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Iterative Decoding Algorithms for a Class of
Non-Binary Two-Step Majority-Logic
Decodable Cyclic Codes

Hsiu-Chi Chang and Hsie-Chia Chang

Abstract—This paper presents two iterative decoding algorithms
for a class of non-binary two-step majority-logic (NB-TS-MLG)
decodable cyclic codes. A partial parallel decoding scheme is
also introduced to provide a balanced trade-off between decod-
ing speed and storage requirements. Unlike non-binary one-step
MLG decodable cyclic codes, the Tanner graphs of which are
4-cycle-free, NB-TS-MLG decodable cyclic codes contain a large
number of short cycles of length 4, which tend to degrade decod-
ing performance. The proposed algorithms utilize the orthogonal
structure of the parity-check matrices of the codes to resolve the
degrading effects of the short cycles of length 4. Simulation results
demonstrate that the NB-TS-MLG decodable cyclic codes decoded
with the proposed algorithms offer coding gains as much as 2.5 dB
over Reed-Solomon codes of the same lengths and rates decoded
with either hard-decision or algebraic soft decision decoding.

Index Terms—Extended min-sum algorithm, majority-logic de-
coding, non-binary LDPC codes, cyclic codes.

I. INTRODUCTION

INITE geometry codes received considerable attention in

the late 1960s and 1970s [1]-[3]. These codes form an
important class of cyclic codes, which can be systematically
encoded with linear shift registers and decoded with majority-
logic decoding (MLGD) [4]. Based on finite geometries, there
are two types of cyclic codes: one-step and multi-step MLG
decodable. One-step MLG decodable cyclic codes were re-
discovered in 2001 [5] as finite geometry low-density parity-
check (FG-LDPC) codes with 4-cycle-free Tanner graphs [6].
Long FG-LDPC codes provide error correction performance
approaching to Shannon’s theoretical limit [7] when decoded
using belief propagation algorithms, such as the sum-product
algorithm [8] and the min-sum algorithm [9]. In contrast,
numerous short cycles of length 4 involved in multi-step MLG
decodable cyclic codes limit the effectiveness of the standard
belief propagation algorithm [10]. Consequently, only a small
amount of coding gain is achieved at a considerable increment
in decoding complexity. Efforts to overcome this key disadvan-
tage have led to the development of efficient iterative decoding
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algorithms, which utilize the orthogonal structure of the parity-
check matrices of the two-step MLG (TS-MLG) decodable
cyclic codes [10], [11].

Binary LDPC codes typically demonstrate weakness in error
performance for short and moderate code lengths [12]. In these
cases, non-binary LDPC (NB-LDPC) codes in higher order
Galois fields provide excellent alternatives. NB-LDPC codes
constructed based on finite geometries have been discussed in
[13], [14]. These codes are non-binary one-step MLG decod-
able. The associated Tanner graphs of the parity-check matrices
of the codes are 4-cycle free, which enables NB-LDPC codes
perform very well over the additive white Gaussian noise
(AWGN) channel using standard belief propagation algorithms
such as FFT-QSPA [12] or EMS [15] algorithm. However, the
development of an efficient belief propagation algorithm for
decoding non-binary multi-step MLG decodable cyclic codes
has yet to be achieved. In this paper, a subclass of NB-TS-MLG
decodable cyclic codes is presented. From our simulation stud-
ies, standard belief propagation algorithm for decoding NB-TS-
MLG decodable cyclic codes is not effective due to the large
number of short cycles of length 4. These short cycles produce
decoding correlations after a few decoding iterations, thereby
preventing convergence to maximum-likelihood decoding. As a
result, coding gains are marginal and the speed of convergence
is slow. To overcome this major drawback, we modify standard
belief propagation by introducing the geometric structure of the
parity-check matrices of the codes [4]. Two efficient decoding
algorithms based on the orthogonal structure of the parity-check
matrices of the codes are proposed to reduce or eliminate the
degrading effects of short cycles of length 4. Furthermore, the
orthogonal structure of NB-TS-MLG decodable cyclic codes
allows a decomposition on the parity-check matrices, resulting
in a partial parallel decoding scheme.

FFT-QSPA presents the best performance among the belief
propagation algorithms developed for decoding NB-LDPC;
however, complex operations, such as multiplication and divi-
sion tend to increase decoding complexity. The EMS algorithm
overcomes this issue by utilizing the log-domain operations
that turn multiplications into log-domain additions and avoid
divisions. In this paper, we propose an algorithm called iterative
two-step EMS (ITS-EMS) by modifying the standard EMS
algorithm. The NB-TS-MLG decodable cyclic codes decoded
with the proposed ITS-EMS achieve as much as 2.5 dB cod-
ing gain over Reed-Solomon (RS) codes of the same lengths
and rates decoded using either the hard-decision Berlekamp-
Massey (HD-BM) algorithm [4] or the algebraic soft-decision
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Koetter-Vardy (ASD-KV) algorithm [16]. Unfortunately, ITS-
EMS suffers from high computational complexity because
many of its computations involve real numbers. A low com-
plexity iterative message passing decoding algorithm was
developed previously to decode non-binary one-step MLG
decodable cyclic codes [17], called iterative soft reliability-
based MLGD (ISRB-MLGD) algorithm. We further generalize
the ISRB-MLGD algorithm as iferative reliability two-step
MLGD (IRTS-MLGD) algorithm to decode the NB-TS-MLG
decodable cyclic codes. The IRTS-MLGD requires far lower
computational complexity by employing only finite field and
integer operations, compared to the ITS-EMS using compu-
tations in real numbers. Moreover, the decoding process is
different between the ISRB-MLGD and the IRTS-MLGD. The
ISRB-MLGD uses a fully parallel decoding scheme; instead,
the IRTS-MLGD employs a partial parallel decoding scheme.
The partial parallel decoding scheme can be generalized for
decoding the binary TS-MLG decodable cyclic codes presented
in [10], resulting in a more balanced trade-off between de-
coding speed and memory usage. In addition, we compare
the error performances of ITS-EMS decoding with the NB-
TS-MLG decodable cyclic codes and standard EMS decoding
with the one-step MLG decodable NB-LDPC codes constructed
based on Euclidean geometries via matrix dispersion [14], [18].
Simulation results show that in a small number of decoding
iterations, the NB-TS-MLG decodable cyclic codes outperform
one-step MLG decodable NB-LDPC codes.

The remainder of this paper is organized as follows.
Section II briefly introduces a subclass of NB-TS-MLG de-
codable cyclic codes and the hard-decision non-binary two-step
MLGD (NB-TS-MLGD) algorithm. The proposed ITS-EMS is
introduced in Section III, together with a parity-check matrix
decomposition for partial parallel decoding. We also discuss
the computational complexity of ITS-EMS and investigate its
memory requirements. Section IV gives the low complexity
IRTS-MLGD algorithm and evaluates its computational com-
plexity. Section V concludes the paper.

II. CLASS OF NB-TS-MLG DECODABLE CycLIC CODES

In this section, we consider a special class of TS-MLG de-
codable cyclic code, referred to as two-fold Euclidean geometry
(EG) codes. This subclass of binary MLG decodable cyclic
codes was constructed based on Euclidean geometries by Lin
[19] in 1973, called multifold Euclidean geometry codes. We
generalize the binary two-fold EG codes to the non-binary cases
known as NB-two-fold EG (NB-TF-EG) codes, then investigate
this special case of NB-TS-MLG decodable cyclic codes.

A. Code Construction

Consider a d-dimensional Euclidean geometry EG(d, ¢q) over
the field GF(q), where ¢ is a power of prime. The field
GF(q?) as an extension filed of the field GF(q) is a realization
of EG(d, q). Let a be a primitive element of GF(¢%). Then
the powers of o, = =0, a® =1, a,...a? "2, represent
the ¢¢ points of EG(d, ¢) and a~> = 0 represents the origin
of EG(d, q). Let EG*(d, q) be the subgeometry by removing
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the origin and all the lines passing through the origin in
EG(d,q). Let n=¢q% —1. There are n non-origin points
and Jo = n(¢g? ' —1)/(q — 1) lines not passing through ori-
gin in EG*(d,q) [4]. Let L = {a’t,a’2,...,a9¢} be a line
in EG*(d, q) comprising points a’t, a2, ... a’s, where 0 <
J1y72s---rdq <q®—1. Let v be the (¢% — 1)-tuple over
GF(q%) as vi = (vo,v1,...,v44_5). The components in v/,
correspond to the m non-origin points of EG*(d,q), where
the jyth, joth, ..., j,th components are v;, = o/t vj, = a2,
vj, = ad? ... v; = a’e and other components are zero ele-
ment in GF(¢?). This (¢¢ — 1)-tuple v, is called a ¢%-ary inci-
dence vector of line L. This vector v, has g points, each point
represents its location and value by the element of GF(q?).
Let L be a Jy x n matrix which is formed by the .Jy lines in
EG*(d,q). Letvy,,vL,,..., VL, , betherowsof L. Let v,
be the g?-ary incidence vector of line L; denoted as vy, =
(V3,0,Vi1,- -, Vin-1), Where 0 < i < Jy. For 0 < j < n, we
define N; ={j:0<j<n,v;; #0}and M; ={i: 0 <i <
Jo,vij 7# 0}. The indices in N; denote the location of nonzero
components in the ith row of L. The indices in M; denote
the location of nonzero components in the jth column of L.
The Tanner graph [6] of matrix L has two disjoint classes of
nodes: variable nodes (VN) and check nodes (CN). The jth VN
corresponds to the jth ¢%-ary received symbol in L, while the
ith CN corresponds to the ith row of L. If v; ; # 0, the jth VN
is connected to the th CN by an edge.

If a point is on a line in EG*(d, ¢), we say that the line
passes through the point (or is orthogonal on the point). Every
point in EG*(d, q) is intersected by J; = n/(qg — 1) — 1 lines.
For the ith line L; in EG*(d, q), where 0 <i < Jy, it has
Jy=¢q% 1 -2 parallel lines denoted as L, ;, where 0 < ¢ < Js.
{L;,L;;} forms a (1,2)-frame which consists of 2¢ points
in EG*(d, q). The corresponding ¢%-ary incidence vector of
{Li,L;} is denoted as vp, +vr,,, where v, and v,
are two (g¢? — 1)-tuple over GF(q?) without any points in
common. Let {L;, Lo ;},{Li,L1:},...,{Li,Lj,—1,:} be the
Jo (1,2)-frames that intersect on line L;. We say that these J5
(1,2)-frames are orthogonal on L;. There are a total of m, =
n(gt —1)(¢?* - 2)/2(¢ — 1) (1,2)-frames F in EG*(d, q).
These (1,2)-frames form a m,. x n matrix H over GF(q?) with
each row as a ¢%-ary incidence vector of the (1,2)-frames in
EG*(d, q). Then the null space of H gives a cyclic code of
length n, referred to as NB-TF-EG code. The generator poly-
nomial of a NB-TF-EG code can be derived as the following
steps [13]. Each row of H is represented by a polynomial of
degree q% — 2 or less over GF(g?). Let h(X) be the greatest
common divisor of the row polynomials of H. Let h*(X) be
the reciprocal polynomial of h(X). The generator polynomial
of a NB-TF-EG code is derived by g(X) = (X" — 1)/h*(X).

B. NB-TS-MLGD Algorithm

Consider GF(q?) as the field on which to construct the NB
Euclidean geometry. For simplicity of illustration, we con-
sider ¢ = 2". Although this paper considers only the case
for 2-powers, the codes and the decoding algorithms can
be generalized to any prime-powers. Assume that transmis-
sion uses binary phase-shift keying (BPSK) or m-QAM over
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the AWGN channel with two-sided power spectral density
No/2. We use R” for BPSK and R? for m-QAM. Let u =
(ug, u1,us,...,u,—1) be a transmitted n-tuple codeword of a
NB-TF-EG code over GF(¢?). For 0 < j < n, the jth symbol
u; of u can be converted into a sequence of r = log,(g?) bits
and denoted as w; = (uj0,uj1,...,u;j,—1) over GF(2). Let
z = (20,21,%2,---,2n-1) € Z™ be the hard-decision received
sequence, where Z is the received alphabet for a single NB-
TF-EG symbol. For 0 < j < n, each component z; of z is an
element in GF(g?). The hard-decision received sequence is a
NB-TF-EG codeword if and only if Hz” =0 (or the poly-
nomial representation z(X) of z is divisible by the generator
polynomial g(X)).

The NB-TS-MLGD algorithm is generalized from the non-
binary one-step MLGD algorithm [17]. Assume that o in
EG*(d, q) is updated. The corresponding received symbol for
al is z;. Let z; be the jth received symbol in z participating
in L;. Let S(L;) be the line-sum (or check-sum), which can be
derived by the inner product of the non-zero element v; ; in v,
and the received symbol z; in z as

S(Li) = vijz. (D

JEN;

Consider a (1,2)-frame F = {L;,L;;} in EG"(d,q). The
frame-sum of F' denoted by S(F') = S(L;) + S(Ly;) is the
inner product of z and the ¢%-ary incidence vector of (1,2)-
frame F' comprising two lines L; and L;; in EG"(d, q). We
omit the subscript ¢ of L, ; for calculating S(L; ;) by (1) since
Ly, is also a line in EG*(d, ¢). Let L denote the J; lines
passing through z;, where 0 < u < .J;. The line-sum of L7, is
denoted as S(LY,). For 0 < t < Ja, Jo lines are denoted as Lgyu
parallel to L/,. The line-sum of Liu is denoted as S(L7 ). The

t,u
first step of decoding is to decode S(Li) with the Jo (1,2)-
frames in EG*(d, ¢) orthogonal on L/,. Let F/*! = {LJ , L{ ,}
be a (1,2)-frame in EG*(d, ¢) orthogonal on L7 . The frame-sum
of F7»*!is denoted as S(F7**) = S(LJ,) + S(L{,). Note that
S(LY), S(L{’u) and S(F71) are the elements in GF(g?). The
line-sum S (L{u) of S(F7:%1) is the extrinsic information for
decoding S(LJ,). A received symbol in z not contained in L7,
can appear in at most one L{yu. Thus, we can correctly decode
the value of S(LY,) from the Jo S(F7"*“!) orthogonal on S(L/,)
provided that no more than |.J2/2] symbol errors in z. The
second step is to decode z; with .J; S(L7) orthogonal on z;.
Any received symbols of z other than z; can appear in at most
one of these J; lines. The symbols orthogonal on z; are the
extrinsic information for z;. Since J; > Js, the value of z;
can be correctly determined if there are no more than | J/2]
symbol errors in z. This completes the decoding process of the
NB-TS-MLGD for the NB-TS-MLG decodable cyclic codes.

III. ITERATIVE TWO-STEP EXTENDED MIN-SUM
ALGORITHM WITH PARTIAL PARALLEL DECODING

Serial and parallel decoding algorithms have been developed
for binary TS-MLG decodable cyclic codes [10]. If we consider
hardware implementation, serial decoding algorithm has the
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advantage of requiring a simple decoding circuit at the cost of
large number of decoding cycles. In contrast, parallel decoding
has the advantage of fast decoding but requires hardware of
greater complexity. A partial parallel decoding scheme can be a
good trade-off between serial and parallel decoding with regard
to decoding speed and hardware complexity.

A. Parity-Check Matrix Decomposition and Partial Parallel
Decoding Scheme

In this subsection, we present a partial parallel decoding
scheme via a decomposition on parity-check matrix. Unlike
traditional method used to represent the parity-check matrix for
a NB-TF-EG code with points on the column side and frames
on the row side, we decompose the parity-check matrix into
two parts. One contains ¢%-ary incidence vectors representing
the relationship between points and lines, and the other
comprises binary incidence vectors describing the relationship
between lines and frames. In the following, we illustrate the
construction of these two matrices. Consider the d-dimensional
Euclidean geometry EG*(d,q) over the GF(¢?). For d = 2,
let B=a”t*t Then, {0,1,8,5% 3% ...,872} form a
subfield GF(q?"1) of the field GF(q%). Consider a parallel
bundle P [4] in EG*(d,q) comprising lines {L,S'L,...,
B72L}. The corresponding ¢%-ary incidence vector is
vp, ={VvL,VgiL,..., Vg }. By multiplying P by a,
we obtain aP = {aL,aB'L,...,aB’2L}, where v,p, =
{Var,Vagipn, - Vagrap ) isits q%-ary incidence vector. Each
line in o P is the right cyclic shift of the line in P. The .Jy lines
in EG*(d, ¢) can be divided into J5 = J; + 1 groups of parallel
bundles [4] and denoted as {P,aP, ..., a’s~1 P}. Each group
of parallel bundles comprises Jy = Jy + 1 lines. A Jy xn
matrix Lp can be formed by the ¢%-ary incidence vectors of
the parallel bundle of lines via {vp,,Vap,,...,Vois-1p, }.
Matrix L p represents the relationship between points and lines
with g?-ary incidence vectors of lines as rows. This completes
the first part of the decomposition of the parity-check matrix
H. The parallel bundle P has cyclic property; therefore,
we only need to store the g%-ary incidence vectors in vp,
as the indices for iterative decoding. The ¢%-ary incidence
vectors of the other parallel bundles of lines can simply be
derived by cyclically shifting the elements in vp, when the
corresponding block is decoded. Next, we construct the matrix
with binary incidence vectors. In each parallel bundle, J5 =
(g4t —1)(¢g* ' —2)/2 different frames are formed by J,
lines. Let F = {Fy, Fi,..., Fj,_1} be the frames constructed
by P={Fy,P,...,Ps,_1}, where Py = P, P, = aP, and
so on. Consider the ath parallel bundle P, and its corresponding
frames F,, where 0 < a < J3. We express the relationship
between frames and lines by defining a J; x J4 matrix, referred
to as a double identity matrix (DIM). This matrix can be
decomposed vertically into J5/.Jy blocks. For 1 < k < J5/Jy,
the kth block is equal to Iy + Iy, where I is a J4 x Jy identity
matrix, and [y is a k-times right cyclically-shifted matrix of
Iy. The rows of a DIM represent (1,2)-frames in F|,, while the
columns represent the ¢?-ary incidence vectors of lines in P,.
Each row includes two values of 1, representing two parallel
lines in P, that participate the corresponding frame in F,. The
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column and row weights of DIM are J5 and 2, respectively.
Different frames in F, and the corresponding parallel bundles
P, share the same DIM, such that the partial parallel decoding
scheme can be operated using cyclically-shifted ¢%-ary
incidence vectors of lines in Lp as inputs on the column side
to form the corresponding (1,2)-frames on the row side.

Next, we demonstrate the partial parallel decoding scheme.
Recall that there are .Jy lines in a parallel bundle in EG*(d, q),
The bth line participating in the ath parallel bundle P, is
denoted as L, p, where 0<b<Jy. Let L, be another line
in P,, where 0<V' < Jy and b’ #b. For each L, there are
Jo parallel lines £, . We can form JyxJy pairs of (1,2)-
frames in F, denoted by F, s ={Lq 5, L4 }. For each P,, we
need to calculate J, x Jo frames. The decoding process in P, is
continued until all of the J4 X ¢ symbols participating in these
Jy lines in P, have been updated. We redefine the index set [V;
and M in II-A so as to represent the partial parallel decoding
scheme. For 0 <a < J3, 0 <b < Jy, the bth line in the ath group
is identical to the the ith line in EG*(d, q), where i=a x J;+b
and 0<i<Jy. Therefore, we use the notation (a,b)=i to
represent the one and only one corresponding index for the ith
line in EG*(d, q). For 0<i<.Jp, and 0<j<n, we define the
index sets N(,,;) and M by replacing i with (a,b) as N(q ) =
{7:0<5<n, v, #0} and M;={(a,b)=i:0<(a,b)<
Jo,V(a,p),j 70}, respectively. In the following, we present an
example to illustrate the decomposition of the parity-check
matrix of the NB-TF-EG code for partial parallel decoding.

Example 1: Let d=2 and ¢ =8 =23, and consider the
two-dimensional Euclidean geometry EG(2, 23) over the field
GF(2%). The subgeometry EG*(2, 23) comprises 63 non-origin
points and 63 lines not passing through the origin of EG(2, 2%).
These 63 lines in EG*(2, 23) form 189 (1,2)-frames. The parity-
check matrix H of this code is a 189 x 63 matrix with 189
(1,2)-frames on the row side and 63 64-ary symbols on the
column side. The null space over GF(2°) of this parity-check
matrix gives a 64-ary (63,45) NB-TF-EG code over GF(2°).
We decompose H as follows. A 63 x 63 matrix L p with 64-ary
incidence vectors of lines is formed to represent the relationship
between points and lines in EG*(2, 2%). We divide 63 lines into
9 groups of parallel bundles, each group contains 7 lines. A
21 x 7 DIM is formed to represent the relationship between
lines and (1,2)-frames in EG*(2, 2%). The decoding process is
accomplished by decoding a 21 x 7 DIM 9 times using the
corresponding 64-ary incidence vectors of 7 lines in L p on the
column side.

B. Proposed Iterative Two-Step Extended Min-Sum Algorithm

NB-TF-EG codes contain large numbers of short cycles
of length 4. There are a total of (J2) x () short cycles of
length 4 in the Tanner graphs of these codes [10]. Using a
standard belief propagation algorithm, such a large number of
short cycles of length 4 would degrade decoding performance.
The proposed ITS-EMS employs the orthogonal structure of
NB-TF-EG codes to overcome the performance degradation
resulting from short cycles.

Before outlining the decoding algorithm, we define some
notation for later use. Upper script w represents the iteration
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index, and wy.x 1S the maximum number of iterations to be
performed. Suppose V; is the jth received symbol, where 0 <
j<mn. A soft message of the jth code symbol at the wth de-

coding iteration is a vector comprising ¢ sub-messages )\;w) =

00,28 (1), ..., A1 (¢7~1)). The initial value A" =
[/\5-0)(0), )\5.0)(1), R AEO) (¢?—1)] is the a priori information
of the jth code symbol from the channel. The log-likelihood re-
liability (LLR) of the xth sub-message of A§w) (x) is defined as

Pb(V; = zj)

(W), N
A () =1n Po(V; = )

(@)

with Pb(V;=x) as the probability of V; equal to x € GF(¢?).
We define z; = arg max,cqp(q) (@) (sc) as the most likely
symbol for Vj;, which also represents the hard-decision of the
jth received symbol. Let & be the elementary CN operation
(ECN) [15] with two-input messages and one output message.
Notation Z$ implies that the equation sums up the input
messages using the operation of ECN and stores the smallest

soft value. Let®be the multiplication in GF(¢?). Let 6%) and
ngj“;) represent the VN-to-CN (V2C) and CN-to-VN (C2V) soft
messages between the ¢th CN and the jth VN, respectively.
For 2 € GF(q?), the xth LLR of 557]-) and n( ) are denoted as
65?;) (r) and ngfj)(x), respectively. Let ; ; be the symbol with
the lowest reliability. With v; ;=v; ;@V;, we let 8" (z) =
In(Pb(v; ;=) /Pb(v;j=x)) and 1")(z)=In(Pb(v;;=
%)/ Pb(vi =1)). where 8 (;;)=0 and 5"} (7i,;)=0.
respectively. To initialize the decoding process, we set z; =
arg minge g p(qd) A;O)(x) and 51(70]») (vi,; @) :Aéo)(x).

We illustrate the ITS-EMS using partial parallel decod-
ing for the case of Vj participating in the (1,2)-frames F, 3
formed by P,, where 0 < a < Js3, and 0 < b < Jy. In the
following, we use the relation (a, b) = 1 to rewrite the notation
055 (@), (@), iy and vig =vi @ Vs as 60 (),

778:2;),]'( )s Vap),j» A Viq 1) i = Vap),; @ V. The soft mes-

sages of lines L, in P, are calculated first with scaling
factor ¢ by

(w) @ (w)
LLR(a b)( =cX ZjeN(ayb)(S(a,b),j (V(a,b),j) NE)

where 0 < ¢ < 1. The extrinsic information of L, ;, contributed
by other lines £, ;s participating in P, with scaling factor & is

given by
>

Lo 1 €Pab#b!

E(Y) (@) =k x LLRY, (z), (4

where 0 < k < 1. The extrinsic information of V; contributed
by other received symbols participating in L, except V; is

obtained by
®
— st
( ) Zj’GN(<L,b)\j (a,

where V(qp) j1 = V(a, ).j + ®@Vj. Let ng )) (x) be a tentative
C2V message for V; in P,. ThlS can be derlved by using the

E(U’)

(a,b),j i),j’ (V(mb),j/) o)
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ECN step with E((;”Z) i (x) and E((;”?)), which is formulated as

M) 5 (@) = By ;@) & B(, (). (6)

After finishing the partial decoding process from (3) to (6)
for all symbols participating in .J3 parallel bundles, the post-
processing for V; is executed as

A (z) = + >

(a.b)eM]

A (@ s (Wb jea) s (D)

where 0 < j < n. By letting w < w + 1, we obtain

w . 1
ZJ( ) — arg zegllil(lqd))\] w+ )(x) (8)

A new received vector z(*) is formed from (8) for syndrome
calculation. For 0 < j < n, we execute the VN processing to
derive the new V2C messages (5&”3 )( ) for the next iteration.

First, we compute the primitive V2C messages by
5(w+1) _y (wt1) (w)
Oa,b).j (V(a,p),; @) =N (2) “Mab).j (V(a,p),;®2). (9

Thereafter, the (w + 1)-th V2C messages are derived by nor-
malizing primitive V2C messages with respect to the most likely
symbol (4 p),; as

(w+1) _ Mw+1) S(w+1)
O(a, b),j( ) = O(a b),j( ) — Oa,b).j (Vab)i) » (10
where
Vapy; =arg min §HD (). (11)

zeGF(g%) (a;b).j

Based on the above updating process and notation, the proposed
ITS-EMS is formulated in Algorithm 1.

Algorithm 1 ITS-EMS

1) Initialization: For 0 < < Jp and 0 < j < n, set z; =
arg Mingc g p(qd) /\5-0)(1), 6(0) (vi; ®x) = )\go) (z) with
v;; 7 0, w = 0, and the max1mum number of iterations
0 Wmax-

2) Let S(")(X) be the syndrome derived by dividing the re-
ceived polynomial z(*) (X) by the generator polynomial
g(X) of the codes. If S(*)(X) = 0, then stop the decod-
ing process and output z(*) as the decoded codeword.

3) If w = wpax, then stop the decoding process. If
S()(X) # 0, declare a decoding failure.

4) CN processing:

For0<a< J3,0<b,b <Jg,andi =a x J; + b,
a) Compute soft messages for lines in P, by (3).
b) Calculate (4) and (5).
¢) Update tentative C2V messages by (6).

5) Post processing:

For 0 < j < n, execute the post processing for V; by
(7). Let w + w + 1, and form a new received vector z(*)
by (8).
6) VN processing:
a) Compute the V2C messages by (9).
b) Normalize the V2C messages by (10) and (11).
7) Go to Step 2.
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TABLE 1
MEMORY REQUIREMENTS FOR FULLY
AND PARTIAL PARALLEL DECODING
Type(Bits) Input Cc2v v2C LS EL ES
Fully parallel nlU nJiU | nqU | JoU | JoU | JoqU
Partial parallel nU nJ1U | nqU | J4U | J4U | JaqU

LS: The line-sum defined in (3).
EL: The extrinsic information contributed by other lines defined in (4).
ES: The extrinsic information contributed by other symbols defined in (5).

Next, we demonstrate the complexity analysis of the ITS-
EMS with ¢ as a power of 2. To ensure the best performance
for the code, we take ¢? elements of field GF(¢?) as the
input for each symbol. We also have d = 2 for the NB-TF-
EG codes constructed using the two-dimensional Euclidean
geometry. At the Step 2, a (n — k)-stage syndrome calculation
necessarily employs at most (n — k) finite field additions and
(n — k) finite field multiplications, where k is the number of
information symbols. We use the bubble check [20] to calculate
the ECN. Each stage in the ECN requires 2 x ¢ additions and
q> comparisons. At the Step 4, ¢ — 1 ECN steps are required
for (3). 2.J4 multiplications are required for the scaling factors
c and x in (3) and (4), and J,.J> additions are required for
(4). Moreover, to update each symbol in a line in (5) and (6),
we need 2¢g — 4 and ¢ ECN operations, respectively. Therefore,
it takes Jy(4q — 5) ECN operations to calculate all the line-
sum of the lines and update each symbol in each line in
P,. Since there are J3 blocks, a total of J3.J4(4qg — 5) ECN
operations, 2.J3.J,; multiplications, and J3.J4Jo additions are
needed to perform one iteration. At the step 5, Jin additions
are needed for (7), and ng¢> comparisons are needed for (8).
At the Step 6, ng> additions and comparisons are requried
for (9), and ng® additions are required for (10). With some
translations, we summarize the computational complexity with
code length n and ¢. To carry out one iteration of the ITS-
EMS algorithm, (10n? + 12n)(g — 1) real-number additions,
9(n? + n)(q — 1) — nq real-number comparisons, and 2n real-
number multiplications are required. Both the addition and the
comparison operations are on the order of O(n?q), and the
multiplication operations are on the order of O(n).

Table 1 presents the memory requirements for fully and
partial parallel decoding. Each value in the table has N bits of
finite precision represented by U = ¢?(N + log, ¢¢). Tt turns
out that partial parallel decoding saves on storage for line-sums,
extrinsic information contributed by other lines, and extrinsic
information contributed by other symbols at a factor of Jy/Jy.
Thus, partial parallel decoding provides an alternative for fully
parallel decoding if memory is limited.

In the following, two examples are presented to demonstrate
the frame error rate (FER) performances of the NB-TF-EG
codes decoded using the proposed ITS-EMS and various decod-
ing algorithms for short to moderate code lengths. Note that the
decoding complexity of the NB-LDPC codes is in proportion
to the field size of the finite field [12], [15]. For constructing
NB-TF-EG codes with longer block length, the construction
needs to be modified as in [18] to decrease the field size of the
codes and thus reduce decoding complexity. We also include
the error performances of the RS codes with same lengths and
rates decoded using the HD-BM and the ASD-KV algorithm.
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TABLE 1II
NUMBER OF COMPUTATIONS REQUIRED FOR ITERATIVE DECODING
OF NB-TF-EG CODES AND ASD-KV DECODING OF RS CODES

Codes Decoding algorithm 255, 191()N’ K)(63, 15)
RS ASD-KV!, =999 | 4.26 x 108 | 2.6 x 107
ASD-KV?, = 4.99 | 1.6 x 107 108
ITS-EMSZ, 5 2.83 x 108 | 1.45 x 10°
ITS-EMSZ?, 3 1.7 x 108 | 8.73 x 105
NB-TE-BG | 1p1g MLGDZ, 10 | L.11 x 107 | 3.67 x 10°
IRTS-MLGD?, 5 5.55 x 108 | 1.83 x 105

1) Only the number of computations for the interpolation step of the ASD-
KV algorithm is considered in this table.

2) The IRTS-MLGD employs integer operations, while the ITS-EMS
employs operations in real numbers.

The computational complexity of the ASD-KV algorithm is
on the order of (| A]*N?) (the interpolation step), where N is
the length of the code and A is the parameter of multiplicity
assignment in the interpolation steps. We use A = oo, A = 9.99,
and A = 4.99 for comparison [21]. Scaling factors ¢ and « for
decoding the NB-TF-EG codes in BPSK with the ITS-EMS
are determined by the points with the lowest signal to noise
ratio via extensive simulation, as illustrated in Fig. 5. We use
the same scaling factors for the higher order modulations. We
also examine the performance of one-step MLG decodable NB-
LDPC codes with similar lengths and rates constructed based
on Euclidean geometries via matrix dispersion [14] and [18].
Furthermore, Table 1II illustrates the number of computations
required for the proposed two iterative decoding algorithms
decoding the NB-TF-EG codes and the ASD-KV algorithm
decoding RS codes. The numbers for the corresponding NB-
TF-EG codes are derived by summing up all of the operations of
the ITS-EMS algorithm. In addition, the major computational
complexity to carry out the ASD-KV algorihtm comes from the
interpolation step [21]; therefore, we only consider this type of
calculation for comparison.

Example 2: Let d =2 and ¢ = 8 = 23. Consider the two-
dimensional Euclidean geometry EG(2,2?) over the field
GF(2%). From Example 1, we know that the null space of the
parity-check matrix of this code is the 64-ary (63,45) NB-TF-
EG code with J; =8, J, = 6. By using NB-TS-MLGD, 3
symbol errors can be corrected. The Tanner graph of this code
has 79380 cycles of length 4. From Fig. 5, we set ¢ = 0.2 and
r = 0.21. Fig. 1 shows the FER performances of the 64-ary
(63,45) NB-TF-EG code over the AWGN channel with BPSK
transmission decoded using the proposed ITS-EMS with 3 and
5 iterations, standard EMS with 50 iterations, and NB-TS-
MLGD. We also include the error performances of the (63,45)
RS code over GF(2°) decoded using the HD-BM and the
ASD-KYV algorithms. In addition, the FER performance of the
standard EMS algorithm in decoding one-step MLG decodable
NB-LDPC code with same rate and length is also included. This
code is a 64-ary (63,45) NB-LDPC code with two different
column weights 2 and 3, and row weight 8. At the FER of
1079, the NB-TF-EG code decoded using the proposed ITS-
EMS with 5 iterations achieves a coding gain of 2.2 dB over
the RS code decoded using the HD-BM algorithm, as well as
a coding gain of 1 dB, 1.3 dB and 1.6 dB over the RS code
decoded using the ASD-KV algorithm with A = oo, A = 9.99,
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Fig. 1. Frame error rates of various decoding algorithms forthe 64-ary (63,45)

NB-TF-EG code, the 64-ary (63,45) NB-LDPC code, and the (63,45) RS code
over GF(25) decoded with the HD-BM and the ASD-KV algorithms using
BPSK over the AWGN channel.

and A\ = 4.99, respectively. Due to the degrading effect of short
cycles of length 4, the NB-TF-EG code decoded using the
standard EMS algorithm with 50 iterations gains only 0.5 dB
over the RS code decoded using the HD-BM algorithm, and
degrades by 1.6 dB, compared to the proposed ITS-EMS with
5 iterations. Moreover, the NB-TF-EG code decoded with 5
iterations of the ITS-EMS outperforms the NB-TS-MLGD by
4.3 dB. At the FER of 1074, we find that the low column
weights of the one-step MLG decodable 64-ary (63,45) NB-
LDPC code decoded with 10 iterations of standard EMS result
in an error floor phenomenon. The 64-ary (63,45) NB-TF-EG
code decoded with 5 iterations of the ITS-EMS achieves a
coding gain of 1 dB over the 64-ary (63,45) NB-LDPC code
decoded with 10 iterations of standard EMS.

Fig. 2 shows the FER versus E} /N, performance of the
64-ary (63,45) NB-TF-EG code and the (63,45) RS code over
the AWGN channel using 64-QAM. At the FER of 107°, the
NB-TF-EG code decoded with 5 iterations of the ITS-EMS
achieves a coding gain of 2.5 dB over the RS code decoded
using the HD-BM, as well as a coding gain of 1.2 dB, 1.6 dB,
and 1.9 dB over the RS code decoded using the ASD-KV
algorithm with A = co, A = 9.99, and A = 4.99, respectively.
In addition, the ITS-EMS with 5 iterations outperforms the
standard EMS with 50 iterations by 2 dB for decoding the NB-
TF-EG code.

In Table II, the number of computations for decoding the
64-ary (63,45) NB-TF-EG code with 5 iterations of the ITS-
EMS is on the order of 1.45 x 10°. On the other hand, the
number of computations for the (63,45) RS code decoded using
the ASD-KV algorithm in the interpolation step with A = 9.99
is on the order of 2.6 x 107. From Fig. 1 and Table II, the
64-ary (63,45) NB-TF-EG code decoded with 5 iterations of
the ITS-EMS achieves a 1.3 dB coding gain over the (63,45)
RS code decoded using the ASD-KV algorithm with A = 9.99,
representing an order of magnitude reduction in the number of
computations.



CHANG AND CHANG: CLASS OF NB-TS-MLG DECODABLE CYCLIC CODES

100

S o NB-TF-EG (63,46) ITS-EMS, 5

N 4| —B— NB-TF-EG (63,45) ITS-EMS, 3

§ N —A— RS(63,45) over GF(2°%), ASD-KV A=w

10775 AN N NN 111 —¥—RS(63,45) over GF(2%), ASD-KV 1=0.99 3

NN —D— RS(63,45) over GF(2°), ASD-KV 7=4.99
N —4— NB-TF-EG (63,45) EMS, 50

| —%—Rs(63,45) over GF(2°), HD-BM

102},

1073L ..

Frame Error Rate

104E

105%

10 i
10 1 12 13 14 15 16 17

Ey/No (dB)

Fig. 2. Frame error rates of various decoding algorithms forthe 64-ary (63,45)
NB-TF-EG code and the (63,45) RS code over GF(26) decoded with the HD-
BM and the ASD-KV algorithms using 64-QAM over the AWGN channel.

Example 3: Let d = 2 and ¢ = 16 = 2. Consider the two-
dimensional Euclidean geometry EG(2,2%) over the field
GF(2*). The subgeometry EG*(2,2%) consists of 255 non-
origin points and 255 lines not passing through the origin of
EG(2,2*), which form 1785 (1,2)-frames. The parity-check
matrix H of this code is a 1785 x 255 matrix with 1785 (1,2)-
frames on the row side and 255 256-ary symbols on the column
side. The null space over GF(28) of this parity-check matrix
gives a 256-ary (255,191) NB-TF-EG code over GF(2%).

The decomposition of H is as follows. With the 255 lines
and the 255 points in EG*(2,2%), a 255 x 255 matrix Lp with
256-ary incidence vectors of lines is formed. The 255 lines in
EG*(2,2%) can be divided into 17 groups of parallel bundles,
with each of them consisting of 15 lines and forming 105 (1,2)-
frames. A 105 x 15 DIM with binary incidence vectors of
(1,2)-frames is formed as a unit for partial parallel decoding.
The decoding process is accomplished by decoding a 105 x
15 DIM 17 times with the corresponding 256-ary incidence
vectors of 15 lines on the column side. The values of J; and
Jo for the 256-ary (255,191) NB-TF-EG code code are 16
and 14, respectively. This code can correct up to 7 symbol
errors with NB-TS-MLGD. The Tanner graph of this code
contains 19,492,200 short cycles of length 4. From Fig. 5, we
set ¢ = 0.2 and x = 0.05, respectively. Fig. 3 shows the FER
performances of the 256-ary (255,191) NB-TF-EG code over
the AWGN channel with BPSK signaling decoded using the
proposed ITS-EMS with 3 and 5 iterations, standard EMS with
30 iterations, and NB-TS-MLGD. We also include the error
performances of the (255,191) RS code over GF(2%) decoded
using the HD-BM algorithm and ASD-KV algorithms using
A =00, A =9.99, and \ = 4.99, respectively. In addition, the
FER performance of the standard EMS algorithm in decoding
one-step MLG decodable NB-LDPC code with same rate and
length is also included. The code is a 256-ary (255,193) NB-
LDPC code with two different column weights 5 and 6, and
row weight 16. At the FER of 107°, we see that the NB-TF-
EG code decoded using 5 iterations of the ITS-EMS achieves a
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Fig. 3. Frame error rates of various decoding algorithms for the 256-ary

(255,191) NB-TF-EG code, the 256-ary (255,193) NB-LDPC code, and the
(255,191) RS code over GF(ZS) decoded with the HD-BM and the ASD-KV
algorithms using BPSK over the AWGN channel.

coding gain of 1.3 dB over the RS code decoded using the HD-
BM algorithm, and a coding gain of 0.4 dB, 0.6 dB and 0.75 dB
over the RS code decoded using the ASD-KV algorithm with
A =00, A =09.99, and A = 4.99, respectively. Note that the
performance gap between 3 and 5 iterations of the ITS-EMS is
less than 0.1 dB. Moreover, the 256-ary (255,191) NB-TF-EG
code decoded with 5 iterations of the ITS-EMS outperforms the
NB-TS-MLGD by 3.7 dB. We notice that the NB-TF-EG code
decoded with the standard EMS algorithm performs poorly due
to the degrading effect of short cycles of length 4. The ITS-EMS
with 5 iterations achieves a 0.9 dB coding gain over the standard
EMS with 30 iterations. At the FER of 1072, note that the
low column weights of the one-step MLG decodable 256-ary
(255,193) NB-LDPC code decoded with 5 iterations of the
standard EMS result in an error floor phenomenon. In Fig. 4, we
demonstrate the FER versus F /Ny performance of the 256-ary
(255,191) NB-TF-EG code and the (255,191) RS code over the
AWGN channel using 256-QAM. At FER = 10~°, the NB-TF-
EG code decoded using 5 iterations of the ITS-EMS achieves
a coding gain of 1.5 dB over the RS code decoded using the
HD-BM, as well as a coding gain of 0.5 dB, 0.7 dB and 0.8 dB
over the RS code decoded using the ASD-KV algorithm with
A =00, A =9.99 and A = 4.99, respectively. Also, the 256-ary
(255,191) NB-TF-EG code decoded using the ITS-EMS with
5 iterations outperforms the standard EMS with 30 iterations
by 0.8 dB.

As shown in Table II, the number of computations for de-
coding the 256-ary (255,191) NB-TF-EG code with 3 iterations
of the ITS-EMS is on the order of 1.7 x 108. In contrast, the
number of computations for decoding the (255,191) RS code
with the ASD-KYV algorithm in the interpolation step with A =
9.99 is on the order of 4.26 x 108. From Fig. 3 and Table II, the
256-ary (255,191) NB-TF-EG code decoded with 3 iterations
of the ITS-EMS outperforms the (255,191) RS code decoded
with ASD-KV A = 9.99 by 0.4 dB, providing 60% reduction in
computational complexity.
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Fig. 4. Frame error rates of various decoding algorithms for the 256-ary
(255,191) NB-TF-EG code and the (255,191) RS code over GF(28) decoded
with the HD-BM and the ASD-KV algorithms using 256-QAM over the AWGN
channel.
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Fig. 5. Scaling factors ¢ and x for the 64-ary NB-TF-EG (63,45) and the
256-ary NB-TF-EG (255,191) in BPSK decoding with 5 iterations of ITS-EMS
with target FER of 105 and 106, respectively.

IV. ITERATIVE RELIABILITY TWO-STEP
MLGD ALGORITHM

The computational complexity of the ITS-EMS algorithm is
high because a large number of operations are performed using
real numbers. In this section, we present a simplified decoding
algorithm, called IRTS-MLGD algorithm. The IRTS-MLGD
only utilizes finite field and integer operations, which greatly
reduce computational complexity, compared to the ITS-EMS
using operations in real numbers. In addition, compared to the
one-pass NB-TS-MLGD employs only hard-decision values
from the received symbols, the IRTS-MLGD utilizes the soft
information of the received symbols in conjunction with an
iterative decoding process. As a result, a considerable coding
gain can be achieved.

For practical applications, we devise the algorithm over
GF(2"). Consider NB-TF-EG code C' over GF(2") of length
n. Let ys be the soft received sequence at the received
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sampler represented by ys = (Yo, Y1,--.,Yn—1), Where “s
stands for soft information. For 0 < j < n, each element of
ys in GF(2") is represented as an r-tuple y; = (y,.0, Yj.1,- - - »
yjr—1) over GF(2). The hard-decision received sequence z =
(20, %15 - -+, 2Zn—1) over GF(2") is determined by y,, where z;
is an estimate of the jth transmitted symbol, for 0 < j < n. Let
P4,k be the quantized value of sample y; 5, where 0 < j <n
and 0 < k < r. The quantized value is an integer representation
of the 2P — 1 quantized intervals symmetric to the origin. Each
interval has a length A and each sample is represented by p bits.
Therefore, p; x is in the range of [— (2P~ — 1), +2(P—1) — 1].
For 0 < j < n, the jth group (p;.0, Pj.1,-- -, pjr—1) is decoded
into element a in GF(2") = {ag,a1,...,a2r_1}. For 0 <1 <
2", the binary representation of the /th element a; € GF(2") is
denoted by an r-tuple a; = (a;0,a1,1,-..,a;,,—1) over GF(2).
For each element a; € GF(2"), we calculate the reliability
measure of q; as

r—1

b= (1= 2a1k)pjx

k=0

12)

which is in the range of [—7(2P~D=1 4r(2(~D-1)] Let a
be the element in GF(2") with the highest reliability, and a is
selected as z;. For 0<j<n, let ¢;=(¢j.0,%j1,---,Pj27-1)
which is called the decision vector of the jth received symbol
zj. For 0 < i < Jy, the reliability measure of the jth received
symbol is given by

13)

v j,gl]\i,?\j R 9
which can be regarded as a reliability measure of the extrinsic
information contributed to z; by other received symbols in
S(L;). Consider the jth received symbol z; participating in
FJ: which consists of two lines L7 and L], where 0 <
u<J; and 0 <t < Jy. Frame-sum S(F7%1!) is actually a
check-sum in H. There are J;.J; check-sums that contain z;.
Assume that S(F7*?) participates in the ith line of EG*(d, q),
where 0 <i< Jp, 0<j<n, 0<u<Jy, and 0 <t < Jo.
S(F3wt) can be normalized for decoding the jth received
symbol as

S'(F3t) = v JS(FI™)
=08 (L) +vi S ()

=z + vzjl Z V12 + vi_,le (L{,u) . (14)
leN;\j

Next, we consider the partial parallel decoding scheme
mentioned in III-A for the proposed IRTS-MLGD algorithm.
The bth line in which the jth received symbol participates in the
a-group is denoted as L, . The extrinsic information of the
jth received symbol comprises two parts. The first part is
the extrinsic symbol information, which comes from the frame-
sum S(F7!) without the jth symbol. The other part is the
magnitude of the reliability measure, which comes from the re-
liability measure of the parallel lines of £, ; and the reliability
measure of the symbols participating in the same line as the jth
symbol. Recall that wy,,x is the maximum number of iterations
to be performed. At the wth iteration, the jth received symbol
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is denoted as zj(-w). The extrinsic information of L, can be

derived by the line-sum and the reliability measure of £, ; as

SN Lap) = D vz, (15)
JEN(a,b)
Te,, = ]Erjnvg?b) mlax 1 (16)

The reliability measure of the jth received symbol participating
in L, is calculated as

min  max g, ;.

17
J'€N@n\i 1 a7

Pla,b),j =

The extrinsic symbol information of the bth line is contributed
by other lines in the a-th group as

(w) _ —1 w
Slab)j = Z ”<a,b),j5( NLaw).

L,y €Pab#b!

(18)
The frame-sum (14) can be rewritten as

/(w ) u,t w -1 w w
S/ )(FJ’ ):z]( )+ Viab)i Z v(a,b”zl( )+§((a72))7j
lEN(a’b)\j

(19)
Let

pC) 1 (w)
T(ab).i = Y(ab).j Z Y(a.b), lzl '+ 8(a,b).d (20)

leEN(a,p)\J
The normalized check-sum S'(*)(F7:%!) can be rewritten as

1(w) gty (w) (w)
S (piuty = A

The extrinsic symbol information of the jth received symbol
can be derived by

(w) _ w Uy (w)
Tlan) = §/w)(pinwty z;.

21

(22)

From (22), we can see that: 1) if §'(*)(FJ%!) =0 and

(w) (w)

Ta).i is error free, then z; ' must be error free; 2) if

S/W)(FIwty £ ( and oga i) J is error free, then z]( ) contains

an error e;. The value of z]( (w) _ ej =

—a&”?))j to make the normalized check-sum S’(“’)(Fjvuvt)

equal to zero when e; = S'(")(F7%t). Next, we consider
updating the magnitude of the reliability measure of the jth
received symbol which participates in £, ;. The first step is to
calculate the reliability measure contributed by .Jo £, s parallel
to L, and denoted as

Bra, =

must be changed to z;

min I'p
a,b’ePa

23)
where 'z, is derived as (16) with £, ; replaced with L, p .
In the second step, we update the reliability measure of the re-
ceived symbol z participating in each £, ;. Let w;w) be the de-
cision vector of the magnitude of the reliability measure for the
jth received symbol contributed by other symbols participating
in the line £, ; except zj(w) and other lines parallel to £, ; at
the wth iteration. For (a,b) € M'; and 0 < j < n, the decision
vector is denoted as wgw) = (1/)5??,1/)%3, . ,1/1%1,1), and
derived by summing up the the minimum value between 3., ,
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(w)
(a,b),j
is calculated by

and ¢(q,p),; When the extrinsic symbol information —o
equals a; € GF(2"). The [th element in 'zﬁ;w)

w(w) Z

(a, b)eM’,

o (w)
7(ab),j

min (Bz, ,, (b)) - 24)

=a;

Let R = {R\) R\, ... R(Y)

(W) at the wth iteration, where Rﬁ) is the

o1+ be the reliability mea-
sure vector of z;

reliability measure, such that a; is taken to be z](w). In the (w +

(w+1)

1)-th iteration, the reliability measure of z; is updated by

Ry = (25)

(w) (w)
R, "+, .
For w=0 and 0 < j <n, we set R( l) = €¢;,1, where the

parameter € is called a scaling factor ‘which is selected to
optimize the performance of a given code.

Algorithm 2 IRTS-MLGD

1) Initialization: For 0 < j < n, set R\ = ep;1, w =0,

and the maximum number of iterations to Wy ax-

2) Let S()(X) be the syndrome derived by dividing
the received polynomial z(*)(X) by the generator
polynomialg(X) of the codes. If S(*)(X) = 0, then stop
the decoding process and output z(*) as the decoded
codeword.

3) If w = wmax, then stop the decoding process. If
S(w)(X) # 0, then declare a decoding failure.

4) For0<a< J3,0<bV <Jyandi=a x Jy+b:

Update the elements in w;w) using (24) by selecting
the minimum value between (17) and (23) when symbol
extrinsic information O'g )) equals a; € GF(2").

5) For 0 < j <n, update the rehablhty measure vector
R;")H) using (25). Make the hard-decision zj( o) —

(w)

arg maxg, le . Let w+ w+1, and form a new re-
ceived vector z(®).

6) Proceed to Step 2.

Due to the limit of quantization bit widths, we need to bound

the range of the reliability for each symbol. Let A = (2P~ — 1)
be the range of quantization. If Rg“r’nzg 2 maxl(Rg»’u;) + wj(.j"lu))
is greater than A, then Riwmtx) is truncated at A. By defining
= Rg“:;i) — A, we obtain
RO+ _ { _A, it RYTY — < A
R(wH) 7, otherwise

Using the above updating process, the proposed IRTS-MLGD
algorithm is formulated in Algorithm 2.

The computational complexity of the IRTS-MLGD is ana-
lyzed as follows. The initialization of the decoding algorithm
needs n2" log 2" integer additions for (12) and n2" integer
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multiplications for € to compute the reliability measure of all
Rg-o). In addition, J3.J4(3¢—5)(2" —1) integer comparisons are
required to calculate (16) and (17). At the Step 2, an (n—k)-
stage syndrome calculation must be performed using no more
than (n—k) finite field additions and (n—k) finite field mul-
tiplications. At the Step 4, J4(¢—1) finite field additions and
J4q finite field multiplications are required for the calculation
of Jy line-sums using (15) in each P,. For two-step decoding,
JoJy finite field additions and JsJy finite field multiplications
are required for (18). Jyq finite field additions and J,q finite
field multiplications are required to calculate (20), and ¢ finite
field additions are required for (22) to update the symbols in the
corresponding line-sum. Finally, J4(g—2)(2" —1) integer com-
parisons are required to calculate (24). J5[J4(J2—1+2¢)+¢]
finite field additions, Js.J4(J2+2¢) finite field multiplications,
and J3J4(g—2)(2"—1) integer comparisons are required to
complete J3 blocks for partial parallel decoding. At the Step 35,
nJ1 integer additions are required to update (25). Moreover, a
maximum of n2" integer additions and n(2"—1) integer com-
parisons are required for normalization, and n(2"—1) integer
comparisons are required to make hard decisions. The compu-
tational complexity is summarized with some translations with
code length n and ¢. A total of n(4¢—2) finite field additions,
n(3¢g—2) finite field multiplications, nq(q+1) integer addi-
tions, and ng(n+1) integer comparisons are required to carry
out one iteration of the IRTS-MLGD. In the following exam-
ples, the bit widths are respectively 10-bits and 12-bits and the
interval length of both codes is A =0.3125. For convenience,
the computational complexity of the ITS-EMS and the IRTS-
MLGD is evaluated according to the number of operations.
The IRTS-MLGD is shown to reduce computational complexity
to a degree exceeding that of real numbered ITS-EMS with
32-bit floating point format in IEEE Standard 754 [22].
Moreover, the number of computations for the interpolation of
ASD-KYV algorithm exceeds that of the two proposed iterative
decoding algorithms as A increases to A=9.99.

Example 4: Consider the 64-ary (63,45) NB-TF-EG code in
Example 1 with € = 8. Fig. 6 shows the FER performances
of the NB-TF-EG code over the AWGN channel with BPSK
transmission using the ITS-EMS with 5 iterations, the IRTS-
MLGD with 5 and 10 iterations, standard EMS with 50 it-
erations, and NB-TS-MLGD. The FER performances of the
(63,45) RS code over GF(2°) decoded using the HD-BM and
the ASD-KV algorithm are also included. As shown in Table II,
the number of integer operations for the IRTS-MLGD with 10
iterations is on the order of 3.67 x 10°. In contrast, the number
of computations in real numbers using the ITS-EMS with 5
iterations is on the order of 1.45 x 10°. At the FER of 1079, the
IRTS-MLGD with 10 iterations reduces the number of compu-
tations by 75% with a 1.1 dB in performance loss, compared
to the ITS-EMS with 5 iterations. Besides, the IRTS-MLGD
with 10 iterations outperforms the NB-TS-MLGD by 3 dB and
achieves 1 dB coding gain over the RS code decoded using the
HD-BM algorithm. Furthermore, the NB-TF-EG code decoded
using the IRTS-MLGD with 10 iterations nearly exceeds the RS
code decoded using the ASD-KV algorithm with A = oo, and
achieves a 0.5 dB coding gain over the RS code decoded using
the ASD-KV algorithm with A = 4.99.
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Fig. 6. Frame error rates of the IRTS-MLGD algorithm, and other decoding
algorithms for the 64-ary (63,45) NB-TF-EG code, and the (63,45) RS code
over GF(26) decoded with the HD-BM and the ASD-KV algorithms using
BPSK over the AWGN channel.
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Fig. 7. Frame error rates of the IRTS-MLGD algorithm, and other decoding
algorithms for the 256-ary (255,191) NB-TF-EG code, and the (255,191) RS
code over GF(28) decoded with the HD-BM and the ASD-KV algorithms using
BPSK over the AWGN channel.

Example 5: Consider the 256-ary (255,191) NB-TF-EG
code given in Example 2 with € = 16. Fig. 7 presents the FER
performances of the NB-TF-EG code over the AWGN channel
with BPSK signaling decoded using the ITS-EMS with 5 itera-
tions, the IRTS-MLGD with 5 and 10 iterations, standard EMS
with 30 iterations, and NB-TS-MLGD. The FER performances
of the (255,191) RS code over GF(2®) decoded using the HD-
BM and the ASD-KV algorithm are also included.

From Table II, decoding with 5 and 10 iterations of the IRTS-
MLGD require the integer operations on the order of 5.55 X
105 and 1.11 x 107, respectively. In contrast, the number of
computations required for real numbers using the ITS-EMS
with 5 iterations is on the order of 2.83 x 10%. At the FER of
1075, the IRTS-MLGD with 5 iterations reduces the number
of computations by 99% with a 0.5 dB in performance loss,
compared to the ITS-EMS with 5 iterations. In addition, the
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NB-TF-EG code decoded using the IRTS-MLGD with 10 iter-
ations achieves a 3.2 dB coding gain over the NB-TS-MLGD,
and outperforms the RS code by 0.7 dB when decoded using
the HD-BM algorithm. Moreover, decoding the NB-TF-EG
code with 10 iterations of IRTS-MLGD nearly exceeds the RS
code decoded using the ASD-KV algorithm with A = oo, and
outperforms the RS code decoded using the ASD-KV algorithm
by 0.3 dB with A = 4.99.

V. CONCLUSION

This paper presents a subclass of the TS-MLG decodable
cyclic codes based on Euclidean geometries to non-binary
cases, termed as NB-TF-EG codes. We also present two cor-
responding algorithms for decoding NB-TS-MLG decodable
cyclic code. Our results demonstrate that the proposed iterative
decoding algorithms are capable of efficient decoding of NB-
TS-MLG decodable cyclic codes with Tanner graphs including
a large number of short cycles of length 4. This is achieved by
utilizing the orthogonal structure of the parity-check matrices
of the codes to avoid performance degradation resulting from
numerous short cycles of length 4. In addition, the proposed
partial parallel decoding scheme strikes a reasonable balance
between decoding speed and memory usage by incorporating
a decomposition of the parity-check matrices of the codes.
Simulation results demonstrate that the NB-TF-EG codes de-
coded using the proposed ITS-EMS algorithm in a small
number of decoding iterations outperform the RS codes with
similar lengths and rates decoded using either hard-decision
or algebraic soft-decision decoding algorithms. Moreover, the
IRTS-MLGD provides an alternative for ITS-EMS in decoding
NB-TF-EG codes with far lower computational complexity.
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