempera-
ture dependence of the velocity, which is in contrast to that

seen in the low-frequency regime (see the last paragraph in
Sec. III).

Al = aa, 3D

V. V-SHAPED POTENTIAL

In this section a remarkably simple case of « = 1 is con-
sidered, where the identical [but shifted, see Eq. (8)] symmet-
rical potential profiles U, (x) and U_(x) have V-shaped form:

U(x) = ki|x|. (32)

So stated, the problem is amenable to an exact solution.
To seek the solution, it is convenient to introduce new
variables:

q(x) = [p+(x) + p-(0)1/2,  rx) =[p+(x) — p-(x)]/2.
(33)

In view of the problem symmetry, g(—x) = g(x) and r(—x)

= —r(x). Additionally, the function g(x) is normalized to

unity, ffoooq(x)dx = 1. In terms of the new variables, the
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desired reciprocating velocity, Eq. (6), reads

o0

v=y [ xr(x)dx. (34)

—00

As follows from Egs. (9) and (10), the functions g(x) and
r(x) satisfy the system of differential equations:

Bu'(x)q(x) + Bp'(x)r(x) +q'(x) =0,
(35)
r"(x) + Blo ' (x)g(x)]' + Blu'(x)r(x)]' = 2By tr(x),

where u(x) = [Ur(x) + U_(®)]/2 and ¢(x) = [Ui(x)
— U_(x)])/2. Additionally, g(x) and r(x) must satisfy the
boundary conditions, requiring vanishing the probability den-
sities as |x| goes to infinity, as well as the matching condi-
tions, which provide continuity of the probability densities
and currents at x = £L/2. The first one of Eq. (35) simply
reflects the fact that the net probability current for the recip-
rocating motion takes the zero value at any point x, while
the second one is obtained by summing up Eq. (9) with o
=+ando = —.

Equations (35) are greatly simplified due to the particu-
larly simple form of the potential profiles in the present case
[see Eq. (32)]. Indeed the potential fluctuations are felt by the
particle only in the region |x| < L/2, where the average force
is zero, so we can write

ki sgn(x), for|x| > L/2
u'(x) = ,
0, for|x| < L/2
(36)
0, forlx| > L/2
¢'(x) = .
—ky, for |x| < L/2

This enables us to solve the problem exactly. The straightfor-
ward but tedious computation yields the final result

coth\/e(e + w) +z — (1 — 22/ /(e + w)

where v = ki /(2¢) is the characteristic velocity, ¢ = Bk|L/2
and w = y¢L/k; are the relevant dimensionless parameters
[see Eq. (20)], and z = 2/ + w/(/€ + /& + 4w) is their
combination. Although the model is extremely simple, the ex-
pression for the velocity in this equation is rather involved
because of the coupling between the external and thermal
noises.

Upon variation of & (representing the inverse tempera-
ture) from zero to infinity, the velocity given by Eq. (37)
grows monotonously from zero to bw/(w + 1) at any nonzero
value of w (representing the frequency of the potential switch-
ing). Note that, even without thermal noise, externally driven
transitions between states cause the reciprocating motion.
Moreover, the velocity v reaches its maximum value just at 7

=" (1 + e=Y[coth /(e + w) + z] + w~[coth /e(e + @) + /¢/(e + w)]

(37)

= 0. Thus in the case of « = 1 thermal noise plays a destruc-
tive role, that is in qualitative agreement with the conclusions
drawn from the general analysis of the limiting cases of w
<« 1 and w > 1 (see Secs. III and IV). It follows from
Eq. (37) that at low temperatures, where ¢ is the largest pa-
rameter in the problem, € >> 1 and ¢ > w, the ratio v/v can
be approximated as follows:

vo~ 2 (12 ¢ (38)
T w41 w+1 ’

At high temperatures, where ¢ is the smallest parameter in the
problem, ¢ <« 1 and ¢ < w, the velocity vanishes as

/b~ e(l — /e ). (39)
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Upon variation of w, the velocity, Eq. (37), exhibits a be-
havior similar to that seen above for varying ¢: it increases
monotonically from zero at w =0 to ve /(e + 1) as w — oco. In
the low-frequency regime, where w is the smallest parameter
of the problem, w <« 1 and w < ¢, Eq. (37) is approximately
reduced to

e[t ()]
vioxwil—ow|l4+ -1+ — .
e 2¢e

Furthermore, if the temperature is high enough, more specif-
ically if w « ¢ < 1, this equation, as it should be, takes the
form of Eq. (19), with « = 1 and, respectively, A = 2. In
the opposite limiting case, where w is the largest parameter,
w> land w > ¢, e71, it follows that

e 1 1+ 2¢
1+e ’

21+ 8w
At high temperatures, ¢ < 1, the leading term of ¢-expansion
of this equation coincides, as it should be, with the estimate
given in Eq. (29), with @ = 1 and, respectively, A = 1.
Thus the results for the particular case @ = 1 corroborate
and illustrate the general conclusions drawn from the analysis
of the low and high frequency regimes (see Secs. III and IV).

(40)

v/~ 41)

VI. DISCUSSION AND CONCLUSIONS

The results presented above, including the approximate
estimates given by Eqgs. (19) and (29), as well as the exact
solutions given by Egs. (12) and (37), agree qualitatively in
that the exponent « characterizing the potential behavior de-
termines the effect of thermal noise on the system response.
The role of the thermal noise is constructive, neutral, or de-
structive when o > 2, @ = 2, or o < 2, respectively. This
observation, well illustrated by Fig. 2, is the main point of
our paper. Note that the reciprocating motion exists even at
T = 0. At high temperatures (and o # 2) the effect of ther-
mal noise is manifested differently in the two limiting cases
o — 0 and v — oo. In the low frequency regime, the con-
tribution of the noise into the reciprocating velocity v is rep-
resented by a small correction, see Eq. (19). In the high fre-
quency regime, the temperature determines the leading term
of the asymptotic behavior of v, as Eq. (29) shows.

The interplay (and in particular the constructive cooper-
ation) between thermal (equilibrium) and external noises is a
subject of long-standing and continuing interest, especially in
studies of fluctuation-induced transport.'">3* A distinct ad-
vantage of our model is that it allows qualitatively different
manifestations of the noise coupling to be demonstrated in a
unified manner by changing the interparticle interaction.

On the other hand, some care should be exercised in the
interpretation of the observations made. In particular, we have
shown that the velocity v takes a nonzero value as the transi-
tion rate y — oo. However, in this regime the reciprocation
motion evolves on the micro- rather than on the nanoscale,
so it cannot be rectified and used to produce directed motion.
Thus in the high frequency regime our results give an interme-
diate (rather than limiting) asymptotic behavior of the dimer
drift velocity.

J. Chem. Phys. 140, 214108 (2014)
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FIG. 2. The ratio v/v as a function of the dimensionless inverse temperature
¢ for different values of the exponent o and @ = 10. The thick solid line,
= 2, corresponds to the exact solution given by Eq. (12) and the thin solid
line, @ = 1, corresponds to the exact solution given by Eq. (37). The dotted
(dashed) line schematically represents the case of @ < 2 (« > 2).

Additionally, an obvious shortcoming of the model is that
the dynamics for switching between competing states is as-
sumed independent of particle spatial position and thermal
noise, which is correct only for systems switchable by large
(on the nanoscale) forces. A more general model, which in-
corporates the spatial dependence of the system reactivity, has
been proposed and analyzed in Refs. 25 and 26. Of course, the
generalized model exhibits a more complicated behavior, but
its simplified version exploited here suffices for our purposes
to reveal the effect of the potential on the motion-inducing
mechanism. The approximation used is the price we have
paid to make the problem analytically treatable and physically
transparent.

Summing up, we have investigated the effect of the inter-
particle interaction on active transport of a dimer. As a model,
we have examined a system of two coupled particles fluctu-
ating between two states, with different interaction potentials
and particle friction coefficients. Externally driven interstate
transitions induce reciprocating motion along the internal co-
ordinate (the interparticle distance) that is rectified to a direct
current by asymmetric friction fluctuations. With such formu-
lation, the dimer motor consists of the engine that converts
nonequilibrium fluctuations into reciprocating motion and the
symmetry breaking mechanism. We have focused on the re-
ciprocating engine that is confined Brownian motion in the
fluctuating potential (see Fig. 1). The confining potential rep-
resents the interaction between the dimer heads, which is as-
sumed to behave at large distances as x*, @ > 1. The en-
gine operation has been analyzed in the two limiting regimes
of the low and high frequency of potential switching. The
results of this approximate analysis, Egs. (19) and (29), to-
gether with the exact solution obtained in the case of @ = 1,
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Eq. (37), as well as the exact solution for the parabolic poten-
tial, Eq. (12), lead to the main conclusion of this work that
thermal noise comes into play with nonlinearity of the in-
terparticle interaction. More specifically, while thermal noise
contributes nothing into the motion inducing mechanism
when o = 2, it enhances (weakens) the system response when
o > 2 (o < 2) (see Fig. 2). When the potential is asymmetric,
noticeable observation is that in the high-frequency regime
both the left and right branches of the potential contribute
to the temperature dependence of the velocity on the same
footing, while in the low-frequency regime this dependence
is controlled by the relatively gradual branch of the potential.
Through this study, we learn how the interparticle interaction
affects the dimer transport and, in particular, the role of ther-
mal noise in the motion-inducing mechanism.
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