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Adaptively Controlling Nonlinear Continuous-Time 
Systems Using Multilayer Neural Networks 

Fu-Chuang Chen and Chen-Chung Liu 

Abstract-Multilayer neural networks are used in a nonlinear adap- 
tive control problem. The plant is an unknown feedback-linearizable 
continuous-time system. The control law is defined in terms of the neural 
network models of system nonlinearities to control the plant to track 
a reference command. The network parameters are updated on-line 
according to a gradient learning rule with dead zone. A local convergence 
result is provided, which says that if the initial parameter errors are 
small enough, then the tracking error will converge to a bounded area. 
Simulations are designed to demonstrate various aspects of theoretical 
results. 

I. INTRODUCTION 
Adaptive control of linear systems has been an active research area 

in the past two decades. It is only recently that issues related to adap- 
tive control of feedback-linearizable nonlinear systems are addressed, 
e.g., [ 11, [2]. An important assumption in previous works on nonlinear 
adaptive control is the linear dependence on the unknown parameters, 
i.e., the unknown nonlinear functions in the plant have the form 

where fz 's can be some known special nonlinear functions, e.g., [ 11, 
[2], or certain basis functions, e.g., Gaussian basis functions [9] and 
polynomial basis functions. 

Multilayer neural networks [3] are general tools for modeling 
nonlinear functions since they can approximate any nonlinear function 
to any desired accuracy [6]. An apparent feature that multilayer 
networks are different from the linearly parameterizing modeling 
methods (1) is that their parameters appear nonlinearly. In contrast 
to the local nature of the Gaussian networks (i.e., each network 
parameter can only locally affect the network output) [9], the global 
nature of multilayer networks (i.e., the fact that all network weights 
play significant roles in determining the network output due to an 
input) may significantly reduce the number of parameters required. 
Compared with interpolating polynomials, multilayer networks are 
usually much well-behaved since they employ sigmoid-type nonlin- 
earities. A unique advantage associated with multilayer networks is 
that when the number of neuron layers is fixed (in practice, less 
than four layers are used), the computation time of the network 
is independent of the network complexity (i.e., the number of 
neurons used in each layer, which is related to the complexity of 
the unknown function to be approximated), provided appropriate 
computing hardware is available. On the other hand, multilayer 
networks have some disadvantages: First, they require significantly 
longer training time (compared with Gaussian networks). Second, 
their nonlinear parameters make related mathematical analyses very 
difficult. 

The idea of applying multilayer neural networks to adaptive control 
of feedback linearizable systems appeared in [4], [5]. Some in-depth 
developments on discrete-time problems are available in [7], [8]. 
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In this note, we study the continuous-time problems. Multilayer 
networks are used to model unknown nonlinear functions in the 
plant to generate cancellation controls. Networks weights are updated 
on-line according to a gradient type learning law which makes use 
of the popular back-propagation algorithm. The plant considered is 
a relative-degree-one single-inputhingle-output (SISO) system with 
stable zero dynamics. The stability and tracking result provided in 
this note is regional in system states, but local in network parameters. 
The local result may not be a conservative one, since a simulation in 
Section IV shows that the closed-loop control system indeed can go 
unstable if the initial parameter error is too large. 

11. LINEARIZING FEEDBACK CONTROL 
Consider the single-inputhingle-output system 

i: = f o ( z )  + go(z)u 
Y = h ( z )  (2) 

with z E R"; f o ,  go, h smooth (i.e., infinitely differentiable). The 
states z are assumed available. Differentiating y with respect to time, 
one obtains 

(3) 

Assumption 1: The function gl(z) is bounded away from zero 

ah ah 
Y = -fo(z) + -go(z)u = f l ( Z )  + g1(z)uL. az aZ 

over the compact set SI E R", that is 

1gi(z)1 2 b > 0,  vz E Si. 0 (4) 

Then for the linearizing feedback control law 

where 

T = Ym + a ( y m  - Y), a > 0 (6) 

y m ( t )  being the reference trajectory, the tracking error is described 
by the following error equation 

i . + a e = O  (7) 

where e = y - ym. It is clear that e will approach zero. 
Then (n - 1) other system states are associated with the zero dy- 

namics. With additional assumptions (which are assumed accordingly 
here) [l], there exists a diffeomorphism 

z =  [;;I = T ( z )  (8) 

such that T transforms the system (2) into its global normal form 

21 = f ( Z 1 ,  2 2 )  + g(z1, 22). 

y = 21. (9) 

Notice that f(z) = f(T(z)) = fi(z) and g(z) = g(T(z)) = gl(z). 
Ifz = 0 is the equilibrium point of the undriven system and h(0)  = 0 
(without loss of generality), the zero dynamics are defined to be 

i 2  = 4(0, 2 2 ) .  (10) 
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Assumption 2: The system (9) is globally exponentially minimum 
phase. By that we mean the zero dynamics 

t 2  = $(O, z2) 

are globally exponentially stable. Further, $ is assumed to be Lips- 
chitz in z1 and z2. Then a converse Lyanpunov theorem [ 101 implies 
that 3Vz(z2) such that 

in some ball BT1 C R"-l. 0 

m. ADAPTIVE CONTROL USING NEURAL NETWORKS 
Suppose f l ( z )  and g1(z) are- unknown, and they are modeled 

by the two multilayer networks f ~ ( z ,  w )  and 91 (2, U) respectively, 
!here w and U are vectors of network parameters. The functions 
f1(-, .) and 91 ( e ,  .) depend on the structye of the neural network and 
the number of neurons. For example, if f i( . ,  .) is a three-layer neural 
network with p neurons in the hidden layer, it can be expressed as 

D / n  \ 

where w,'s are weights between the output and the hidden layer, 
W ; ~ ' S  are weights between the hidden and the input layer, and &'s 
are the bias weights of hidden neurons. In this research, we use the 
hyperbolic tangent function A ( z )  = (ez - e-=)/(ez + e-.).- 

Assumption 3: There exist coefficients w and U such that f l  and 
91 approximate the continuous functions f1 and 91, with accuracy E 

over a compact set SI E R", that is, 

3w, U s.t. maxljl(z, w )  - fl(z)I 5 E, and 

maxIh(z ,  U) - gl(z)l I E, Vz E SI. 0 (13) 

For convenience, denote Q = [w .IT. Assumption 3 is justified 
by the approximation results of [6]. In our work we assume that the 
structure of the network and the number of neurons have been already 
specified, and (13) holds for the plant under consideration, but we do 
not assume that we know the weights w and U for which (13) is 
satisfied. Let wt and ut denote the estimates of w and U at time t. 
Then the control ~ ( t )  is defined as the following. 

Control Law 

Define the error e = y - ym , and denote the parameter vector at time 
t as Qt = [utt ut]T.  The network weights are updated according 
to the following. 

updating Law 

6, = pD(el.7 (15) 

where p is a positive number representing the learning rate, D is a 
dead-zone function defined as 

D(e) = e, iqel > do 

and 

The Jacobian matrix J can be calculated-using the routines of the 
back-propagation algorithm [3]. Define 0 = Ot - 0. Then the 
updating law (15) can be rewritten as 

6 = pD(e)J.  (18) 

Theorem: Suppose Iyn( t ) l  5 dl for all t 2 0, and y m ( t )  
has bounded derivatives. Given any constant p > 0, any small 
constant do > 0, and any positive a, there exist positive con- 
stants yi = yi(p, di) ,  7 2  = yz(p, di) ,  €* = ~ * ( p ,  do, di ,  a), 
6* = 6 * ( p ,  do, d l ,  a), and p* = p* (p ,  do, d l ,  a) such that if 
TP1(By2) C SI and Assumptions 1 and 3 are satisfied on S1, 
Assumption 2 is satisfied on B,1, and 

lZ(0)l I P ,  

O < C L I c L *  

then the tracking error e = y - ym will converge to a ball of radius 
do centered at the origin. 

Proofi Consider the sets 

I e  = {el le1 I 71 

I0  = (01 161 5 6) 

(19) 

and 

(20) 

where y and 6 are positive constants. In the forthcoming analysis, 
it is assumed that 

e(t) E le, and 6(t) E Ie, Vt  2 0. (21) 

Later on, we will show that the assumption (21) will never be violated 
from the beginning of the control process, based on an invariant 
set argument and some conditions imposed on y, 6 and E. Since 
e = z1 - ym. we have Iz11 5 y + dl = k l .  Using the function 
V~(z2)  defined in ( l l ) ,  one obtains 

A 

which, together with the bounds ~ 1 1 ~ 2 1 ~  I Vz(z2) 5 C Z ) . Z Z ~ ~  in (1 l), 
shows that 

Let yz = d m  and define the set By2 = (21 IzJ 5 7 2 ) .  Now 
we have 
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Therefore, 

By (9), (1 3), and (14), one obtains 

= f(Z) + g(z)u 

= T + [fi(z) - .fi(z, W t ) ]  + [gi(z) -ti(=, u t ) ] .  

= T + [(.f~(z, W )  - .fl(z, W t ) )  -k ( h ( 2 ,  U )  - h(z,  ut)).] 

+ [(fl - .f1 (z, W ) )  + (=) - 61 (%7 

= r + [ - G T ~  + ~ ( l O l ' ) l +  [O(E)I .  (26) 

Since T = Ij, + a ( y ,  - y) ,  (26) becomes 

i: + ae = -GTJ + O(l6l') + O ( E )  = -6'J + q(t) .  (27) 

Before further development, we need to make it clear that the control 
~ ( t )  is uniformly bounded if 6 and E are small enough. The control 
~ ( t )  would go to infinity if g~(z, u t )  approaches zero. Since 

Iil(2, ut) - gl(z)l I Igl(z, ut)  - 41(z, .)I + Idl(Z, U) - g1(z)l 

5 q6(t)12 + E I T6' + E (28) 

the network g1(z, ut)  is bounded away from zero and has the same 
sign as g1(z), Vt 2 0, provided 6 and E are small enough such 
that for all 6 5 8 and E 5 F ,  ?S2 + E 5 i?8' + 7 5 (b/2), (since 
Igl(z)l 2 b > 0, see Assumption 1). With bounded state z and 
bounded control U, there exist c3 and c4 (depending on 7 2 ,  s, and 
F) such that 

(29) Iq(t)l I c316(t)12 + C4C I c3SZ + C4E. 

If 6, E are small enough, then there exists > 0 such that 

Iq(t)l + @ < ado.  (30) 

Define the function V(e7 6) as 

Then, 

The result (32) is arrived at under the assumption (21). Next we focus 
on the assumption (21). Consider the set 

If y and 6(0) are chosen such that 

6 2  PI- 2e2 (0) 

(33) 

(34) 

then (e( ')  ) falls into M ,  which, together with the derivation 

( e ( t )  ) will stay (32), guarantees that M is an invariant set, i.e., 

i! M for all t 2 0. Hence the assumptions that e ( t )  E I ,  and 
0 ( t )  E 16, Vt 2 0, will never be violated if y is large enough 
(when p = (&/2e2(0)), y can be set to be a e ( 0 ) ;  y increases as p 
decreases), and if 6 and E are small enough such that u( t )  is bounded 
away from zero and that (30) hold. 

Since V < -pdoa < 0 when le1 > do, the total time during which 
adaptation takes place is finite. Let T, denotes the time interval during 
which the tracking error e, for the ith time, stays outside the dead 
zone. If there are only finite times that the trajectory of the error would 
leave (and then reenter) the dead zone, the e will eventually stay in 
the dead zone. If the error may leave the dead zone for infinitely 
many times, still we have 

@(O) 

@(t)  

T, being finite. It follows that 

T,+O as i + m .  (35) 

If has been shown that e is bounded via an invariant set argument. 
Hence, from (U) ,  it is clear that d is also bounded. Let le,[ denote 
the largest tracking error during the T, interval. Then (35) and a 
bounded 6 imply that 

le,[ - do + 0 as i + 00. (36) 

The result (36) says that e will converge to the dead zone. 0 
Remarks: 
1) The main challenge in this problem is the fact that the output 

of the multilayer network depends nonlinearly on the network 
parameters. Except a dead zone applied around the tracking 
error [ 1 11, the parameter updating rule (15) employed is typical 
of rules used to adjust linear parameters [ 11. The main purpose 
of the dead zone is to cover the modeling error and the 
nonlinear effects of the parameter errors (see (30)). As a 
consequence, our convergence result is local with respect to 
the parameters; that is, the initial parameter errors are required 
to be small enough. This may not be a conservative result 
for the updating rule used, however, since Simulation Part A 
indicates that the closed-loop control system may go unstable if 
the initial parameter errors are too large. Therefore, in practice, 
before a multilayer network is used in the closed-loop control, 
an identification process involving the multilayer networks [ 121 
is required, or the networks have to be trained to learn the 
nonlinearities from a (crude) model of the system (if available). 

2) The theorem is regional in system states, i.e., the initial system 
state can start anywhere in a compact set. It is clear from the 
proof that the larger the compact set is (to which the initial 
states belong), the more restrictive the requirement on the initial 
parameters. Furthermore, the largest learning rate p that can 
be used is inversely proportional to the square of the initial 
tracking error (see (34)). These features are demonstrated in 
Simulation Part B. 

IV. SIMULATION 
The simulation is conducted using the nonlinear plant 

i = -0.2(sin (y) + cos (y)) - Y 
1 + y2 

+(0.4 sin (y) cos ( y 2 )  + 0 . 8 ) ~  (37) 

which is a special case of the transformed plant (9) containing no 
zero-dynamics. There are four layers in both f ( y ,  W )  and g(y, v ) :  
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TABLE I 
RELATIONS BETWEEN do AND 6 

6 

0.0 0.05 0.1 0.3 0.7 1.0 1.5 2.0 

0 . 0 0 8 *  * Ir Ir * * * X 

0.01 2040 360 480 Ir Ir * * x 
d,, 0.02 120 240 360 720 Ir * * x 

0.04 120 240 240 360 840 Ir * x 
0.08 120 120 240 240 360 600 3840 x 

TABLE I1 
RELATIONS BF~VEEN a AND 6 

6 

0.0 0.05 0.1 0.3 0.5 1.0 1.5 2.0 

1.0 2760 * * * .k * X X 

2.0 240 240 360 It * * X X 

a 4.0 120 240 360 600 4080 .* * X 

8.0 120 240 460 480 1200 * * x 
16.0 120 120 360 480 480 1560 4200 x 

the input and output layers contain only one linear neuron, and the 
two hidden layers both contain five nonlinear neurons. In practice, 
the modeling error E is determined once the structure of the neural 
network is determined. To estimate the size of E ,  we have the 
neural network undergo ,an off-line training until the maximum output 
errors between f and f, and between g and g reduce to 0.001297 
and 0.001304, respectively. The network parameters after training 
are treated as the optimal ones. Since the updating laws of the 
neural networks and the dynamics of the plants are all described 
by differential equations, the simulation are implemented by ACSL 
(Advanced Continuous Simulation Language), which runs on a SUN 
SPARC station. The simulation is divided into three parts. 

A. System Diverges $6 is Too Large 

Equations (29) and (30) together imply that the initial parameter 
error 6, the modeling error E ,  the dead-zone size do, and the gain a 
are related by 

To demonstrate this relationship, the parameters of the pretrained 
neural network are perturbed by numbers randomly selected from 
[-6, 61. The perturbed network is then used to control the plant 
to track the reference command ym = 0.5(s in((2~/30)t)  + 
sin((27r/20)t)). With this periodic reference command, the error 
is said to have converged if it stays in the dead zone for two periods, 
i.e., 120 seconds, since it is observed that the tracking error never 
comes out of the dead zone after that. Table I shows the relationship 
between 6 and do for a fixed a(= 1.0). The numbers in the table 
are the time required (in seconds) for convergence, * means that 
convergence has not been achieved up to 4800 seconds, and x means 
that the system diverges before 4800 seconds. It is observed from 
Table I that, when 6 = 0, a do of size 0.01 is needed to tolerate the 
modeling error. As 6 increases, do has to increase for the tracking 
error to converge. Notice that the system diverges for 6 2 2.0. Table 
I1 shows the relationship between 6 and a for a fixed do(= 0.01). 
It is observed that, as 6 increases, a has to increase for the tracking 
error to converge. The system can diverge for 6 > 1.5. 

x) 

Fig. 1. 

B. Tracking Error e ( t )  Converges for A Range of e ( 0 )  
This simulation is designed to show that, for fixed a, do, E and 

initial parameter errors, the tracking error would converge to the dead 
zone for a range of e ( 0 ) .  For all the simulation runs, the parameters 
of the pretrained network are perturbed by a set of numbers randomly 
selected from [-0.1, 0.11, do is fixed at 0.02, a equals 4.0, and ym is 
the same as in Part A. This simulation is also used to illustrate how 
p is related to e ( 0 )  (see (34)). For different e(O), p is gradually 
increased until convergence is not reached in 4800 seconds. The 
results are 

when e(0)  = 0.5, p 5 4.349 
when e(0) = 1.0, p 5 1.62 

when e(0)  = 1.5, p 5 0.752 
when e(0)  = 2.0, p 5 0.293 
when e ( 0 )  = 2.5, ,U 5 0.153. 

These data show that our convergence result is not local in e ( 0 )  
and that the largest possible learning rate is inversely proportional 
to e 2 ( 0 ) .  

The cumulated number of errors w.r.t. time when dead mne is used. 

C. The Effect of Dead Zone Against Modeling Error 
Here we want to demonstrate the advantage of using a dead zone 

in the presence of modeling errors. The plant, the networks and their 
initial weights are the same as those used in Part A, except that the 
high frequency term 0.1 sin((2r/O.l)y), which cannot be properly 
modeled by the neural network used, is added to f. The reference 
command is a smooth random trajectory. The parameters 6, do, a, and 
p are chosen to be 0.1, 0.007, 17.0, and 2.0, respectively. We check 
for the output error exceeding do every 0.005 sec. When an error is 
detected, we record the cumulated number of errors, its magnitude 
(le1 - d o ) ,  and the time when the error occurs. The results are shown 
in Figs. 1 and 2 for systems with dead zones and in Figs. 3 and 
4 for systems without dead zone. We observe (from Figs. 3 and 4) 
that the frequency of error Occurrence decreases toward zero and that 
le1 - do tends to converge to zero for the system with dead zone. For 
the system without dead zone, both the error frequency and the error 
size show no tendency of decreaseness (Figs. 3 and 4). 

V. CONCLUSION 
The motivation of using multilayer networks in adaptive control 

problems is briefly discussed in Section I. The techniques employed 
for arriving at the convergence result in this note can also be applied 
to other approximation models which are nonlinearly parameterized, 
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Fig. 2. The size of errors when dead zone is used. 
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Fig. 3. 
used. 

The cumulated number of errors w.r.t. time when dead zone is not 

x i 0 3  

n u m h  of e x d i g  aron 

Fig. 4. The size of errors when dead zone is not used. 

as long as a related algorithm is available to modify the nonlinear 
parameters. Although the control problem considered is a simpler 

one (for SISO, relative-degree-one systems only), this allows us to 
focus on the new aspects introduced by multilayer neural networks 
when they are used in adaptive control problems. Extensions to more 
general control problems (e.g., multi-inpudmulti-output systems with 
relative-degree higher than one) will be reported in a forthcoming 
paper. 
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Robust Kalman Filtering for 
Uncertain Discrete-Time Systems 

Lihua Xie, Yeng Chai Soh, and Carlos E. de Souza 

Absbact-This note is concerned with the problem of a Kalman filter 
design for uncertain discrete-time systems. The system under considera- 
tion is subjected to time-varying norm-bounded parameter uncertainty in 
both the state and output matrices. The problem addressed is the design of 
a linear filter such that the variance of the filtering error is guaranteed to 
be within a certain bound for all admissible uncertainties. Furthermore, 
the guaranteed cost can be optimized by appropriately searching a scaling 
design parameter. 
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