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Agricultural imports are becoming increasingly important in terms of their impact on economic develop-
ment. An accurate model must be developed for forecasting the value of agricultural imports since rapid
changes in industry and economic policy affect the value of agricultural imports. Conventionally, the
ARIMA model has been utilized to forecast the value of agricultural imports, but it generally requires a
large sample size and several statistical assumptions. Some studies have applied nonlinear methods such
as the GM(1,1) and improved GM(1,1) models, yet neglected the importance of enhancing the accuracy of
residual signs and residual series. Therefore, this study develops a novel two-stage forecasting model that
combines the GM(1,1) model with genetic programming to accurately forecast the value of agricultural
imports. Moreover, accuracy of the proposed model is demonstrated based on two agricultural imports
data sets from the Taiwan and USA.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

Since agricultural development is critical to the economic
development of every country, agricultural issues are of global con-
cern. Governments must devise viable economic policies to avoid
unnecessary costs that are incurred with increasing agricultural
imports. For example, after joining the World Trade Organization
(WTO) in 2002, Taiwan signed the Economic Cooperation Frame-
work Agreement (ECFA) in 2012 for reducing commercial barriers
with China, drastically changing the value of agricultural imports.
Since economic forecasting in the agricultural sector is critical to
agricultural business planning and economic policy making, a
high-precision forecasting approach must be designed to evaluate
agricultural imports to enable policy makers to implement effec-
tive policies concerning agricultural imports and enhance eco-
nomic development.

Relevant literature includes using various forecasting
approaches to forecast agricultural demand (Lambert and Cho,
2008). Multiple linear regression and Box–Jenkins models
(Agrawal, 2003; Lambert and Cho, 2008) are two conventional sta-
tistical methods. However, those approaches may be inaccurate
when data sets are small and nonlinear, as well as fail to meet cer-
tain statistical assumptions (Lee and Tong, 2011b; Pao, 2009).
Hence, the forecasting accuracy of traditional statistical methods
often varies under real-life condition (Yang et al., 2009). With the
development of advances in machine-learning methods, some
algorithms such as artificial neural network (ANN) and genetic
algorithms (GAs), have been utilized in agricultural forecasting.
For example, Jutras et al. (2009) adopted the ANN to predict the
morphological parameters of street trees and found that the ANN
can yield robust and precise results. Yang et al. (2009) combined
principal component analysis and ANN to predict the population
of the paddy stem borer (Scirpophaga incertulas), indicating that
their proposed model outperformed other models. Ou (2012) pro-
posed an improved forecasting model that combined improved
GM(1,1) (IGM(1,1)) applied in modeling original time series and
GAs applied in estimating the parameters of IGM(1,1), and demon-
strated that the proposed model outperformed other models.
Despite yielding satisfactory results for real-world data sets, the
above methods have certain limitations. For instance, the hidden
layers in ANN are difficult to explain, and the relationship between
the independent and dependent variables cannot be expressed as a
clear mathematical equation (Lee and Tong, 2011b). Moreover, the
high precision of the above approaches depends on the sample
sizes and the parameter settings that are determined by a trial
and error approach. Using neural network-based models to con-
struct an optimal network model is often criticized, owing to the
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lack of openness and shift of emphasis towards training the net-
work model (Srinivasan, 2008). Since data on agricultural imports
are generally few and nonlinear, they may not yield accurate fore-
casting results when conventional statistical methods are applied.

Nonlinear or small-size time-series data sets are handled using
approaches such as fuzzy theory, grey model (GM), and genetic
programming (GP). The observations (real numbers) of fuzzy time
series in a certain period are converted as discrete fuzzy sets
(Egrioglu et al., 2011a). The procedure of fuzzy time series consists
of three stages: fuzzification, determination of fuzzy relations and
defuzzification (Song and Chissom, 1993). Some studies have
attempted to increase forecasting accuracy by developing fuzzy-
based approaches. For instances, Egrioglu et al. (2011a) determined
an appropriate number of fuzzy clusters by using the Gustafson–
Kessel fuzzy clustering algorithm and, later, determined the length
of intervals of fuzzy time by using an optimization technique
(2011b). Despite the applicability of the fuzzy-based approach to
small data sets, determining an appropriate length of intervals
based on different algorithms may expend a considerable amount
of time. As useful in forecasting problems (Ou, 2012; Lee and Tong,
2011a; Yin and Tang, 2013; Pao et al., 2012; Chang et al., 2013), GM
is often used in forecasting when data sets contain more than four
samples (Wu et al., 2013). GM can generally be represented as
GM(g,h), where g and h denote the order and number of variables
in constructing the GM, respectively. For example, GM(1,1) repre-
sents the first-order single-variable GM, and has been used to fore-
cast agricultural output (Ou, 2012). To enhance the accuracy of
GM(1,1) in the construction of agricultural demand values (includ-
ing the value of agricultural imports/exports), some studies have
modified GM(1,1) models (Ou, 2012). Although capable of yielding
accurate forecasting results, the modified GM(1,1) belong to the
GM system in order to obtain values of necessary parameters.
However, few studies have improved the residual time-series data
of the GM(1,1) with a machine-learning approach. Recently, some
hybrid forecasting models have been proposed to improve the per-
formance, which can be achieved using only a single forecasting
method (Zhou and Hu, 2008; Pai and Lin, 2005; Aladag et al.,
2009; Wang et al., 2012; Yolcu et al., 2013; Khashei and Bijari,
2012). For instances, Khashei and Bijari (2012) forecasted time ser-
ies data by using probabilistic neural networks with feed-forward
neural networks. Yolcu et al. (2013) performed time series fore-
casting by using linear and nonlinear ANN model. A criticism of
ANN is the difficulty to explain the layers and neurons in its hid-
den-layer. Moreover, those studies have ignored the importance
of residual-sign estimator. According to some studies (Hsu and
Chen, 2003; Hsu, 2003; Lee and Tong, 2011a), the accuracy of the
estimator of residual signs can influence the performance of a fore-
casting model. Moreover, using a complex residual equation to
obtain the forecast residual values makes it difficult to use the
hybrid model.

GP is an approach for evolving the functions that performs well
in the defined problems (Koza, 1992) and constructs a forecasting
model by using the symbolic regression method. The intelligence
scheme can automatically extract knowledge from data sets and
construct the model without defining related problems. The
approach used in this paper is based on GP, owing to that GP often
performs better than conventional statistical methods, in terms of
forecasting accuracy. Although the performances of all forecasting
models depend on the quality of the data set, these models differ in
the ability to mine the inherent relationships in the data set. Most
real-world data sets are nonlinear and time-dependent. GP is a rel-
atively easy means of constructing mathematical models since no
specialized knowledge. In some modeling time series applications,
GP performs well in small data sets. For instance, based on a multi-
level genetic programming (MLGP) approach, Forouzanfar et al.
(2012) developed a transport energy demand forecasting model
(training set: 35 samples from year 1968 to 2002; testing set: 3
sample size which from year 2003 to 2005), which is more accurate
than other models. By using a GP approach, Lee et al. (1997)
designed an electric power demand forecasting model (training
set: 20 samples from year 1961 to 1980; testing set: 10 samples
from year 1981 to 1990), which is more accurate than the conven-
tional regression model. Moreover, while developing the classifica-
tion model, Lee and Tong (2012) predict the transfer efficiency of
photovoltaic systems by using a GP-based model; the classification
model outperforms other models on small photovoltaic data sets.
Some studies (Huang et al., 2006; Muttil and Lee, 2005) demon-
strated that GP can perform well even in small data sets.

This study develops a novel two-stage forecasting model that
first utilizes GM(1,1) to forecast original data based on the advan-
tage of being applied to small data sets, and then uses GP to fore-
cast the residual signs and residual series of GM(1,1) based on the
advantage of adopting symbolic regression to model complex data
sets, to increase its accuracy in forecasting the value of agricultural
imports. Analysis results demonstrate that the proposed model is
easily applied in practice and performs well in modeling time-ser-
ies data sets. The rest of this paper is organized as follows. Section 2
examines the feasibility of improving the grey forecasting model,
which includes GM(1,1), to forecast the original data sets. The abil-
ity to use GP in order to forecast the residual signs and residual ser-
ies of GM(1,1) is examined as well. Section 3 then presents two
data sets to demonstrate the application of the proposed model,
which is compared with other models. Conclusions are finally
drawn in Section 4, along with recommendations for future
research.
2. Methodology

2.1. GM(1,1) forecasting model

The GM(1,1) has been utilized in agriculture (Ou, 2012) and
high-tech industry (Hsu, 2003; Hsu and Wang, 2007; Wang et al.,
2011). GM(1,1) usually requires only four or more data points
(Hsu, 2009) to construct a forecasting model. GM(1,1) is con-
structed as follows.

The general procedure for constructing a GM(1,1) is given as
follows.

Collect an original non-negative time-series data sequence,

wð0Þ ¼ ½wð0Þð1Þ;wð0Þð2Þ; . . . ;wð0ÞðnÞ�; n P 4 ð1Þ

where n is the total number of periods, and w(0)(n) is the observa-
tion that is associated with the nth time period.

The technique applies the accumulated generating opera-
tor (AGO) to w(0) to obtain an accumulated data sequence, as
follows.

wð1Þ ¼ wð0Þð1Þ;
X2

m¼1

wð0ÞðmÞ; . . . ;
Xn

m¼1

wð0ÞðmÞ
 !

¼ wð1Þð1Þ;wð1Þð2Þ; . . . ;wð1ÞðnÞ
� �

; ð2Þ

where w(0)(1) equals w(1)(1).
GM(1,1) is constructed using the following grey differential

equation.

wð0ÞðkÞ þ a� sð1ÞðkÞ ¼ u; k ¼ 2;3; . . . ;n ð3Þ

where a, u, and s(1)(k) represent the development coefficient, grey
input, and background value, respectively. Notably, s(1)(k) is
obtained by applying the mean operator to w(1), as follows.

sð1ÞðkÞ ¼ wð1ÞðkÞ þwð1Þðk� 1Þ
2

; k ¼ 2;3; . . . ;n: ð4Þ



Fig. 1. Demonstration of GP parse tree.
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The solution for w(1)(k) in Eq. (4) can be estimated using the
ordinary least squares (OLS) method, as follows.

wð1ÞðkÞ ¼ wð0Þð1Þ � û
â

� �
� e�âðk�1Þ þ û

â
; k ¼ 2;3; . . . ;n ð5Þ

where

â
û

� �
¼ ðBT BÞ�1

BT W; ð6Þ

and

B ¼ �wð1Þð2Þ �wð1Þð3Þ � � � �wð1ÞðnÞ
1 1 � � � 1

� �T

; ð7Þ

W ¼ ½wð0Þð2Þ;wð0Þð3Þ; . . . ;wð0ÞðnÞ�T : ð8Þ

Finally, the GM(1,1) forecasting equation can be obtained using
the inverse AGO technique, as follows.

ŵð0ÞðtÞ ¼ ŵð1ÞðtÞ � ŵð1Þðt � 1Þ

¼ wð0Þð1Þ � û
â

� �
� ð1� eâÞ � e�â�ðt�1Þ; t ¼ 2;3; . . . ð9Þ
First stage 

Second stage 

Fig. 2. Procedure of the proposed two-stage approach.
2.2. Forecasting residual signs and residual series of GM(1,1) based on
GP

This study develops a novel improved GM(1,1) model to
enhance the accuracy of GM(1,1). The difference between the tar-
get values w(0) and the predicted values ŵð0Þ is called the residual
series. The modified forecasted values are obtained by combining
the original GM(1,1) and the residual component: residual signs
and the residual series of GM(1,1), which increase the accuracy
based on GP. Some studies have demonstrated that the effective-
ness of the residual series of GM(1,1) depends on the number of
observations with the same sign (Hsu and Chen, 2003; Hsu,
2003; Lee and Tong, 2011a). Notably, the residual GM(1,1) model
cannot be constructed if the number of observations with the same
sign does not exceed four (Hsu and Chen, 2003; Lee and Tong,
2011a). Despite their use of different machine-learning approaches
to forecast the residual signs (ANN and GP, respectively), Hsu and
Chen (2003) and Lee and Tong (2011a) failed to consider the weak
performance of GM(1,1) model when its residual series are com-
plex or do not fit the exponential curve. Some studies have
attempted to enhance the accuracy of residual series of GM(1,1)
by using various approaches. For example, although Zhou and Hu
(2008) modeled the residual series of GM(1,1) by using ARIMA,
its performance may be weak when the sample was small or did
not meet statistical assumptions.

Koza (1992) proposed the GP as a new algorithm for computer
programs that exploits the concept of evolution to identify prob-
lems (as in modeling time-series data sets). GP can automatically
create computer programs to solve problems according to the fol-
lowing two principles (Robinson, 2001): (a) it can make developing
difficult algorithms easier (b) it might perform better than other
fitness-driven automatic programming techniques such as hill
climbing and simulated annealing. Like GAs, the GP uses mutation,
crossover, and reproduction (Sette and Boullart, 2001) in modeling
identification problem. Fig. 1 presents a GP parse tree that is used
to express a simple example of exp[(6 � x) � (8 + y)]. To obtain an
appropriate forecasting model, the user has to adopt a trial-and-
error method to identify a number of GP parameters when apply-
ing the approach in the data-set modeling. GP has become more
popular than conventional linear forecasting methods (e.g., ARIMA)
because it can be applied to find complex nonlinear solutions. As
compared to other popular machine-learning methods such as
ANN, GP is more accurate in modeling and does not need a large
sample size to train the data sets (Forouzanfar et al., 2012).

This study attempts to increase the forecasting accuracy of
GM(1,1) by combining GM(1,1) applied in the original time-series
data and GP applied to forecast the residual signs and residual ser-
ies of GM(1,1) based on the strength of the parse-tree function and
their satisfactory performance with small sample sizes. Fig. 2
depicts the construction of the proposed model.

Firstly, in forecasting the residual signs, a dummy variable d(t)
is adopted to reveal the sign of the residual in the tth year. If the
residual sign for the tth year is positive, then the value of d(t) is
one; otherwise, d(t) is zero. For selecting the number of lagged
residual variables, some hybrid forecasting models (Aladag et al.,
2009; Zhang, 2003; Forouzanfar et al., 2012; Hsu and Chen,
2003; Lee and Tong, 2011a) adopted different approaches such as
a trial and error method (Aladag et al., 2009; Lee and Tong,
2011b) or given selected criterion (Zhang, 2003; Forouzanfar
et al., 2012; Hsu and Chen, 2003; Lee and Tong, 2011a) to deter-
mine the lagged residual variables. This study attempts to
determine the lagged residual variables (including residual signs
and series) by using a given selected criterion which is referred
to Hsu and Chen (2003) and Lee and Tong (2011a). Moreover, in
order to compare with different selected lagged residual variables,
this study also adopted one lagged residual variable as the input
element of GP model. The GP model for residual signs (giving
two lagged residual signs) is represented as follows.

d̂ðtÞ ¼ f ðdðt � 1Þ;dðt � 2ÞÞ; ð10Þ



Table 1
Parameter settings of GP for the one and two lagged residual signs.

Parameter Value

Population size 100
Maximum number of

generation
1000

Fitness function Minimize:
Pn

t¼1jðd̂ðtÞ � dðtÞÞj,Pn
t¼1jðd̂0ðtÞ � dðtÞÞj

Function set +, �, �, �, sin, cos, exp, log, constant
Crossover rate 0.9
Mutation rate 0.1
Simulation time 10

Table 3
MAPE criteria for model assessment. Source: Delurgio (1998).

MAPE (%) Forecasting level

<10 High forecasting
10–20 Good forecasting
20–50 Reasonable forecasting
>50 Weak forecasting

(a) 
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where d̂ðtÞ represents the forecasted residual sign in the tth year.
The mathematical function f(d(t � 1), d(t � 2)) represents the non-
linear function that is constructed using GP, with independent vari-
ables d(t � 1) and d(t � 2). Table 1 lists the parameters of GP when
applied in one and two lagged residual signs. Based on the GP set-
tings, the sign of the tth year residual, s(t) (based on two lagged
residual signs as input variables of GP model), can be expressed as

sðtÞ ¼ 1; if d̂ðtÞ ¼ 1

�1 if d̂ðtÞ ¼ 0

(
; t ¼ 1;2;3; . . . ð11Þ

Secondly, the residual series of GM(1,1) is constructed using GP. The
algorithm is as follows.

Assume that the original absolute values of a residual sequence
are given by r(0),

rð0Þ ¼ eð0Þð2Þ; eð0Þð3Þ; eð0Þð4Þ; . . . ; eð0ÞðtÞ
� �

ð12Þ

where

rð0ÞðtÞ ¼ eð0ÞðtÞ ¼ wð0ÞðtÞ � ŵð0ÞðtÞ
�� ��; t ¼ 2;3; . . . ð13Þ

First, based on the lagged absolute residual time sequence of
e(0)(t � 1) and e(0)(t � 2), e(0)(t) is forecasted using the parse-tree
function in GP. Some studies (Hsu and Chen, 2003; Lee and Tong,
2011a) focus mainly on the selected lagged residual series
(e(0)(t � 1) and e(0)(t � 2)) when selecting the number of residual
variables. Hence, the GP model, used in the absolute residual series
of GM(1,1) can be represented as follows.

êð0ÞðtÞ ¼ f ðeð0Þðt � 1Þ; eð0Þðt � 2ÞÞ; ð14Þ

where êð0ÞðtÞ represents the forecasted value of residual series in the
tth year. Also, the mathematical function f(e(0)(t � 1), e(0)(t � 2)) is
the nonlinear function that is constructed using GP, with indepen-
dent variables e(0)(t � 1) and e(0)(t � 2). Table 2 lists the GP param-
eters in the absolute one and two lagged residual series of GM(1,1).

Hence, the two-stage forecasting model when adopting one and
two lagged residual variables can be obtained, respectively

ŵð0Þone-laggedðtÞ ¼ wð0Þð1Þ � û
â

� �
� ð1� eâÞ � e�â�ðt�1Þ

þ s0ðtÞ � f eð0Þðt � 1Þ
� �	 


; ð15Þ
Table 2
Parameter settings of GP for the absolute one and two lagged residual series of
GM(1,1).

Parameter Value

Population size 100
Maximum number of

generation
1000

Fitness function Minimize:
Pn

t¼1jêð0ÞðtÞ � eð0ÞðtÞj,Pn
t¼1jðê0ð0ÞðtÞ � eð0ÞðtÞÞj

Function set +, �, �, �, sin, cos, exp, log, constant
Crossover rate 0.9
Mutation rate 0.1
Simulation time 10
s0(t) can be expressed as:

s0ðtÞ ¼ 1; if d̂0ðtÞ ¼ 1

�1; if d̂0ðtÞ ¼ 0

(
; t ¼ 1;2;3; . . . ð16Þ

and d̂0ðtÞ ¼ f ðdðt � 1ÞÞ; t = 1,2, . . .,n,n + 1,. . .

ŵð0Þtwo-laggedðtÞ ¼ wð0Þð1Þ � û
â

� �
� ð1� eâÞ � e�â�ðt�1Þ

þ sðtÞ � f eð0Þðt � 1Þ; eð0Þðt � 2Þ
� �	 


;

t ¼ 1;2; . . . ;n;nþ 1; . . . ð17Þ
3. Computational results

3.1. Data sources

The performance of the proposed model is evaluated using two
agricultural imports data sets. First, effectiveness of the proposed
two-stage model is demonstrated based on agricultural import
data in Taiwan from 2002 to 2011. Above data are obtained from
the Annual Report of the Council of Agriculture, Executive Yuan
(Taiwan). The historical values of agricultural imports in Taiwan
from 2002 to 2009 are utilized as the training data and the data
for 2010–2011 are utilized for testing. The second data sets are
annual agricultural imports of USA during 2002–2011, based on
data are obtained from the United States Department of Agricul-
ture (USDA). The historical values of agricultural imports in USA
from 2002 to 2009 are utilized as the training data and the data
for 2010–2011 are utilized for testing. Moreover, the proposed
model (including one and two lagged residual variables as input
variables of GP model) is also compared with other models,
Number of lags 

Number of lags 

(b) 

Fig. 3. ACF and PACF results for the agricultural imports data sets in Taiwan.
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including GM(1,1) model, the traditional ARIMA model, the
improved GM(1,1) model by Lee and Tong (2011a).
3.2. Performance evaluation

The above forecasting models are compared in terms of predic-
tion accuracy based on two evaluation indices. Predictive accura-
cies of the above four forecasting models are compared using
two indices. The first index is the percentage error (PE), which is
defined as follows.

PE ¼ ŵð0ÞðtÞ �wð0ÞðtÞ
wð0ÞðtÞ � 100%; ð18Þ

where ŵð0ÞðtÞ denotes the forecasted value, and w(0)(t) denotes the
actual value. Similar to the first index, the accuracy of the conven-
Fig. 4. Box–Ljung evaluation results for the a

Fig. 5. Fitness value of the best simulated one and two la

Fig. 6. Fitness value of the best simulation absolute one and two lag
tional forecasting model popularly is evaluated using the mean
absolute percentage error (MAPE). MAPE is defined as follows.

MAPE ¼
Pn

t¼1 ŵð0ÞðtÞ �wð0ÞðtÞ=wð0ÞðtÞ
�� ��

N
� 100%; ð19Þ

DeLurgio (1998) indicated that using MAPE facilitates the eval-
uation of the forecasting model accuracy. Table 3 summarizes the
criteria for evaluating the models.
3.3. The results of forecasting the agricultural imports data sets in
Taiwan

Results of the four forecasting models (i.e. the GM(1,1) model,
the improved GM(1,1) model by Lee and Tong (2011a), the ARIMA
model, and the proposed model) for Taiwan’s agricultural imports
data sets are expressed as follows:
gricultural imports data sets in Taiwan.

gged residual signs over 1000 generations (Taiwan).

ged residual series of GM(1,1) over 1000 generations (Taiwan).



Table 4
Forecasted values and errors among models for the agricultural imports value in Taiwan (unit: US$1000).

Year Original value GM(1,1) Lee and Tong (2011a) ARIMA Proposed (one lagged) Proposed (two lagged)

Model value PE Model value PE Model value PE Model value PE Model value PE

2002 7105407 7105407.00 0.00 7105407.00 0.00 7105407.00 0.00 7105407.00 0.00 7105407.00 0.00
2003 7829519 8312247.17 6.17 7829519.00 0.00 7525528.43 �3.88 7829512.64 0.00 7829519.00 0.00
2004 8862024 8745198.19 �1.32 8899769.77 0.43 8249640.43 �6.91 9228093.16 4.13 8958911.39 1.09
2005 9355094 9200699.87 �1.65 9450835.99 1.02 9282145.43 �0.78 9083707.20 2.90 9366267.02 0.12
2006 9428136 9679926.77 2.67 9275142.91 �1.62 9775215.43 3.68 9525365.80 1.03 9442101.34 0.15
2007 10456064 10184114.64 �2.60 10839157.86 3.66 9848257.43 �5.81 10436072.22 0.19 10450568.81 �0.05
2008 12121293 10714563.60 �11.61 11774590.10 �2.86 10876185.43 �10.27 10442447.42 13.85 11463397.25 �5.43
2009 10046257 11272641.48 12.21 9557249.04 �4.87 12541414.43 24.84 9865745.29 1.80 10260280.11 2.13
MAPE (%)
(2002–2009) 4.78 1.81 7.02 2.99 1.12

2010 12759852 11859787.36 �7.05 14635728.55 14.70 10466378.43 �17.97 12949018.19 1.48 13673908.76 7.16
2011 14842035 12477515.27 �15.93 16969694.03 14.34 10886499.86 �26.65 11510081.71 22.45 14243014.18 �4.04
MAPE (%)
(2010–2011) 11.49 14.52 22.31 11.97 5.60

PE ¼ ŵð0Þ ðtÞ�wð0Þ ðtÞ
wð0Þ ðtÞ � 100%.

Model training

Model testing

Fig. 7. Distributions of forecasted values and real values from 2002 to 2011 for the agricultural imports data sets in Taiwan.

Fig. 8. Trend of percentage error (%) among the four models from 2002 to 2011 for the agricultural imports data sets in Taiwan.
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(a): The GM(1,1) model                (d): The proposed model (One lagged) 

(b): The proposed model of Lee and Tong (2011a) (e): The proposed model (Two lagged) 

(c): The ARIMA model 

Fig. 9. Scatter plots among different forecasting models for the agricultural imports data sets in Taiwan.

Y.-S. Lee, W.-Y. Liu / Computers and Electronics in Agriculture 104 (2014) 71–83 77
(1) The GM(1,1) forecasting equation is:
ŵð0ÞðtÞ¼7900730:716�expð0:0507747821�ðt�1ÞÞ; t¼2;3; . . .

ð20Þ
(2) The improved GM(1,1) forecasting equation by Lee and Tong

(2011a) is:
ŵð0ÞðtÞ ¼ 7900730:716� expð0:0507747821� ðt � 1ÞÞ
þ sðtÞ � f95517:486� expð0:4813479730� ðt � 1ÞÞg;
t ¼ 1;2; . . . ; ð21Þ
where s(t) is the binary variable (1 or �1). The forecasted residual
sign is obtained using GP (independent variables: d(t � 1) and
d(t � 2), dependent variable: d(t)). The parameter settings of GP
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Number of lags 
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(b) 

Fig. 10. ACF and PACF results for the agricultural imports data sets in USA.
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for the population size, maximum number of generation, crossover
rate, and mutation rate are set to 100, 1000, 0.9, and 0.1, respec-
tively. If d̂ðtÞ is 1, then s(t) represents 1; otherwise, s(t) represents
�1 (d̂ðtÞ is 0).

(3) The ARIMA forecasting equation is:
Based on SPSS software, the order of the ARIMA model is mod-

ified using the autocorrelation function (ACF) and partial autocor-
relation function (PACF) criteria in the training data. Fig. 3
Fig. 11. Box–Ljung evaluation results for th

Fig. 12. Fitness value of the best simulated one and two
summarizes the results of ACF and PACF. Therefore, it can be obvi-
ously seen that the differencing order: 1 to be the stationary state.
The forecasting model can be represented as follows:

ŵð0ÞðtÞ ¼ 420121:4300þwð0Þðt � 1Þ; t ¼ 2;3; . . . ð22Þ

Moreover, based on the Akaike Information Criterion (AIC) rule
(Harvey, 1981) and Box–Ljung test, an appropriate ARIMA model
is determined and the residual series of ARIMA is evaluated. In this
study, the AIC value of Eq. (22) is 216.9143. Fig. 4 shows the Box–
Ljung test. This figure demonstrates that the residual series of
ARIMA does not exhibit significant lack of fit.

(4) The proposed two-stage model can be obtained as follows.
Based on the GM(1,1) model, the residual signs can them be

evaluated by the GP model. Table 1 lists the parameter settings
based on GP for residual signs. Among the 10 simulation times, this
study demonstrates the best simulation results (based on the fit-
ness function) in Fig. 5. Hence, the forecasting equations of one
and two lagged residual sigs are represented, respectively, as
follows:

d̂0ðtÞ ¼ f ðdðt � 1ÞÞ ¼ ðexpð0Þ � dðt � 1ÞÞ: ð23Þ

d̂ðtÞ ¼ f ðdðt � 1Þ;dðt � 2ÞÞ
¼ ðexpððððððdðt � 2ÞÞ � 1:852Þ � ðexpð1:852Þ
� ððexpð1:852ÞÞ � ð1:8522ÞÞ � ðððdðt � 2ÞÞ � ððdðt � 1ÞÞ
� 1:852ÞÞ � ð1:8522ÞÞÞÞÞ: ð24Þ

This study also demonstrates the best one among 10 times for
the absolute one and two lagged residual series of GM(1,1). Table 2
lists the parameter settings of GP for the absolute residual series of
GM(1,1). Fig. 6 shows the fitness value of the best simulation for
absolute one and two lagged residual series of GM(1,1). Hence,
the forecasting equation for absolute one and two lagged residual
series of GM(1,1) can be represented, respectively.
e agricultural imports data sets in USA.

lagged residual signs over 1000 generations (USA).



Fig. 13. Fitness value of the best simulation absolute one and two lagged residual series of GM(1,1) over 1000 generations (USA).

Table 5
Forecasted values and errors among the models for the agricultural imports value in USA (unit: $ Million).

Year Original value GM(1,1) Lee and Tong (2011a) ARIMA Proposed (one lagged) Proposed (two lagged)

Model value PE Model value PE Model value PE Model value PE Model value PE

2002 41915.26 41915.26 0.00 41915.26 0.00 41915.26 0.00 41915.26 0.00 41915.26 0.00
2003 47383.70 50963.85 7.56 47383.70 0.00 46167.51 �2.57 51384.68 8.44 47383.70 0.00
2004 53989.18 54880.07 1.65 53923.47 �0.12 51635.94 �4.36 58604.00 8.55 53722.47 �0.49
2005 59291.06 59097.23 �0.33 60633.82 2.26 58241.43 �1.77 60489.62 2.02 60152.38 1.45
2006 65325.76 63638.44 �2.58 66106.68 1.20 63543.31 �2.73 64187.68 1.74 63866.32 �2.23
2007 71913.00 68528.62 �4.71 72493.35 0.81 69578.01 �3.25 71659.27 0.35 70410.01 �2.09
2008 80487.69 73794.57 �8.32 80163.12 �0.40 76165.24 �5.37 80477.61 0.01 77782.76 �3.36
2009 71680.99 79465.18 10.86 89694.99 25.13 84739.94 18.22 87366.06 21.88 87383.12 21.91
MAPE (%)
(2002–2009) 4.50 3.74 4.78 5.38 3.94

2010 81857.55 85571.53 4.54 69139.38 �15.54 75933.24 �7.24 93654.64 14.41 76331.03 �6.75
2011 98948.79 92147.12 �6.87 118542.11 19.80 80185.49 �18.96 104217.70 5.32 103117.90 4.21
MAPE (%)
(2010–2011) 5.71 17.67 13.10 9.87 5.48

PE ¼ ŵð0Þ ðtÞ�wð0Þ ðtÞ
wð0Þ ðtÞ � 100%.
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ê0ð0ÞðtÞ ¼ f ðeð0Þðt � 1ÞÞ
¼ ðððððeð0Þðt � 1ÞÞ � ð�27:488ÞÞ � ðð�27:488Þ
þ ð�37:114ÞÞÞ � ððððeð0Þðt � 1ÞÞ � ð�8:931Þ
� ð�8:931ÞÞ=ðððeð0Þðt � 1ÞÞ � 0Þ � ð�8:931ÞÞÞÞ
� ðexpðððð�18:557��3:17Þ � ð�17:863ÞÞ=ððeð0Þðt � 1ÞÞ
� ð�8:931ÞÞÞÞÞÞ: ð25Þ

êð0ÞðtÞ ¼ f ðeð0Þðt � 1Þ; eð0Þðt � 2ÞÞ
¼ ðððððeð0Þðt � 1ÞÞ � ðSinððeð0Þðt � 2ÞÞÞÞ � ðSinððeð0Þðt � 2ÞÞÞÞÞ
� ððeð0Þðt � 1ÞÞ � ðeð0Þðt � 2ÞÞÞÞ � ððððeð0Þðt � 2ÞÞ
� ðSinððeð0Þðt � 2ÞÞÞÞÞ � ðCosððeð0Þðt � 1ÞÞÞÞÞ
� ððeð0Þðt � 1ÞÞ � ðððeð0Þðt � 1ÞÞ � ðeð0Þðt � 2ÞÞÞ
� ðSinð�13:025ÞÞÞÞÞÞ: ð26Þ

Based on the use of GM(1,1) in the original data sets and the use
of GP in residual signs as well as absolute residual series of GM(1,1),
the proposed two-stage forecasting model which includes one and
two lagged residual variables can be represented, respectively.

ŵð0Þone-laggedðtÞ ¼ 7105407� ð7742231:1299162430Þ
ð�0:0507747821Þ

� �
� ð1� eð�0:0507747821ÞÞ � e0:0507747821ðt�1Þ

þ fs0ðtÞ � f ðeð0Þðt � 1ÞÞg: ð27Þ
where s0(t) can be obtained from Eqs. (16) and (23), and
f(e(0)(t � 1))) can be estimated using Eq. (25).

ŵð0Þtwo-laggedðtÞ ¼ 7105407� ð7742231:1299162430Þ
ð�0:0507747821Þ

� �
� ð1� eð�0:0507747821ÞÞ � e0:0507747821ðt�1Þ

þ fsðtÞ � f ðeð0Þðt � 1Þ; eð0Þðt � 2ÞÞg: ð28Þ

where s(t) can be obtained from Eqs. (11) and (24), and
f(e(0)(t � 1), e(0)(t � 2)) can be estimated using Eq. (26).

Table 4 and Fig. 7 summarize the results obtained using the four
forecasting models with the data on the annual agricultural
imports values in Taiwan from 2002 to 2011. Fig. 8 displays the
percentage error (%) of the forecasting models. In Table 4, MAPE
of the GM(1,1) model, the forecasting model of Lee and Tong
(2011a), the ARIMA model, and the proposed two-stage model
(adopting one and two lagged residual variables as input variables
of GP model) applied to the training data (2002–2009) are 4.78%,
1.81%, 7.02%, 2.99%, and 1.12%, respectively. For the testing data,
the MAPE are 11.49%, 14.52%, 22.31%, 11.97%, and 5.60% from
2010 to 2011, respectively. Above results indicate that the pro-
posed forecasting model which adopts two lagged residual vari-
ables as input variables of the GP model, has a higher forecasting
precision than that of the other models when applied to both train-
ing and testing data sets. The proposed model, which adopts two
lagged residual variables as input variables, outperforms the
proposed model, which adopts one lagged residual variable. This
difference may explain why adopting more input variables can



Model training

Model testing

Fig. 14. Distributions of forecast values and real values from 2002 to 2011 for the agricultural imports data sets in USA.

Fig. 15. Trend of percentage error (%) among the four models from 2002 to 2011 for the agricultural imports data sets in USA.
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obtain more information and forecasting accuracy than only adopt-
ing one input variable when constructing a forecasting model. As
for forecasting the testing data, the proposed model which adopts
two lagged residual variables achieves good forecasting based on
the MAPE criterion. The ARIMA model yields less satisfactory
results than those of the other models, perhaps owing to the
statistical assumptions. It may be the reasons which come from
lacking of large-size samples and linear model. Fig. 9 presents
the scatter plots for the GM(1,1) model, the proposed model of
Lee and Tong (2011a), the ARIMA model, and the proposed
model (adopting one and two lagged residual variables), respec-
tively. This figure reveals that when adopting two lagged residual
variables as input variables of GP model, the proposed forecasting
model has a higher R2 value (R2 = 0.9664) than that of the other
models.
3.4. Forecasting results of the agricultural imports data sets in USA

Results of the four forecasting models (i.e. GM(1,1) model, the
improved GM(1,1) model by Lee and Tong (2011a), the ARIMA
model, and the proposed model) for the agricultural imports data
sets in the USA are expressed as follows:
(1) The GM(1,1) forecasting equation is:

ŵð0ÞðtÞ ¼ 47327:0901� expð0:0740337257� ðt � 1ÞÞ; t ¼ 2;3; . . .

ð29Þ

(2) The improved GM(1,1) forecasting equation by Lee and Tong
(2011a) is:

ŵð0ÞðtÞ ¼ 47327:0901� expð0:0740337257� ðt � 1ÞÞ
þ sðtÞ � f595:5328� expð0:4739341266� ðt � 1ÞÞg;
t ¼ 1;2; . . . ; ð30Þ

where s(t) is the binary variable (1 or �1). The forecasted residual
sign are obtained using GP (independent variables: d(t � 1) and
d(t � 2), dependent variable: d(t)). The parameter settings of GP
for the population size, maximum number of generation, crossover
rate, and mutation rate are 100, 1000, 0.9, and 0.1, respectively. If
d̂ðtÞ is 1, then s(t) represents 1; otherwise, s(t) represents �1 (d̂ðtÞ
is 0).

(3) The ARIMA forecasting equation is:
Based on the ACF and PACF criteria in the training data to iden-

tify the order of the ARIMA model, Fig. 10 summarizes the results
of ACF and PACF. This figure reveals that the differencing order: 1



(a): The GM(1,1) model                     (d): The proposed model (One lagged)

(b): The proposed model of Lee and Tong (2011a) (e): The proposed model (Two lagged) 

(c): The ARIMA model 

Fig. 16. Scatter plots among different forecasting models for the agricultural imports data sets in USA.
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to be the stationary state. The forecasting model can be repre-
sented as follows:

ŵð0ÞðtÞ ¼ 4252:2480þwð0Þðt � 1Þ; t ¼ 2;3; . . . ð31Þ

Moreover, the AIC value of Eq. (31) is 142.32542, and Fig. 11 shows
the Box–Ljung test. According to this figure, the residual series of
ARIMA does not exhibit a significant lack of fit.
(4) The proposed two-stage model can be obtained as follows.
Based on the GM(1,1) model, then the residual signs can be

measured by the GP model. The parameter settings based on GP
for residual signs are the same as those in Table 1. Among the 10
simulation times, this study demonstrates the best simulation
results (based on the fitness function) in Fig. 12. Hence, the fore-
casting equations of one and two lagged residual sigs are repre-
sented, respectively.
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d̂0ðtÞ ¼ f ðdðt � 1ÞÞ
¼ ðexpððlogððððcosððdðt � 1ÞÞÞÞ=ðcosððdðt � 1ÞÞÞÞÞ
� ðcosðððdðt � 1ÞÞ � 0ÞÞÞÞÞÞÞÞ: ð32Þ

d̂ðtÞ ¼ f ðdðt � 1Þ;dðt � 2ÞÞ
¼ ððcosððdðt � 2ÞÞÞ þ ðððdðt � 1ÞÞ � ðcosððdðt � 2ÞÞÞ
� ðdðt � 2ÞÞÞ: ð33Þ

This study also demonstrates the best one among 10 times for
the absolute one and two lagged residual series of GM(1,1). Table 2
lists the parameter settings of GP for the absolute residual series of
GM(1,1). Fig. 13 demonstrates the fitness value of the best simula-
tion for the absolute one and two lagged residual series of GM(1,1).
Hence, the forecasting equation for absolute one and two lagged
residual series of GM(1,1) can be represented, respectively.

ê0ð0ÞðtÞ ¼ f ðeð0Þðt � 1ÞÞ
¼ ðð�288:682Þ þ ððððeð0Þðt � 1ÞÞ � ð�94:667ÞÞ
� ð�288:682ÞÞ=ðcosððcosðððeð0Þðt � 1ÞÞ
� �11:851ÞÞÞÞÞÞÞ: ð34Þ

êð0ÞðtÞ ¼ f ðeð0Þðt � 1Þ; eð0Þðt � 2ÞÞ
¼ ððððeð0Þðt � 1ÞÞ � ðððeð0Þðt � 1ÞÞ þ 18:954=ððeð0Þðt � 2ÞÞ
þ 9:762ÞÞÞ=ðexpðððlogððeð0Þðt � 1ÞÞÞÞ=ððeð0Þðt � 2ÞÞ
þ 8:016ÞÞÞÞÞ=ðsinððexpðððlogððeð0Þðt � 1ÞÞÞÞ=ððeð0Þðt � 2ÞÞ
þ 18:954ÞÞÞÞÞÞÞ: ð35Þ

Based on use of the GM(1,1) in the original data sets and use of
the GP in residual signs as well as absolute residual series of
GM(1,1), the proposed two-stage forecasting model (which include
one and two lagged residual variables) can be represented, respec-
tively, as follows:

ŵð0Þone-laggedðtÞ ¼ 41915:217� ð45997:4625505823Þ
ð�0:0740337257Þ

� �
� 1� eð�0:0740337257Þ� �

� e0:0740337257ðt�1Þ

þ s0ðtÞ � f eð0Þðt � 1Þ
� �	 


: ð36Þ

where s0(t) can be obtained from Eqs. (16) and (32), and
f(e(0)(t � 1))) can be estimated using Eq. (34).

ŵð0Þtwo-laggedðtÞ ¼ 41915:217� ð45997:4625505823Þ
ð�0:0740337257Þ

� �
� 1� eð�0:0740337257Þ� �

� e0:0740337257ðt�1Þ

þ sðtÞ � f eð0Þðt � 1Þ; eð0Þðt � 2Þ
� �	 


: ð37Þ

where s(t) can be obtained from Eqs. (11) and (33), and
f(e(0)(t � 1), e(0)(t � 2)) can be estimated using Eq. (35).

Table 5 and Fig. 14 summarize the results obtained using the
four forecasting models with the data on the annual agricultural
imports values in USA from 2002 to 2011. Fig. 15 displays the per-
centage error (%) of the forecasting models. In Table 5, MAPE of the
GM(1,1) model, the forecasting model of Lee and Tong (2011a), the
ARIMA model, and the proposed two-stage model (adopting one
and two lagged residual variables as input variables of GP model)
applied to the training data (2002–2009) are 4.50%, 3.74%, 4.78%,
5.38%, and 3.94%, respectively. For the testing data, the MAPE are
5.71%, 17.67%, 13.10%, 9.87%, and 5.48% from 2010 to 2011, respec-
tively. Above results indicate that the proposed forecasting model,
which adopts two lagged residual variables as input variables of
the GP model, has a higher forecasting precision than that of the
other models overall. Additionally, the proposed model, which
adopts two lagged residual variables as input variables, outper-
forms the proposed model, which adopts one lagged residual var-
iable. This difference may explain why adopting more input
variables can yield more information and a higher forecasting
accuracy than when only adopting one input variable in forecast-
ing. Fig. 16 presents the scatter plots for the GM(1,1) model, the
proposed model of Lee and Tong (2011a), the ARIMA model, and
the proposed model (adopting one and two lagged residual vari-
ables), respectively. This figure reveals that the proposed forecast-
ing models, when adopting one and two lagged residual variables
as input variables of GP model, have a high R2 value as well as that
of GM(1,1).

4. Conclusions

Developing a high-precision model for forecasting the value of
agricultural imports is quite challenging since many factors affect
the value, including the economy, changes in industry, and govern-
mental policies. Decision makers thus heavily depend on the pre-
diction accuracy of such models. This study adopts a novel two-
stage forecasting model that combines GM(1,1) model applied to
the original time series and the GP model to improve the residual
component: residual signs and absolute residual series of GM(1,1).
Computational results indicate that the proposed model outper-
forms the other previous forecasting models. In the future work,
this study will combine other feature selection techniques such
as GAs to select appropriate lagged residual variables and compare
with the proposed model. Moreover, the study should apply the
fuzzy time series method to forecast agricultural imports value
and use more predicted variables such as annual gross domestic
product value as input variables of GM in order to construct an
accurate forecasting model.
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