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T
he complexity of the world around us
stems primarily from the fact that
materials, particles, and phenomena

in it exist in a mixed, entwined form. Much
of the technological progress from the
Bronze Age metal smelting to modern
crude oil refinement was focused on extrac-
tion of pure components from mixtures.
Similarly, the power of science relies on the
principle of explaining complex phenomena
as originating from several simpler acts. One
of the topical scientific challenges;data
mining;is of the same nature. Whereas in
the process of system characterization we
can record voluminous multidimensional
data sets, big data analysis becomes a
serious problem. In this work we invoke
the centuries-old paradigm of separation
and address this issue by applying statisti-
cal methods to the task of demixing com-
plex charge transport behavior in a two-
component oxide nanocomposite.
Electronic transport in strongly correlated

oxides has long been one of the key areas of
condensed matter physics and is of interest

to multiple technological applications.1�5 It
was long recognized that properties of
these systems can be strongly position de-
pendent and controlled by defects, inter-
faces, grain boundaries, and dislocations.
The emergence of local scanning probe
microscopy techniques6�10 capable of ad-
dressing transport locally, on the level of
individual interfaces, defects, or grainbound-
aries, has given a new impetus to the field
and blossomed into a number of remarkable
studies including 2D electron gas on oxide
interfaces,11,12 polarization-controlled tun-
neling in ferroelectric films,13�16 conduction
at grain boundaries, ferroelectric domain
walls,17�23 and 1D topological defects.24 In
all of these works, mechanisms associated
with origins of disorder, local electronic
transport, and bias-activated switching of
different regimes were obtained from pecu-
liarities in current�voltage (IV) curves.
Recently, it has been recognized that the

electronic transport can be strongly af-
fected by concurrent bias-induced electro-
chemical processes,25�29 thermal or field
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ABSTRACT Spatial variability of electronic transport in BiFeO3�CoFe2O4
(BFO�CFO) self-assembled heterostructures is explored using spatially re-

solved first-order reversal curve (FORC) current voltage (IV) mapping. Multi-

variate statistical analysis of FORC-IV data classifies statistically significant

behaviors and maps characteristic responses spatially. In particular, regions of

grain, matrix, and grain boundary responses are clearly identified. k-Means

and Bayesian demixing analysis suggest the characteristic response be

separated into four components, with hysteretic-type behavior localized at the BFO�CFO tubular interfaces. The conditions under which Bayesian

components allow direct physical interpretation are explored, and transport mechanisms at the grain boundaries and individual phases are analyzed. This

approach conjoins multivariate statistical analysis with physics-based interpretation, actualizing a robust, universal, data-driven approach to problem

solving, which can be applied to exploration of local transport and other functional phenomena in other spatially inhomogeneous systems.

KEYWORDS: conduction hysteresis . oxide heterostructures . multivariate analysis . big data . scanning probemicroscopy . FORC-IV
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metal�insulator transitions,30�32 or ferrolectric polari-
zationdynamics,13,33,34 evoking complex time-dependent
phenomena. A paradigmatic example is the interfacial
or filament-controlled resistive switching in transition
metal oxides, which is being actively explored in
the context of neuromorphic and memristive elec-
tronics.35�38 One characteristic facet of these systems
is a complex field history dependence of conductance,
controlled by bias-induced changes in chemical com-
position or polarization distribution. These convoluted
processes, in turn, are controlled by surface structure
with defects acting as nucleation and pinning cen-
ters.39 Recently, we have introduced the first-order
reversal curve current�voltage (FORC-IV) scanning
probe microscopy (SPM) technique and demonstrated
imaging on spatially uniform Ca-substituted BiFeO3

and NiO systems40,41 as well as interfacial electroresis-
tance in the BiFeO3�CoFe2O4 (BFO�CFO) nano-
composite.42 Those studies show that the locally mea-
sured hysteresis in the FORC-IV curves corresponds to
changes of electronic conduction sensed by the SPM in
response to a bias-induced electrochemical process,
with the area of the IV loop, or loop opening, acting as a
measure of the local ionic activity.
One of the obstacles facing IV and FORC-IV spectro-

scopic imaging modes is data analysis and interpreta-
tion. Namely, only an insignificant fraction of the
collected data is traditionally explored in the form of

single local responses, or 2D cross sections, obviating
the interpretation of physical behavior and extraction
of information on local materials functionalities. For
example, previously a spatially-resolved 4D FORC-IV
data set, which consists of a measured current re-
sponse for a bias waveform at a spatial pixel location,
was analyzed to yield loop opening, threshold voltage,
and minimal resistance at each peak bias,40�42 leaving
the bulk of the spatially and bias-dependent transport
data unassessed. Similar hindrances plague other spec-
troscopic imaging modes, including 3D IV mapping in
conductive atomic force microscopy (AFM) and con-
tinuous imaging tunneling spectroscopy in scanning
tunneling microscopy. In this work, we combine FORC-
IVmeasurements withmultivariate statistical methods,
to discriminate between different behaviors based on
the shapes of the local IV curves in the full spectro-
scopic data set and use our data-driven interpretations
to explore suitable physical models.
The essence of our approach is presented in Figure 1.

FORC-IV data are acquired by recording current as
a function of a positive bias voltage waveform
(Figure 1b) applied to each pixel on a grid on the
BFO�CFO sample surface (Figure 1a). The spectro-
scopic current data are then explored using multi-
variate statistics and clustering methods to deter-
mine the number of statistically significant dissimilar
behaviors, yielding (a) the number of components

Figure 1. Experimental setup and data analysis flowchart. (a) Schematics of the CFO�BFO nanocomposite sample and FORC-
IV experimental setup; IV curves measured over BFO and CFO regions can be modeled as different (non)linear resistors,
whereas resistance on the CFO�BFO boundaries will be determined by both resistors connected in parallel. (b) A voltage
waveformwith several triangular pulses is applied at each spatial point of the sample, yielding a four-dimensional data set. (c)
Information on the local behavior of IV curves becomes available via the statistical analysis of the FORC-IV data set. (d) The
found components that represent typical material behavior can be fitted with specific physical models to yield quantitative
information on its behavior.
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(behaviors), (b) components shapes (e.g., representa-
tive IV curves in the case of FORC-IV data), and (c)
intensity score maps of spatial distribution for each
component. Figure 1c illustrates this for a simple case
of a two-component system, with linear and nonlinear
resistors. Here, local behavior can be modeled by sets
of linear or nonlinear resistors connected in parallel; for
example, interfacial resistance can be a combination
of individual BFO and CFO resistors or conductivity
channels corresponding to dissimilar carriers. In these
cases, the component shape contains information on
the physical mechanisms of local conduction and can
be fitted to the appropriate physical model (Figure 1d).
Overall, the multidimensional data set efficiently un-
dergoes a lossless compression to several spatial maps
of distinct statistically significant conductivity channels
at a specific pixel location, thus visualizing local nano-
scale properties of the sample. We will now proceed
with the description of the CFO-BFO sample, FORC-IV
measurements, statistical analysis, and physical param-
eters extraction in accordance with the scheme pre-
sented in Figure 1.

RESULTS AND DISCUSSION

Qualitative Analysis of Conductance in the BFO�CFO System.
The CFO�BFO system is a self-assembled tubular het-
erostructure that forms spontaneously during pulsed
laser deposition growth due to segregation of the
perovskite BFO matrix and the CFO spinel inclusions.43

The CFO nanopillars are approximately 100 nm across
and show high interfacial conductivity at low tip biases
(100 mV); however their cores, as well as the surround-
ing BFO matrix, are almost insulating (Figure 2a,b).
Higher biases (7 to 8 V) lead to resistive switching in
the interfaces; remarkably, the interfaces of a CFO

island can be switched independently.42 This behavior
can be explained with a dynamic dopant model,42,44,45

i.e., coupling oxygen vacancies, concentrated at inter-
faces, and their motion in the external electric field
with a related change of the doping level at a semi-
conducting interface and a subsequent formation of a
p�n junction. The presence of interfacial ionic activity
was also confirmed by FORC-IV.42 However, due to
very high variability in the type of transport between
dissimilar locations, the mechanism of the electronic
transport in this system remains ambiguous. In other
words, spatial averages mix responses from different
regions, whereas single pixel responses have low
signal-to-noise ratios and their veracity is unclear.
Here, we combine multivariate statistical analysis with
physics-based fitting to analyze these behaviors sys-
tematically and reconstruct a comprehensive transport
picture in these heterostructures.

FORC-IV data were collected on a 500 � 500 nm2

region shown in Figure 2. A 50 � 50 grid was overlaid
onto the area with each point probed by a bias wave-
form containing six triangular pulses going from 0 V to
a peak bias value and back to 0 V. Peak bias (Vp)
increased from 0.5 to 3 V in 0.5 V steps, forming six
distinct triangular pulses (corresponding to six IV loops,
Figure 2c). The spatially averaged IV curves show non-
linear behavior with diminutive hysteresis in the last
two loops (Figure 2d). However, behavior at individual
grid locations is drastically different: there are linear
and nonlinear IV curveswith different degrees of hyster-
esis starting at different threshold biases. Naturally
questions arise, with regard to spatial variability and
uniformity of these behaviors across material interfaces,
whether these behaviors can be identified and if in-
dividual physical mechanisms can be determined.

The intrinsic four-dimensional nature of the FORC-IV
data (current as a function of x, y position, voltage, and
loop number) prevents the observer from immediately
“seeing” spatial variation in behavior that is distributed
over a 2D parameter space. One solution is to reduce
the dimensionality to 3D, e.g., extract area vs loop
number, or average IV curve in the forward and reverse
directions. These data sets can then be plotted as (x, y)
cross sections (such as loop area maps) or spectra at
individual points (see Figure S1 in the Supporting
Information). We found that this simplification leads
to partial losses of highly relevant information origin-
ally contained in the data. Indeed, the shapes of the
local FORC-IV loops originate from the interplay of
multiple physical mechanisms, such as local conduc-
tion and resistive switching. Additionally, besides the
p�n junction mechanismmentioned above, these can
include electrochemical processes of oxygen evolution
and influence of surface states' population dynamics
on the composite's conductivity (gas sensing effect46).
Furthermore, local behavior can be strongly influenced
by the degree of reversibility of the process responsible

Figure 2. BFO�CFO nanocomposite. (a) Topographic im-
age (scale bar is 100 nm). (b) CAFM image recorded at a tip
bias of 0.1 V showing high interfacial conductance (in
yellow). (c) FORC-IV voltage waveform and a typical current
response. (d) Averaged set of FORC-IV curves recorded on
region shown in (a) for a 50� 50 spatial grid (2500 sets of IV
curves in total); arrows show six peak bias values, the
turning points of each of the six IV curves.
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for conduction and by stability of the tip�surface
contact and instrument noise. Finally, whether these
processes are controlled thermodynamically or kineti-
cally is also irreducibly hidden in the full spectral data.
Therefore, the need for a robust statistical approach
capable of drawing conclusions froma complete data set
free from compression loss becomes readily apparent.

Data Mining in FORC-IV. In order to decorrelate a high-
dimensional FORC-IV data set in a way that allows
physical interpretation, we need to know what is the
smallest reasonable number of behaviors present in
the system. The initial naïve hypothesis presented in
Figure 1 was that the number of behaviors is equal to
the number of materials in the nanocomposite. How-
ever, both the current map (Figure 2b) and FORC-IV
loop area maps (Figure S1, Supporting Information)
suggest a more complex scenario, with the interface
manifesting a different kind of conductive behavior
than the BFO and CFO regions. To help establish the
relevant number of behaviors, we have employed a
k-means clustering scheme on the full spectrographic
data set.47 The k-means algorithm separates M points
that exist in N dimensions into a specified k number of
clusters of curves that have similar behavior so that the
sum of squares within a cluster is minimized.48,49

arg min∑
k

i¼ 1
∑
xj∈Si

jj xj � μi jj2 (2)

Here μi is the mean of points in Si. We have used a
Matlab2012b version of the algorithm to minimize the
sum over all clusters of the within-cluster sums of
point-to-cluster-centroid distances. As a minimization
parameter, we have used a square Euclidian distance
with each centroid being the component-wise median
of the points in a given cluster.

The k-means algorithm divides the data set in a
specified number of optimally selected clusters. How-
ever, the number of clusters is a priori unknown. To get
ameasure of the quality of the separation as a function
of the number of clusters, the data can be presented
in the form of a dendrogram. The dendrogram plot in
Figure 3a illustrates cluster arrangement in a top-down
approach, where all observations are grouped into a
single cluster initially and are recursively separated
down the hierarchy. This is achieved by establishing

a distance metric between observations and linkage
criteria used to find the dissimilarity of clusters as a
function of pairwise distances. As previously men-
tioned, we have used square Euclidian distance as
our distance metric and centroid linkage, ||Ca � Cb||,
where Ca and Cb are the centroids of clusters a and b.
That is to say, we look at how tight the information
clusters in our data are as additional degrees of free-
dom are introduced. Therefore, a larger vertical drop in
each of the binary branches, in Figure 3a, indicates a
better cluster classification scheme in the data, where
small changes offer only a marginally better reduction
in the within-cluster sum. It then follows that minor
vertical differences in the dendrogram plot can be dis-
missed, and the largest drops indicate major changes
in data organization. Judging by the result shown in
Figure 3a, we have concluded that separation of our data
into four distinct types of behavior produces the most
physically meaningful results. Therefore, we used four
clusters as the inputs to our k-means clustering method.

k-Means clustering results are shown in Figure 3b,
where each individual color represents a cluster.
Figure 3c shows the mean IV for the entire data spec-
trogram, color coded with respect to the cluster it
represents. The results show a trend in conduction
behavior; the areas of highest conductivity with the
least IV hysteresis are located within certain islands
(red), with close second highest conductance being in
other islands, shown in yellow. Closely following is the
interface region shown in cyan. In this area we see
some hysteresis and loop opening at higher peak
biases. This trend continues with loops becoming con-
tinuously more hysteretic as we move to the BFO
matrix (navy in Figure 3b).

As we augment our understanding of the internal
structure in the data using k-means, the next natural
step is to try to extract statistical behavior in a way that
can be understood physically. That is to say, we want to
separate our data intowell-defined clusters with a clear
spectroscopic behavior that has an intensity weight
component providing insight into the spatial dis-
tribution of the behavior. Ideally, these components
will also be physically viable, i.e., well-behaved, posi-
tive, have additive weights, etc. This analysis can be
achieved by Bayesian linear unmixing.50 The Bayesian

Figure 3. k-Means analysis of the FORC-IV data. (a) Dendrogramplot of hierarchial binary cluster tree showing that four is the
optimal number of clusters (red circles). (b) k-Means cluster algorithm resultant map with four clusters specified (scale bar is
100 nm). (c) Mean FORC-IV curves for each of the four cluster types shown in map b.
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approach assumes data in a Y = MA þ N form, where
the complete observations Y are a linear combination
of position-independent endmembers, M, with respec-
tive relative abundances, A, corrupted by additive
Gaussian noise N. Additional features and applicability
of this method to extracting meaningful physical be-
havior out of end-members rely on non-negativity, full
additivity, and sum-to-one constraints for both the end-
members51,52 and the abundance53,54 coefficients.

The algorithm estimates the initial projection of
end-members in a dimensionality-reduced subspace
(PCA) via N-FINDR,55 which finds a simplex of max-
imum volume that can be inscribed within the hyper-
spectral data set using a simple nonlinear inversion.
The end-member abundance priors as well as noise
variance priors are chosen by a multivariate Gaussian
distribution, where the posterior distribution is calcu-
lated based on end-member independence using
Markov chain Monte Carlo, which generates asympto-
tically distributed samples probed by Gibbs sampling
strategy. The resulting end-membersM are non-nega-
tive, and respective abundances add up to 1. Hence,
the spectrum at each location is decomposed into
a linear combination of spectra of individual com-
ponents in corresponding proportions. Note that
these particular constraints make transition from sta-
tistical analysis to physical behavior significantly more
straightforward, as geometry of our sample implies a
parallel combination of conduction channels (Figure 1),
where currents are additive (more details in section III
in the Supporting Information). By making the abun-
dances additive and the end-members positive we can
start assigning physical behavior to the shape and
nature of the end-member curves. By extension, anal-
ysis of these curve's loading map adds the spatial
component to the behavior that nonstatistical meth-
ods of analysis generally do not allow. An additional
unique aspect of Bayesian analysis is that the end-
member spectra and abundances are estimated jointly

in a single step, unlike multiple least-squares regres-
sionmethods, where initial spectra should be known.50

Bayesian deconvolution results are shown in Figure 4.
They corroborate behavior shown by k-means, but
also display a more detailed separation. Unlike the
k-means map (Figure 3b), the image of the CFO island
in the upper left corner of the Bayesian loading map
strongly resembles the corresponding region in the
CAFM map (Figure 2b), with the central part of the
island and its interface having different conductivity.
However, it is now evident that separation is not based
purely on overall conductivity in the central and inter-
facial parts of this island, but rather on the shapes of
the IV curves. The first Bayesian end-member, stron-
gest on the island's interface (as well as two other
islands), shows ohmic behavior, whereas the second
Bayesian end-member is nonlinear and manifests
mostly in the inner part of this island. The third end-
member highlights the BFO matrix and has a very low
current response, a current offset, and some loop
opening. Finally, the last end-member is present only
in a few of the interfacial points and can be described
by a high conductivity and strongly hysteretic be-
havior. Thus, instead of separating conductivities of
the BFO matrix and CFO islands (i.e., trivial case, which
even classical CAFM can resolve), Bayesian unmixing
extracted four different types of behavior, ranging from
ohmic to nonlinear to memristive. Simultaneously, by
definition (positively defined and sum-to-one) Bayesian
end-member spectra, on one hand, allowdirect physical
interpretation (i.e., end-members are positive and scaled
in nA) and, on the other hand, are different from the
mean data found by k-means. Specifically, in cases
when local transport can be represented as a super-
position of parallel or series conductive channels,
Bayesian components have direct meaning of indivi-
dual components (see Supporting Information section
III). The difference between the data averaged over
some region and the strongest Bayesian end-member

Figure 4. Bayesian analysis of the FORC-IV data. Top row: four Bayesian end-members; bottom row: corresponding Bayesian
loading maps. Notice the rich internal structure of conductance within the grains as revealed in the Bayesian maps.
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spectrum in this region can be understood intuitively
as the difference between a mixture and one of its
constituent components, as explained in Supporting
Information (Figure S6). Here, we just point out that the
Bayesian end-members highlight the most representa-
tive component behavior, rather than a simple average
over the mix.

Physics behind Statistics. Having extracted the quin-
tessential behaviors from themultidimensional data set,
we now turn our attention to ascribing physical mean-
ing to these behaviors. As suggested earlier (Figure 1),
total local current through the BFO�CFO interface can
be represented as a sum of currents through the con-
stituent materials, which can be, therefore, associated
with the Bayesian end-members that are also additive
(see Supporting Information section III). Furthermore,
the local electronic transport through the nanocom-
posite can be limited by either the electrode's surface
junction, the conductance of the bulk, or a combina-
tion of the two. Table 1 summarizes the possible tran-
sport mechanisms, which we will compare to the
Bayesian end-member spectra. The listed equa-
tions16,56 were derived for a semiconductor in a uni-
form electric field, and therefore, in order to apply
them to our tip�nanocomposite�bottom electrode
system, we will employ the following assumptions: (1)
for the cases of Fowler�Nordheim and Schottky emis-
sion mechanisms, we assume abrupt junction approxi-
mation,56 with the maximal electric field in the tip�
surface junction given by Emax = ((2q/εs)(V þ Vbi))

1/2,
where V is the applied bias and Vbi is the built-in
potential due to the difference between the metal
and semiconductor work functions; (2) for the cases

of Poole�Frenkel and space-charge-limited bulk con-
ductance, we note that the local conductivity will
strongly depend on the strength of the electric field,
and therefore, current will be limited by the resistivity
of the deep layers of the film, lying close to the bottom
electrode, where electric field is the weakest and is
proportional to the tip bias: Ebulk = R(V/d). COMSOL
modeling shows that the field enhancement factor R is
on the order of 10. It follows that none of the Bayesian
end-members can be fitted well to the reverse-biased
Schottky barrier emission equation (which could be
the case for the positive tip bias; see bipolar IV curves in
ref 42).

The second end-member can be equally well fitted
to the space-charge-limited conductance and Fowler�
Nordheim (FN) tunneling equations. Moreover, there is
a transition in the voltage exponent from 1.6 to 2 as the
peak bias increases (i.e., from loop 1 to loop 6). How-
ever, the effective mass of the electron calculated from
the Child's law fitting is too high to be physically mean-
ingful. The electron mobility extracted from the Mott�
Gurney lawfit is ca. 6� 10�4 cm2/V 3 s,which is 9 orders of
magnitude higher than the literature data for sintered
powders57,58 (3 � 10�13 cm2/V 3 s at room temperature).

The FN fit of the second end-member is shown in
Figure 5a. Data (except for the few low-bias points) are
well linearized in the normalized logarithmic coordi-
nates and yield a potential barrier of 0.3 meV. This
value is reasonable, considering that the second end-
member behavior is concentrated in the same CFO
island as that of the first one, which is ohmic and lacks

TABLE 1. Possible Transport Mechanisms in BFO�CFO

Nanocompositea

Fowler�Nordheim
tunneling I ¼ Seff 3

q3mPt

8πhm�jB
Emax

2 e
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
128π2ms
9h2q2

jB
3

q
Emax

Schottky emission
I ¼ SeffA��T e � qjB0=kT e � q=kT (

ffiffiffiffiffiffiffi
qEmax
4πεs

p
)

Poole�Frenkel
conduction I ¼ SeffqμNDEbulk e

� q
kT (jB �

ffiffiffiffiffiffiffiffi
qEbulk
πεs

p
)

h i

Mott�Gurney law
I ¼ Seff

9εμ
8d

Ebulk

Child's law
I ¼ Seff

4ε
9

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2q
m�d Ebulk

3

r

a Seff is the effective tip�surface area; q is the elementary charge; mPt and m* are
effective electron masses in Pt and the semiconductor; h is the Planck's constant,φB
is the barrier height; Emax is the maximal electric field in the metal�semiconductor
interface; A** is the effective Richardson constant; T is temperature; k is the
Boltzmann constant; εs is the effective semiconductor permittivity; μ is the electron
mobility in the semiconductor; ND is the dopant concentration; Ebulk is the electric
field in the semiconductor bulk; d is the sample thickness.

Figure 5. Fitting Bayesian end-members to different trans-
port mechanisms. (a�c) Second, third, and fourth end-
members fitted to the Fowler�Nordheim tunneling equa-
tion, correspondingly. d) Fourth end-member fitted to the
Poole�Frenkel conduction model; blue and green crosses
represent data for lower (forward) and upper (reverse) IV
curves, correspondingly; best fits are shown in red lines. The
insets show linearization of the curves in the corresponding
normalized coordinates. Only the last loop at a peak bias of
3 V is shown for the sake of simplicity.
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any potential barrier at all. The third end-member can
be satisfactorily fitted with the FN tunneling equation
(Figure 5b), which, likewise, gives a low potential
barrier of 0.5 meV.

The fourth end-member is set apart from the rest by
the virtue of its hysteresis, with the forward and reverse
IV curves having distinctively different shapes above a
peak bias of ca. 2 V (i.e., last two loops). It is noteworthy
that the upper IV branch of the fifth loop almost
coincides with the lower branch of the next, sixth, loop,
which is indicative of retention of higher conductivity
after gradual switching. The natural question to ask is
whether the conduction mechanism changes during
this switching process. As Figure 5d and c show (see
insets), the lower (forward) IV branch is best fitted by
the Poole�Frenkel (PF) conductance, whereas the
upper one (reverse) is consistent with the FN tunneling.
We can speculate that the switching between the two
mechanisms may be due to the oxygen vacancy redis-
tribution activated at the interfacial regions and high-
lighted by this end-member. Initially, conductance is
governed by the bulk PF transport, due to low bulk
concentration of oxygen vacancies. Application of pos-
itive bias polarizes the BFOmatrix and drives vacancies
away from it, concentrating them on the outer part of
the interface and decreasing local conductivity. Mem-
ristive switching occurs, and current henceforth is
limited by the FN tunneling of the charge carriers from
the metal-coated tip into the conduction band of the
nanocomposite. Note, however, that the equations
of Table 1 are derived under the immobile dopants
assumption (bias-independent local dopant concen-
tration), which is exactly the opposite of the mecha-
nism underlying memristive behavior. The complexity
of the nanoscale electrochemical processes makes it
difficult to model it, and further studies are required to
determine the exact mechanism behind the process
manifested in the fourth Bayesian end-member. Finally,
the first, ohmic, end-member can be used to estimate
the conductivity of CFO, ca. 0.13 S/m, which is several
orders of magnitude higher than reported before for
pure CFO.57 This is consistent with the hypothesis of
oxygen vacancies being accumulated at the tubular
BFO�CFO interface.42 The interface becomes highly
doped, almost metallic, which is detected experimen-
tally and is reflected in the first Bayesian end-member
(see Figure 4 left map).

Note that both the first and the fourth Bayesian
end-members highlight the BFO�CFO interface, the
inner and outer part thereof, respectively. In both
instances oxygen vacancies presumably play the key

role in the electronic transport behavior. However, the
behaviors of the first and fourth end-members are
strikingly different. An explanation for this can be
found by recalling the dependence of semiconductor
conductivity on dopant concentration. At low doping
level, the semiconductor's electronic conductivity is
low and very sensitive to small variations in doping
level. A highly doped classical semiconductor, though,
has a very high electronic conductivity, which does not
changemuch in response to small variations in dopant
concentration. Keeping in mind that oxygen vacancies
act as a mobile dopant, whose concentration changes
in response to the applied electric field, theywill have a
significant effect on the local electronic conductivity of
CFO if their local concentration is medium-low. This is
presumably the case of the outer CFO interface seen in
the Bayesian loadingmap 4 (Figure 4). The inner part of
the CFO islands, on the other hand, is highly doped,
and its nearly metallic conductivity is insensitive to
small changes in local oxygen dopant concentration.
Therefore, the first end-member is nonhysteretic.

CONCLUSIONS AND OUTLOOK

In summary, we have studied a BFO�CFO nanocom-
posite by a combination of the FORC-IV technique and
data mining analysis. It was established that in the
explored experimental parameter space the conduc-
tive behavior of the composite is best described by four
independent components: linear IV curves at the
CFO�BFO interface, parabolic-exponential at the CFO
island cores, exponential with low conductivity at the
BFOmatrix, andmemristive at a few interfacial locations.
These behaviors were explained in the framework of the
model, where conductivity was controlled by the oxy-
gen vacancies accumulated at the BFO�CFO interface,
and the corresponding IV curves were fitted to different
transport equations. It followed that the Fowler�
Nordheim tunnelingmechanismbest describes conduc-
tivity of the BFO matrix, the core CFO island, and the
upper part of the interfacial memristive curve, whereas
Poole�Frenkel transport can explain the lower branch.
More generally, these studies establish the pathway

for exploring complex position-dependent phenomena
in inhomogeneous systems. While spectroscopic imag-
ing techniques often allow spatially resolved responses
to be measured, analysis and interpretation consistently
remain a challenge. The combination of the statistical
data mining approaches for identification of statistically
significant behaviors and the physics-based fitting yields
a powerful methodology for extracting physical mean-
ing from a complex multidimensional data set.

METHODS

A BFO�CFO nanocomposite film of 100 nm was grown on
30 nm SrRuO3 (SRO)-buffered SrTiO3 (001) substrates by the

pulsed lased deposition technique. Growth was monitored

in situ using high-pressure reflective high-energy electron

diffraction. Electrical measurements (CAFM and FORC-IV) were

A
RTIC

LE



STRELCOV ET AL . VOL. 8 ’ NO. 6 ’ 6449–6457 ’ 2014

www.acsnano.org

6456

performed on a Cypher AFM (Asylum Research) equipped
with a National Instruments data acquisition card controlled
by a computer through custom-written Matlab/LabView soft-
ware. Bias was applied to a conductive Cr/Pt-coated (Budget
Sensors) AFM tip, and current was detected off the bottom
electrode (SRO) with a Femto amplifier (DLPCA-200). Matlab
codes were used for data processing, statistical analysis, and
fitting.
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