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Probability-Based Location Aware Design and
On-Demand Robotic Intrusion Detection System

Chia-How Lin and Kai-Tai Song, Member, IEEE

Abstract—For an on-demand robotic system, a location aware
module provides location information of objects, users, and the
mobile robot itself. This information supports various intelligent
behaviors of a service robot in day-to-day scenarios. This pa-
per presents a novel probability-based approach to building a
location aware system. With this approach, the inconsistencies
often seen in received signal strength indicator (RSSI) measure-
ments are handled with a minimum of calibration. By taking
off-line calibration measurement of a ZigBee sensor network,
the inherent problem of signal uncertainty of to-be-localized
nodes can be effectively resolved. The proposed RSSI-based
algorithm allows flexible deployment of sensor nodes in various
environments. The proposed algorithm has been verified in
several typical environments and experiments show that the
method outperforms existing algorithms. The location aware
system has been integrated with an autonomous mobile robot to
demonstrate the proposed on-demand robotic intruder detection
system. In the experiments, three alarm sensors were employed
to monitor abnormal conditions. If an intrusion was detected,
the robot immediately moves to the location and transmits scene
images to the user, allowing the user to respond to the situation
in real time.

Index Terms—Autonomous navigation, location aware system,
received signal strength indicator, security robot, sensor network.

I. INTRODUCTION

ONVENTIONAL security systems have various

limitations and shortcomings. For instance, a security
agent employing conventional security systems has to dispatch
security guards to respond to alarms. This creates a heavy
burden for security agencies, especially considering a high
portion of alarms are actually false alarms. Furthermore, it
normally takes some time for the security guard to reach the
alarm location to handle the situation. Critical time may have
already been lost by the time the security guards arrive on the
scene. One possible solution for such problems is to install a
large number of security cameras throughout the guarded area
to monitor any possible abnormal conditions. However, this
solution may require high installation costs and pose privacy
issues. The development of robotic security and monitoring
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systems for indoor environments, such as factories, offices, or
home settings, has gained increasing attention in recent years
[1]-[4]. An autonomous mobile robot provides sufficient
mobility and flexibility to help security guards that lowers
the relative cost as long as the demand for adequate security
is satisfied.

For an on-demand robotic system, a locational aware mod-
ule is required to provide location data of objects of interest,
users and of the mobile robot itself [5]. This information
supports various intelligent behaviors of a service robot in day-
to-day scenarios. In the past decade, the production of various
off-the-shelf devices for wireless sensor networks (WSNs) has
progressed rapidly and such devices can support the use of on-
demand robotic systems. WSNs are constructed using a series
of sensor nodes deployed throughout the monitored environ-
ment. These sensor nodes are connected and communicate
with each other over a wireless network such as wireless LAN,
Bluetooth, ultrawide band, or ZigBee. This allows the use of
free-ranging autonomous service robots that operate in human
centered environments to assist people. Because the robot has
limited onboard sensing and computing abilities, integrating
service robots with a WSN is desirable to enable robots to be
used for more practical applications. A WSN can serve as a
low-cost, distributed, and easily deployed monitoring system
that extends the limited sensing capability of the robots.

Unlike a stand-alone security robot, which is normally
equipped with a variety of sensors but still has only a limited
sensing range, on-demand security robots can obtain thorough
sensory information of the guarded area and make it available
on line. When integrated with the WSN, a security robot
can acquire information from the entire sensed environment
in real time. To enhance the prompt response of security
robots to an intrusion situation, many researchers have studied
the application of WSN and mobile robot techniques for use
in security and monitoring [6], [7]. WSN-based localization
can estimate the location of a mobile node with an initially
unknown position in a sensor network using available a priori
knowledge of positions of a few specific reference nodes in
the network. However, most of these designs require overly
complex and impractical installation procedures and suffer
from problems with signal calibration/training. For example,
some wireless sensor modules have to be placed in restricted
locations such as on a ceiling [3].

Localization algorithms should meet the requirements of
various hardware configurations such as signal transmission,
power requirements, and computational complexity. These
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factors allow us to divide various approaches into three main
categories [8]: range-free, range-based, and fingerprinting.
Range-free localization [9] is based on the connectivity of
the network. It does not require any special hardware and the
content of the messages is received through simple operations.
Range-based localization, on the other hand, estimates the
distance between nodes using certain ranging techniques. The
distance information can then be used to locate the position
of unknown sensor nodes. Most range-based localization al-
gorithms adopt the received signal strength indicator (RSSI)
technique to estimate the distance based on the strength and
path loss model of the signal that was received. After RSSI is
used to estimate the distance, the second phase of localization
performs computations based on the relative distance between
nodes. Many strategies exist for location estimation such as
multilateration [10] and min—max [11]. Unfortunately, indoor
radio channels are unpredictable, because reflections of the
signal against walls or ceiling may result in severe multipath
interference at the receiving antenna. A straightforward way
to overcome the inaccuracy of RSSI is to use enhanced or ad-
ditional radio hardware, such as multiple directional antennas
[12]. However, the devices used in these solutions generally
demand more energy and are much more expensive to deploy.

The fingerprinting approach or location pattern matching
techniques [13], [14] are based on the concept of identifying
a specified position by relying on RSSI data received from
nearby nodes. This approach uses two phases, a training phase,
and an estimation phase. In the training phase, the RSSI is
measured at grid points in the area of interest. This information
is used to estimate the propagation model parameters, which
are employed later in the estimation phase. The accuracy of
the calibration procedure depends on the number of points in
the grid and the number of measures taken per point. Since
the fingerprinting approach is basically a pattern matching
and generalization technique, many researchers have applied
state-of-the-art intelligent-computation approaches to resolve
this problem. Oliveira et al. [15] combine the RSSI technique
and the link quality indicator (LQI) using fuzzy logic and
transferable belief model (TBM). Their results indicate that
this type of combination metrics can refine the estimated
distances. Gogolak et al. [16] preprocess the RSSI values to
obtain the mean, median, and standard deviation of the data
and uses these processed data to train a neural network in order
to increase the accuracy of the localization system. Fang and
Lin [17] proposed the discriminant-adaptive neural network
(DANN), which extracts useful information into discriminative
components (DCs) for neural network learning. The nonlinear
relationship between RSSI and the object’s position is then
accurately constructed by incrementally inserting the DCs and
recursively updating the weights in the network until no further
improvement is required. In general, these techniques yield
improved performance when the number of nodes is relatively
large. However, they are very time consuming as the process
requires exhaustive data collection, which is a practical barrier
to its wider adoption.

Due to the long calibration time required for fingerprinting
approaches, range-based methods are more suitable in
applications where fast deployment is necessary. The most
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Fig. 1. Example of RSSI irregularity.

challenging problem is how to overcome the irregularity of
range estimation using RSSI. Ramadurai and Sichitiu [18]
proposed to merge all the data collected and estimated the
probability distribution of WiFi radio frequency (RF) signal
strength as a normal distribution function of distance. While
their results indicate that the actual position of a signal node
is well bounded by the estimated position obtained despite
ranging inaccuracies, their method is not suitable for an indoor
environment because of the presence of multipath fading. With
lower power, stronger shadowing and fading effects, it is even
more difficult to find a proper distribution for ZigBee-based
systems. Fig. 1 shows an example of the relationship between
RSSI and distance using ZigBee modules. As the figure shows,
the relationship between RSSI and distance is quite irregular,
and a perfect mathematical model that adequately describes
this type of distribution is difficult to find. In [19], a thorough
free space loss model of RF signal is proposed. This model
considers the irregularity seen in RSSI and the parameters of
the RF hardware (antenna gain and efficiency, transmit power,
etc.). However, this subtle model assumes that only the direct
signal reaches the antenna with the RSSI value, and may still
fail in real-life situations. Similar observations can also be
found in many other attempts [20]-[22]. When the model
fails to accurately describe the relationship between RSSI
and distance, overall accuracy will decrease dramatically.
Lee et al. [22] used both unscented Kalman filtering (UKF)
and particle filtering (PF) to track a target tag with RSSL
The UKF assumes near linearity and unimodal Gaussians
in the system while the PF does not. Their results show
that the assumptions of UKF are very fragile and easily
violated. Furthermore, while the tracking method itself is
verified, several sets of parameters for the RSSI model for
different parts of the area need to be determined beforehand,
to overcome the irregularity.

In summary, the currently available location-aware so-
lutions, whether off-the-shelf or state-of-the-art approaches,
suffer from the requirement of prior parameter training and
retraining in different application areas. It is difficult or even
impossible to build up a location aware system in a totally
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new environment. This motivated us to develop a new local-
ization method that can provide a straightforward and practical
solution for sensor-node calibration and provide WSN lo-
calization with acceptable accuracy. The proposed method
requires no extra hardware. Most importantly, calibration is
only needed once and provides adequate robustness in different
environments.

The proposed location aware system has been integrated
and tested with an intruder detection system that features a
ZigBee WSN and a mobile robot. If any intruders or abnormal
conditions are detected, the state and location of this alert will
be transmitted to the security robot and monitoring center
on the WSN. The robot can navigate autonomously to the
alarm location using the probability-based localization system.
After the robot arrives on the scene, the onboard camera will
transmit real-time images to the user via both WiFi and 3G
networks. The security guards and end-users can therefore
easily determine the exact situation in real time.

The remainder of this paper is organized as follows.
Section II presents the proposed probabilistic localization
method. Section III describes the system design and im-
plementation of the on-demand intrusion detection robotic
system. Section IV presents the results of the experiment
describing and discussing both the performance evaluation
of the localization system and validation of the intrusion
detection technique. Section V summarizes the contributions
of this paper.

II. PROPOSED PROBABILITY-BASED ZIGBEE
LOCALIZATION METHOD

To overcome limitations posed by uncertainties of RSSI,
we suggest a novel probability-based approach to estimating
location by modeling the RSSI versus distance relationship
with discrete probability density functions. This approach aims
to provide a straightforward method of describing different
distributions without losing generality. While most current
approaches use mathematical equations to model the RSSI
versus distance relationship, the proposed method adopts the
original RSSI versus distance data to construct its own model.
Furthermore, instead of using trilateration or fingerprint tech-
niques, the location is estimated by accumulating a probability
histogram observed from several reference nodes on a local
probability map. This approach will be shown to have better
tolerance against fluctuations and inconsistencies inherent with
the RF signal. It is also flexible because it uses the available
number of the RSSI measurements and the deployment of
ZigBee nodes.

We first assume that the locations of all reference nodes
are already known and the RSSI between each pair of nodes
can be received. Fig. 2 shows a flow chart of the algorithm.
It contains a calibration phase that models the RSSI versus
distance relationship and a localization phase that estimates
the location using a filtered 2-D probability map as follows.

A. Modeling the RSSI versus Distance Relationship

The calibration phase estimates the distance between the
nodes based on the RSSI measurement. Instead of using a

Calibration Phase Localization Phase

Collect RSSI values at
various distances
between modules

}

Construct RSSI
vs. distance relation

Collect the RSSI values
between the mobile note
and nearby reference nodes

}

Find a 2D probability map
for each reference node

}

Filter these 2D maps with a
2D average filter

!

Accumulate all the 2D
probability maps to form a
probability map of the target

}

Estimate the location of the
target from the peaks of the
probability map

Store the RSSI vs.
distance relationship

Fig. 2. Flow chart of the proposed localization algorithm.

mathematical path-loss model, the RSSI versus distance rela-
tionship is collected and modeled with a series of probability
histograms, which records different distances measured under
a fixed RSSI. The histogram therefore represents the discrete
probability density function (pdf) of a given RSSI value. Let
R and D denote the random variables of the RSSI reading and
distance between the nodes (in meters), respectively. Assume
the model is tested from distance O to L meters at intervals of
q meters. The pdf of the RSSI value equal to r can be defined
as
N-1 N-1
P(DIR=1)=Y Pp(di<D=<dii|R=1)=Y h (1)
i=0 i=0

where d; represents the distance of the ith interval, N=L/g
is the total bins in the histogram and #; is the value of each
bin. Fig. 3 shows an example of the probability histogram
when RSSI=-88 dBm. This model can easily be implemented
onboard the sensor node since it only needs a single look-up
table. Clearly, the number of the bins in each histogram limits
the resolution of the estimation of distance. This is, however,
not critical since the RSSI value is also discrete in practice.

B. 2-D Probability Map

In the next step, the location of the mobile node is estimated
using the RSSI values measured from several nearby reference
nodes. The concept is to apply the 2-D multilateration method
with the estimated pdfs. A trilateration method determines the
location by finding the intersections of circles given from: 1)
the centers of the reference nodes and 2) distance between
the mobile node and several reference nodes (more than
three). In the proposed algorithm, however, a mobile node
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Fig. 3. Probability histogram of distance for RSSI=-88 dBm.

may obtain several possible distance measurements from each
reference node. The next step is to find the intersection sets
of distance measurements with the largest probability from
several reference nodes.

To simplify the calculations, the proposed algorithm esti-
mates the 2-D probability distribution directly on the 2-D map
quantized in grids of a fix size of K x K. Specifically, grids of
the size N x M are spanned over the localization area, defined
by (x,y), 1 <x <N, and 1 <y <M. The next step is to derive
the location of the mobile node Xy, = (X, ym) from an RSSI
vector R=(R|,R; ..., R;, ... Rg), containing the RSSI values
received from K reference nodes with known positions x,;,
1 <i<K. For each reference node x,; with an RSSI value
r measured at the mobile node, the 2-D pdf P(x,y,i) of the
mobile node at position (x,y) can be given as

M N
P('x’ Y l) = Z ZPX,Y (Xm = (X, y)|R1: I‘)
=1 x=1
}M N
=Y > P (D= — x| Ri=1). @
y=1 x=1

Since the RSSI versus distance model is known and modeled
as a 1-D pdf, the 2-D probability distribution is equivalent
to a repeat of the 1-D pdf P(D |R=r) in (1) around the
coordinates of the reference node from 0 to 360°. Fig. 4 shows
a graphical example of the 2-D pdf with one mobile node
and one reference node at (0,0). The 2-D pdf indicates the
probability of the mobile node by means of a 2-D probability
map.

C. Filtered 2-D Probability Map

While the localization method described in the previous sec-
tion works under many circumstances, some practical issues
still need to be resolved. Among them, the most important
problem is the gap in the histogram created by the incon-
sistency of the RSSI values. For instance, in Fig. 3 (when
RSSI=-88 dBm), the probability of the distance=15 m is
zero, which is unlikely in reality, because of the irregular na-
ture of the radio signal. To realize the goal that the model only
needs to be built once, we need to enhance the proposed model
to tolerate these circumstances. Furthermore, for some WSN
applications such as searching, it would also be beneficial if
the proposed method can provide alternative locations when
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Fig. 4. 2-D pdf of a fixed RSSI reading between a reference node and a

mobile node.

it fails on the first try. In order to resolve these issues, we
treat the 2-D probability map as an image and apply a 2-D
circular averaging filter H(x,y) with radius r to it. The idea is
to smoothen the map by filling the gaps and avoid any zero
probability on the map by taking probabilities of nearby areas
into account. The filter is defined as
1 1, ifx? +y?<s?
Hx, y) = 2T {0, otherwise

where the value of r is adjusted according to the variance of
the RSSI values. The filtered map is thus stated as

3)

P(x. y. i) = P(x,y, i) % H(x, y). )

As a result, the filtered map provides a relatively more ro-
bust result than the raw map (refer to the experiment section).
The filtered map also provides other possible locations for the
robot or human to search for the target, if they failed to find
the target at the location with the highest probability.

D. Location Estimation

Finally, the location of the current mobile node will be esti-
mated by accumulating all the 2-D probability maps obtained
from reference nodes such that

K
N
P(x,y) =Y P(x,y,i). (5)
i=1

The summation of each grid P(x,y) is analogous to the
convolution of all the individual distributions. Fig. 5 shows
an example of how maps obtained from different reference
nodes are accumulated into the final map. As a result, the
mobile node is located by the peak value of the probability
map, even though the upper-right map suggests a false result.
However, because of the natural irregularities of the RSSI, the
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Fig. 5. Example of how filtered 2-D maps obtained from different reference
nodes are combined into the final map.

results may lead to a map with several peaks. The location of
the mobile node will not be determined by one of the peaks
under those circumstances. Instead, the propose algorithm
determines the location by estimating the geometric center of
all the peaks such that

P

* p=

X =— 6
m="p (6)

where x, denotes location of the p™ peak on the 2-D pdf,
1 <p <P. Note that the multilateration method can now be

treated as a special case of the proposed algorithm, where the

pdf of each reference node is an impulse function.

III. SYSTEM DESIGN AND IMPLEMENTATION

ZigBee is a popular ad hoc network based on the standard
IEEE 802.15.4. ZigBee Alliance [23] defines the specification
of ZigBee for networks and higher layers. The ZigBee standard
has many advantages for real-time positioning systems in
terms of battery life and network size. It is widely used
in low data rates, low power, and cost-effective wirelessly
networked products. Fig. 6 shows a typical implementation
of the developed localization system for robotic intrusion
detection [24]. In this system, the mobile robot is equipped
with two driving wheels (differential drive) and two casters
for balance. Sixteen ultrasonic range finders and eight infrared
proximity sensors were installed onboard the robot for obstacle
avoidance.

A. Intrusion Detection Sensors

We designed several useful sensor modules for intrusion
detection to verify the effectiveness of the proposed algo-
rithm. Fig. 7 shows such an intruder detection sensor module.
It consists of an 8-bit microcontroller Atmegal28L (Atmel
Corp.), a ZigBee chip CC2420 (Texas Instruments), and
an onboard Freescale MMA7260QT triaxial accelerometer
(Freescale Semiconductors). Two other sensor modules, a pyro
sensor and a microphone sensor, were also designed and
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sensor Pyro sensor Microphone sensor Agency
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T — -
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BN user

Zigbee
Fig. 6. Hardware arrangement of an intruder detection system.
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Fig. 7. Intruder detection module. (a) Hardware of the module. (b) Signal
of the pyro sensor. (c) Signal of the microphone.

integrated into the experiments. The details of these sensor
modules are described as follows.

1) Triaxial accelerometer: The triaxial accelerometer is
applied to detect vibrations. Individual magnitudes of the
dynamic acceleration from x, y, and z axes are first isolated.
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The summation of these magnitudes can thus be used to detect
abnormal vibrations during an intrusion or collision.

2) Pyro sensor: We adopted off-the-shelf pyro-electric
sensor components. The pyro sensor can detect the presence
of humans in a certain area by a change in the voltage level
of sensor output. As Fig. 7(b) shows, if the voltage level is
close to zero, the sensor will be triggered.

3) Microphone: A simple microphone was integrated
into the ZigBee module for abnormal sound detection. The
rising edge of the filtered microphone signal will trigger the
interrupt of the chip and can be used to determine loud sounds
[Fig. 7(c)]. The trigger level is set at+2.01 V. A loud sound
can be caused by a falling object resulting from an intrusion
or the breaking of a window.

If any sensor is triggered, a message including the current
time, the ID of the triggered sensor, and the location of the
node will be sent to the robot. Since the robot may be far from
the location, an adaptive route selection algorithm is applied
to send the message by forwarding data packets to the robot
via selected sensor nodes [25].

B. Mobile Robot Localization

Several reference nodes were deployed beforehand in the
environment to localize the robot using the proposed method.
Their positions were stored in a database on the robot’s
onboard computer. Two kinds of messages are defined for
the ZigBee WSN: the measurement-demand and signal-report.
The measurement-demand message is used for a mobile node
to request the RSSI measured from reference nodes. This
message is broadcasted to all the nodes that are able to receive
it. Furthermore, a counter is included in this message to keep
the track of various measurement demands. The signal-report
message is used by the reference nodes to report the measured
RSSI values. In summary, location estimation is performed
using the messages and the following process.

1) A measurement-demand message is broadcasted to
sensor nodes from a mobile node.

2) Each sensor node measures RSSI at the time it receives
the packet. Subsequently, it transmits the RSSI, counter
number, and the mobile node ID to the robot.

3) The robot collects all the data, separates each by the ID
and counter. If three or more RSSI values with the same
counter are observed, the location of the robot can be
estimated and updated using the proposed algorithm. In
the current implementation, the entire procedure can be
accomplished within 600 ms.

C. Autonomous Navigation System

Autonomous navigation in a dynamic changing environment
is essential for a robot patrolling from one place to another. In
the proposed system, this task is achieved by a behavior-fusion
approach adopted from [26]. Fig. 8 illustrates the architecture
of navigation system using behavior fusion. We designed three
primitive behaviors for autonomous navigation in an indoor
environment. These behaviors are goal seeking behavior, wall
following behavior, and obstacle avoidance behavior. Goal
seeking behavior is treated as an attempt to move toward

Distance data

Location and heading of
the mobile robot
Goal | Quantizaion |
location X .
Quantized distances
Goal Wall Obstacle
Seeking Following Avoidance
Wheel Wheel Wheel
velocities velocities velocities
o N o
Fusio Fusion Fusion
weight weight weight
Rule Table
‘\i/
Velocity Command
Fig. 8. System architecture of autonomous navigation using behavior fusion

design.

the direction of the target. Wall following behavior is defined
as maintaining the same distance from the nearest wall. The
obstacle avoidance behavior is designed so that the robot
moves in a direction away from any obstacles. These behaviors
will each output a set of desired wheel velocities.

The concept of pattern recognition was adopted to fuse
the output of navigation behaviors. The pattern recognition
technique was used to map the environmental configuration,
obtained from ultrasonic and infrared sensors onboard the
robot, to the fusion weights of three navigation behaviors.
The concept can be expressed as: when the environment
configuration of surroundings is similar, the fusion weights of
navigation behaviors should be similar. In this paper, the fuzzy
Kohonen clustering network (FKCN) is applied to map the
environmental patterns to fusion weights [26]. In this design,
10 prototype patterns defined by the quantized distances to
objects around the robot were set manually to represent typical
environmental configurations for indoor navigation. Suitable
fusion weights for each navigation behavior corresponding to
these patterns were assigned in the rule table of FKCN. When
the robot navigates through the environment, the sensors will
obtain current range data around the robot. Then the FKCN
works to generate proper fusion weights for each navigation
behavior, corresponding to the immediate environmental sen-
sory data pattern. As a result, the mobile robot can navigate
to the desired location without colliding into any objects in
the environment. In this application, the positions of both the
robot and the goal will be determined by the location aware
system.

IV. EXPERIMENTAL RESULTS
A. Localization Robustness Test

The experiment aims to test if the proposed method can
handle ZigBee localization in different environments more
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TABLE I
CONFIGURATIONS OF THE TEST ENVIRONMENTS

Test . 2
Environment Type Test point#  Area/m Beacon #
EEI1 Room 26 49 8
EE2 Corridor 21 30 6
EE3 Hallway 60 600 8

Reference Reference Reference
node 1 node 2 node K
Mobile node
ZigBee WSN
Observation node =TT ORsS232

Y
[ ROCRSSI ] [ Min-Max ]
PC 5
Propose
[ CC2431 ][ Method ]

Fig. 9. Data flow of the ZigBee localization experiments.

robustly than the other methods. Three localization methods:
min—max, ROCRSSI, and CC2431 are compared with the
proposed method in this experiment. Min—max is a widely-
adopted range-based localization method [11]. The technique
known as ring overlapping based on comparison of received
signal strength indication (ROCRSSI) is a commonly used
range-free approach [9] to localization. The CC2431 location
engine is embedded in a Texas Instruments CC2431 system-
on-chip (Soc) solution for ZigBee/IEEE 802.15.4 wireless sen-
sor networks. CC2431 implements Motorola’s IEEE 802.15.4
radio—location solution exploiting a maximum likelihood esti-
mation algorithm [23]. To compare the CC2431 location en-
gine with the proposed method, we have adopted our modules
with CC2431 chips to perform the experiment.

Fig. 9 shows the data flow of the experimental system.
RSSI values of reference nodes were first estimated by the
mobile node. The values were then sent to the observation
node and finally transmitted to the host PC via a serial
link. The collected RSSI values were then estimated with
different algorithms and compared with ground truth. Three
experiments have been performed in three different types
of environments. Table I shows the configurations of these
environments. The localization result using raw data as well as
the filtered 2-D map were individually tested in the experiment
to further investigate the effectiveness of the proposed method.
Figs. 10-12 provide photos and the locations of beacons in
these environments. During the calibration measurements of
the proposed method, RSSI values at various distances in sev-
eral different environments of the lab building were recorded.

® corridor ®
RN, RN, LAB 622
(0,0 (3.5, 0)
® [ ]
RN, RNg
(2.25,2) (6, 2)
®
RN,
o (3.5, 5)
RN,
(0, 6) o
=
RN,
(2.25, 8)
(b)
Fig. 10. (a) Experimental environment 1 (EEIl). Lab 622 and corridor.

(b) Location of deployed ZigBee beacons in the experiment (filled circles).

In the measurement, the RSSI values between nodes were
collected by moving a mobile node away from a reference
node manually along a direction from a distance of 0-10.2 m
with an interval of 0.3 m. The goal is to collect RSSI data
under different circumstances. The calibrations of the other
methods were performed only in experiment environment 1
(EE1). In the experiments, every ZigBee module was fully
charged before the experiment, since the power of ZigBee
sensor nodes affects RSSI and hence the location prediction.
Table II shows the overall localization results of EE1. The
results show practically no difference in the localization error
between the proposed method and the CC2431 localization
engine. Both results outperform the Min—Max and ROCRSSI
methods, which is similar to the results reported in [8]. Notice
that the parameters of the signal propagation model used in
the CC2431 localization engine are given to maximize the
accuracy of the experiment, while our approach uses the sensor
model established beforehand from other calibration places.
In experiment environments 2 (EE2) and 3 (EE3), the
same RSSI models and parameters were applied as were
used in EEI1. Tables III and IV show the overall localization
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Fig. 11. (a) Experimental environment 2 (EE2). Corridor of lab building.
(b) Location of deployed ZigBee beacons in the experiment (filled circles).

TABLE II
ESTIMATION ERROR COMPARISON: EE1

e I
Min-Max 2.29 3.4 0.77
ROCRSSI 2.59 3.5 L1
CC2431 0.91 325 0.64
(';rgp&sfs 1.29 33 0.82
(with?ﬁ?e?‘iszap) 112 33 0-89

error of the experiments in EE2 and EE3, respectively. Since
these two environments are different from EE1, the RSSI-
based localization models of the other methods are no longer
suitable. As a result, other methods perform more poorly in
the new environments. On the contrary, the proposed method
already considers possible changes in the environment and
preformed more robustly in different environments.

B. Intruder Detection of the On-Demand Robot

The experiment aimed to demonstrate the application of
a WSN-based location aware system and mobile robot for
intruder detection. Fig. 6 shows the system architecture of
the experiment. Three intruder sensor modules were placed
in the environment, including one microphone and two pyro
sensors as well as a three-axis accelerometer. The sensing
data from the intruder sensor modules were first collected and

[l [ —
I
H
1 @ ®
I RNS RN1
i (48,434)  (48,1.24)
i
I
==
H—
L |_
RN6 RN2
(12.6 ,7.44) (126, 1.86)
RN7 ‘
(17.4,7.44) °
RN3
(19.2,1.86)
RNS
(246, 4.96) )
RN
(26.4,2.48)
=0 [
(b)

Fig. 12. (a) Experimental environment 3 (EE3). Lobby of the lab building.
(b) Location of deployed ZigBee beacons in the experiment (filled circles).

processed on the modules independently. A location aware
system was formed using sensor modules, and other ZigBee
nodes deployed in the environment. The system can provide
the locations of the nodes installed on the sensor modules and
the robot. If an intruder is detected, the ID of the module
and related sensor data will be transmitted to the mobile
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TABLE III
ESTIMATION ERROR COMPARISON: EE2

Average Max Error Standard
Method Error (m) (m) Deviation
Min-Max 2.46 32 1.14
ROCRSSI 2.76 3.1 1.22
CC2431 1.82 3.5 1.5
Proposed
(2D Map) 1.32 3 0.73
Proposed
(with Filtered Map) 121 32 0.92
TABLE IV
ESTIMATION ERROR COMPARISON: EE3
Method Average Error Max Error Stalfdzfrd
(m) (m) Deviation
Min-Max 3.7 6.3 1.29
ROCRSSI 3.1 5.2 1.61
CC2431 22 7.58 1.74
Proposed
(2D Map) 1.5 4.2 0.89
Proposed
(with Filtered Map) 136 321 0.73

Intruder
detected

Add the ID to the
patrol schedule

|

Navigate to Does the user "
. . . Switch to
scheduled location orthe security
agency want to remote
! aency . control
take charge of mode
the robot?

Send a text message

|

Rotate and send
real-time images

No/Time Out

No Are all alerts

checked?

Remove alerts

Fig. 13. Data flow of the ZigBee localization experiments.

robot via the WSN. The current position of the robot and the
triggered module are also determined by the location aware
system at the same time. Meanwhile, the mobile robot will
receive the detection result from the WSN, navigate to each
of the alarm locations, and take real-time images using the
robot’s webcam. The security agency and users can easily
access both the detection result and real-time video transmitted
by the robot on their portable devices via both WiFi and 3G

Event 1 ©

© ~—®
\>@<c)

(@ .<ﬁ? User

C]UBOT @ Pyrosensor @ Microphone Obstacles
@) =
Event 2 @)Q )
1
( ~
@ (o
DUBOT @ Pyrosensor @ Microphone Obstacles

Event 3 © .
(h) 57, —

()

@ G

(Jusor

Fig. 14. Process and images acquired by the robot in the intruder detection
experiment. (a) Person clapped his hands near the microphone. (b) Robot
received the alert and moved to the person. (c) Robot took the person’s image
and sent it to the user. (d) Person walked into the room from the doorway.
(e) Robot received the alert and moved to the person. (f) Robot took the
person’s image and sent it to the user. (g) Person (acting as a thief) intruded
into the room. (h) Robot received the alert and moved to the person. (i) Robot
took the image and sent it to the user.

@ Pyrosensor @ Microphone Obstacles

networks. Users can also remotely control the robot to confirm
the circumstances in detail.

Fig. 13 shows the execution flowchart of the intrusion
detection system. Once a sensor module is triggered by the
detection of a possible intruder, the ID of that module will be
logged and added to the patrol schedule. Additional redundant
triggers will then be ignored. Once the robot arrives at the
alarm location, it will send both a short message and real-time
images to the security agency and end users. The operators can
then take control of the robot if necessary. Otherwise, the robot
will move to the next alarm position. In the experiment, three
different cases were tested in one script, including situations
that mimicked a broken window by hand clapping (Event 1), a
person entering the room (Event 2), and a thief sneaking into
the room (Event 3), see Fig. 14. Fig. 15 illustrates the experi-
ment using snapshots. Fig. 16 shows the actual trajectory of the
robot during the experiment. During Event 1, a person clapped
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Fig. 15.
(g)—(i) correspond to Event 3 in Fig. 14.
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Fig. 16. Robot trajectory in the intruder detection

(a)—(i) Location of the robot in Fig. 15(a)—(i).

experiment.

his hand and triggered the alarm, as shown in Figs. 14(a)
and 15(a). The robot received the alarm signal and moved
to where the corresponding surveillance location had been
designated by the ZigBee sensor module [Figs. 14(b) and (c),
15(b) and (c), and 16(a)—(c)]. During Event 2, a person entered
the room, which triggered the pyro sensor near the door. The
robot reacted by moving toward the door [Figs. 14(d)—(f),
15(d)-(f), and 16(d)—(f)]. Finally, during Event 3, a per-
son acting as a thief sneaked inside and wanted to steal a
notebook. He triggered the pyro sensor and the robot once
again approached the notebook and took pictures of the thief
[Figs. 14(g)—(), 15(g)-(), and 16(g)-(i)]. Figs. 14 and 15
also show the images received by a remote user. Since these
images were taken without using an algorithm and tracking

Snapshots of the intruder detection experiment corresponding to Fig. 14. (a)—(c) correspond to Event 1, (d)—(f) correspond to Event 2, and

mechanism, the system cannot be guaranteed to take any
particular photos of the intruder. !

V. CONCLUSION

This paper presents a novel method for localizing a ZigBee
node in a WSN. The probability-based approach takes the
uncertainties of RSSI-based distance estimation into account.
The method is independent of the sensor node distribution
and environment configuration, and therefore can minimize the
calibration burden in practical applications. The performance
of the proposed algorithm has been evaluated by experiments
in three different environments. The experimental results show
that the average error of the implemented location aware sys-
tem is 1.7 m, despite a much higher range of uncertainties from
raw RSSI values. This accuracy can effectively support service
robotic applications, especially when properly combined with
a vision system. For instance, the localization system can
provide a possible area of a user calling the robot for service
or when an emergency situation occurs. The robot can then
find the alarm area and monitor it with its vision system. Use
of a mobile robot to detect an intruder has been demonstrated.
Three types of intrusion sensors have been installed and tested
for the robotic patrolling system. This system can easily adopt
other off-the-shelf sensor modules, while at the same time
retaining compatibility with most existing security solutions.
Our initial experiments show that the proposed system can
effectively detect intruders and transmit their snapshots to
portable devices at a remote site in real time. In the future,

'A video clip of the whole experiment can be found at

http://isci.cn.nctu.edu.tw/Video/SMC2013.
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a distributed version will be designed and implemented. The
position of the reference node will be saved and sent to the
mobile node in the localization phase. Location-aware compu-
tation can be performed on the ZigBee module. Furthermore,
the proposed method estimates the location from only a set
of RSSI values without using previous RSSI values. Thus, it
is also interesting to examine the performance of the target
tracking with the proposed method.

ACKNOWLEDGMENT

The authors would like to thank K.-H. Yu and S.-H. Yang,
Department of Electrical and Computer Engineering, National
Chiao Tung University, Hsinchu, Taiwan for their support in
performing the experiments.

REFERENCES

[1] R. C. Luo, T. Y. Lin, and K. L. Su, “Multisensor based security robot
system for intelligent building,” Robot. Autonom. Syst., vol. 57, no. 3,
pp- 330-338, 2009.

[2] B.J. You, M. Hwangbo, S. O. Lee, S.R. Oh, Y. D. Kwon, and S. Lim,
“Development of a home service robot 'ISSAC’,” in Proc. IEEE/RSJ
Int. Conf. Intell. Robots Syst., 2003, pp. 2630-2635.

[3] Y. G. Kim, H. K. Kim, S. H. Yoon, S. G. Lee, and K. D. Lee, “Home
security robot based on sensor network,” in Proc. SICE-ICASE Int. Joint
Conf., 2006, pp. 5977-5982.

[4] R. Borja, J. R. de la Pinta, A. Alvarez, and J. M. Maestre, “Integration
of service robots in the smart home by means of UPnP: A surveillance
robot case study,” Robot. Autonom. Syst., vol. 61, no. 2, pp. 153-160,
2013.

[5] K. T. Song, C. H. Lin, S. C. Tsai, S. C. Hung, Y. C. Liao, and C. C. Wu,
“Development of robot-on-demand behaviors based-on visual tracking
and wireless sensor network,” in Proc. Int. Conf. Service Interactive
Robots, 2011, pp. 261-266.

[6] C. Williams, Y. K. Cho, and J. H. Youn,“Wireless sensor-driven intelli-
gent navigation method for mobile robot applications in construction,”
in Proc. ASCE Int. Workshop Comput. Civil Eng., 2007, pp. 493-498.

[71 K. Han, J. Lee, S. Na, and W. You “An ambient robot system based
on sensor network: Concept and contents of ubiquitous robotic space,”
in Proc. Int. Conf. Mobile Ubiquitous Comput. Syst. Services Technol.,
2007, pp. 155-159.

[8] G. Zanca, F. Zorzi, A. Zanella, and M. Zorzi, “Experimental compar-
ison of RSSI-based localization algorithms for indoor wireless sensor
networks,” in Proc. Workshop Real-World Wireless Sensor Netw., 2008,
pp. 1-5.

[9] C.Liu, T. Scott, K. Wu, and D. Hoffman, “Range-free sensor localisation

with ring overlapping based on comparison of received signal strength

indicator,” Int. J. Sensor Netw., vol. 2, nos. 5-6, pp. 399—413, 2007.

A. Savvides, H. Park, and M. B. Srivastava, “The n-hop multilateration

primitive for node localization problems,” Mobile Netw. Applicat., vol. 8,

no. 4, pp. 443-451, 2003.

K. Langendoen and N. Reijers, Distributed localization in wireless

sensor networks: A quantitative comparison,” Comput. Netw., vol. 43,

no. 4, pp. 499-518, 2003.

F. Gustafsson and F. Gunnarsson, “Mobile positioning using wireless

networks: Possibilities and fundamental limitations based on available

wireless network measurements,” IEEE Signal Process. Mag., vol. 22,

no. 4, pp. 41-53, Jul. 2005.

G. I. Wassi, C. Despins, D. Grenier, and C. Nerguizian, “Indoor location

using received signal strength of IEEE 802.11b Access Point,” in Proc.

Canad. Conf. Electr. Comput. Eng., 2005, pp. 1367-1370.

K. T. Song, C. Y. Tsai, F. S. Huang, J. W. Hong, C. Y. Lin, C. W. Chen,

and Z. S. Lin, “Development of the robot of living aid: RoLA,” in Proc.

IEEE Int. Conf. Autom. Logistics, Sep. 2008, pp. 443—448.

[15] T. Oliveira, M. Raju, and D. P. Agrawal, “Accurate distance estimation
using fuzzy based combined RSSI/LQI values in an indoor scenario:
Experimental verification,” Netw. Protocols Algorithms J., vol. 4, no. 4,
pp- 174-199, 2012.

[10]

[11]

[12]

[13]

[14]

[16] L. Gogolak, S. Pletl, and D. Kukolj, “Indoor fingerprint localization in
WSN environment based on neural network,” in Proc. IEEE 9th Int.
Symp. Intell. Syst. Inform., Sep. 2011, pp. 293-296.

S. H. Fang and T. N. Lin, “Indoor location system based on discriminant-

adaptive neural network in IEEE 802.11 environments,” IEEE Trans.

Neural Netw., vol. 19, no. 11, pp. 1973—-1978, Nov. 2008.

V. Ramadurai and M. L. Sichitiu, “Localization in wireless sensor

networks: A probabilistic approach,” in Proc. Int. Conf. Wireless Netw.,

Jun. 2003, pp. 275-281.

[19] J. Graefenstein and M. E. Bouzouraa, “Robust method for outdoor
localization of a mobile robot using received signal strength in low
power wireless networks,” in Proc. IEEE Int. Conf. Robot. Autom.,
May 2008, pp. 33-38.

[20] R. Vaughan and J. Andersen, Channels, Propagation and Antennas for

Mobile Communications, Institution of Electrical Engineers, London,

U.K., 2003.

H. Cho, M. Kang, J. Park, B. Park, and H. Kim, “Performance analysis

of location estimation algorithm in ZigBee networks using received

signal strength,” in Proc. 21st Int. Conf. Adv. Inform. Netw. Applicat.

Workshops, 2007, pp. 302-306.

K. Lee, A. Oka, E. Pollakis, and L. H. Lampe, “A comparison be-

tween unscented kalman filtering and particle filtering for RSSI-based

tracking,” in Proc. 7th Workshop Positioning Navigation Commun.,

Mar. 2010, pp. 157-163.

[23] ZigBee Alliance. (2008). ZigBee Specification [Online]. Available:

http://www.zigbee.org/

C. H. Lin, S. H. Yang, H. T. Chen, and K. T. Song, “Mobile robot

intruder detection based on a ZigBee sensor network,” in Proc. IEEE

Int. Conf. Syst. Man Cybern., Oct. 2008, pp. 2786-2791.

S. H. Yang and K. T. Song, “An adaptive routing protocol for health

monitoring with a sensor network and mobile robot,” in Proc. IEEE

IECON, 2010, pp. 2181-2186.

K. T. Song and J. Y. Lin, “Behavior fusion of robot navigation using

a fuzzy neural network,” in Proc. IEEE Int. Conf. Syst., Man, Cybern.,

Oct. 2006, pp. 4910-4915.

[17]

[18]

(21]

[22]

[24]

[25]

[26]

Chia-How Lin received the B.S. and M.S. degrees
in electrical and control engineering from National
Chiao Tung University, Hsinchu, Taiwan, in 2001
and 2003, and is currently pursuing the Ph.D. de-
gree in electrical control engineering at the same
university.

His current research interests include multiagent
systems, robot control systems, sensor networks,
computer vision, and image-based robot navigation.

Kai-Tai Song (A’91-M’09) received the B.S. degree
in power mechanical engineering from National Ts-
ing Hua University, Hsinchu, Taiwan, in 1979, and
the Ph.D. degree in mechanical engineering from the
Katholieke Universiteit Leuven, Flanders, Belgium,
in 1989.

Since 1989, he has been on the faculty and is
currently a Professor with the Department of Elec-
trical and Computer Engineering and the Institute
of Electrical Control Engineering, National Chiao
Tung University, Hsinchu, Taiwan. He served as the
Chairman of the Society of IEEE Robotics and Automation, Taipei Chapter in
1999. His current research interests include mobile robots, image processing,
visual tracking, mobile manipulation, embedded systems, and mechatronics.

Dr. Song was a recipient of the Excellent Award in Automatic Control
Engineering from the Chinese Automatic Control Society (CACS), Taipei,
Taiwan, in 2009. He was elected as a fellow of the CACS in 2010. He was
also the recipient of the 2011 Engineering Paper Award from the Chinese
Institute of Engineers and the Best Paper in Automation of IEEE ICAL in
2012.




