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Abstract This paper studies a problem of scheduling fabrication and assembly operations in
a two-machine flowshop, subject to the same predetermined job sequence on each machine.
In the manufacturing setting, there are n products, each of which consists of two compo-
nents: a common component and a unique component which are fabricated on machine 1
and then assembled on machine 2. Common components of all products are processed in
batches preceded by a constant setup time. The manufacturing process related to each sin-
gle product is called a job. We address four regular performance measures: the total job
completion time, the maximum job lateness, the total job tardiness, and the number of tardy
jobs. Several optimality properties are presented. Based upon the concept of critical path and
block schedule, a generic dynamic programming algorithm is developed to find an optimal
schedule in O(n7) time.

Keywords Two-machine flowshop · Batch scheduling · Fixed sequence · Dynamic
programming

1 Introduction

Consider the production of customized products. Each customized product is composed of
a standard component which is common to all products as well as a distinct component
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which depends on the individual customer specifications. These two components are first
produced on a fabrication machine and then assembled into an end customized product on
an assembly line. An instance in industrial application is food manufacturing or fertilizer
production (Gerodimos et al. 1999, 2000). In the production of customized food products or
fertilizers, the base ingredients are produced in batches while the unique ingredients which
are specific to individual products are prepared individually. Then these two ingredients are
blended together according to the customer-specified recipes and packaged to form an end
product. The production requirements, e.g. the demands for various customized products
and the due dates for deliveries are placed by downstream customers. Similar situations
have been described by Baker (1988) and Sung and Park (1993) on a single machine and
Cheng and Wang (1999) in a two-machine flowshop for circuit board production. This pa-
per investigates a variant of the flowshop setting under the assumption that a processing
sequence of jobs is given a priori.

The studied problem is formulated as follows. There are n products to be manufactured
in a two-machine flowshop. Each product j comprises a unique component and a common
component. These components are first fabricated on machine 1, and then they are assem-
bled into the final product on machine 2. In the sequel, we use scheduling terminology and
say that there are n jobs and each job j consists of three operations: a unique operation uj ,
a common operation cj and an assembly operation aj , with the processing times pu,j , pc,j

and pa,j , respectively. Operation aj is performed on machine 2 after operations uj and cj

have been completed on machine 1. While the unique operations are processed individu-
ally, the common operations are executed in batches, each of which is preceded by a setup
time s. All the operations and setups are processed sequentially by each machine. Further-
more, common operations of the same batch complete at the same time when machine 1
completes processing of the last operation of this batch. Thus, the sequential-batch model
denoted by s-batch is used for common operations processing (cf. Potts and Kovalyov 2000;
Kovalyov et al. 2004 and Potts and Strusevich 2009 for this and other batching models).
A due date dj is associated with each job j . The problem is to find a schedule that mini-
mizes one of the four regular performance measures: the total completion time (

∑
Cj ), the

maximum lateness (Lmax), the total tardiness (
∑

Tj ), and the number of tardy jobs (
∑

Uj ),
which are widely studied in scheduling problems. It is assumed that for all these three types
of operations the job sequence is the same and predetermined. To facilitate discussion, let it
be (1,2, . . . , n). By adopting the notation introduced for a similar scheduling environment
in Cheng and Wang (1999), the problem is denoted by F2|(cj , uj , aj ), s-batch,fix_seq|γ ,
where γ ∈ {∑Cj ,Lmax,

∑
Tj ,

∑
Uj }.

Example 1 Consider the following example with five jobs: (pc,1,pu,1,pa,1) = (1,2,2),
(pc,2,pu,2,pa,2) = (2,3,4), (pc,3,pu,3,pa,3) = (1,1,3), (pc,4,pu,4,pa,4) = (1,1,1),
(pc,5,pu,5,pa,5) = (3,2,1), (d1, d2, d3, d4, d5) = (8,11,15,21,23), and s = 1. Let the se-
quence of common and unique operations on machine 1 be (u1, c1, c2, u2, u3, c3, c4, c5,

u4, u5), and the common operations form two batches B1 = {c1, c2} and B2 = {c3, c4, c5}.
As illustrated in Fig. 1, the obtained schedule has

∑
Cj = 81, Lmax = 4,

∑
Tj = 6 and∑

Uj = 2.

Scheduling subject to fixed job sequence(s) is interesting from theoretical and practical
perspectives (Hwang et al. 2012). In the development of approximation or exact algorithms
for NP-hard scheduling problems, the quality of candidate (partial) job sequences needs to
be determined. This demands efficient algorithms to optimally solve the same problem with
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Fig. 1 Example schedule

a fixed job sequence. Another motivation stems from the technological or managerial fixed-
sequence requirements (Shafransky and Strusevich 1998) and the First-Come-First-Served
rule (Hwang et al. 2012). There exist earlier studies of scheduling problems with the fixed-
job-sequence assumption (cf. Cheng et al. 2000; Herrmann and Lee 1992; Hwang and Lin
2012; Kanet and Sridharan 2000; Lin and Cheng 2005, 2011; Lin and Hwang 2011; Ng and
Kovalyov 2007; Sourd 2005).

Problem F2|(cj , uj , aj ), s-batch|Cmax without the fixed sequence assumption was first
studied by Cheng and Wang (1999) who presented a proof of ordinary NP-hardness and
several optimality properties. Later, Lin and Cheng (2002) proved the strong NP-hardness
of this problem. For the case of identical common component, i.e. cj = c, Cheng and Wang
(1999) proved that there exists an optimal schedule with the jobs sequenced by Johnson’s
rule (Johnson 1954), and proposed an O(n4) algorithm named BA-1 for optimal batching.
For the case aj = a, they proved that if the processing times of common and unique opera-
tions are agreeable such that pc,i < pc,j implies pu,i ≤ pu,j for all i and j , then an optimal
schedule exists in which the jobs are arranged in non-decreasing order of pc,j . An O(n3) al-
gorithm, named BA-2, was developed for this case. Note that algorithm BA-1 can be adapted
to solve problem F2|(cj , uj , aj ), s-batch,fix_seq|Cmax by using the predetermined job se-
quence instead of the Johnson’s sequence.1

In this paper, we develop a generic dynamic programming framework for problem
F2|(cj , uj , aj ), s-batch,fix_seq|γ , where γ ∈ {∑Cj ,Lmax,

∑
Tj ,

∑
Uj }. The following

sections will demonstrate that the studied problem is not trivial even though a job se-
quence is predetermined. Note that the proposed algorithm is not an adaptation of the
existing ones because the makespan and the total cost or due date criteria are conflict-
ing in the considered performance measures. From the aforementioned theoretical aspect,
our algorithm can be exploited in meta-heuristics (e.g. local search) or enumeration algo-
rithms (e.g. branch-and-bound) for the general problem F2|(cj , uj , aj ), s-batch|γ , which
is intractable due to the strong NP-hardness of the corresponding easier problem F2‖γ ,
γ ∈ {∑Cj ,Lmax,

∑
Tj ,

∑
Uj } (Błażewicz et al. 2007; Pinedo 2012).

Section 2 introduces the required notation and establishes several optimality proper-
ties which are common to all the considered performance metrics γ ∈ {∑Cj ,Lmax,

∑
Tj ,∑

Uj } in problem F2|(cj , uj , aj ), s-batch|γ and applicable to the case of a fixed job se-
quence. A generic dynamic programming algorithm for the studied problem is presented in
Sect. 3. Conclusions and suggestions for future research are given in Sect. 4.

1Please refer to Appendix A for the details.
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2 Notation and optimality properties

It is convenient to introduce the following notation. Let π be a given schedule.

Bk : the kth batch of common operations on machine 1;
σ(π): the processing sequence of the 2n machine-1 operations uj and cj ;
Sc,j (π), Su,j (π), Sa,j (π): the starting times of cj , uj and aj , respectively;
Cc,j (π), Cu,j (π), Ca,j (π): the completion times of cj , uj and aj , respectively;
rj (π): the ready time of aj , i.e. rj (π) = max{Cc,j (π),Cu,j (π)};
Tj (t): the tardiness of job j completing at time t , i.e. Tj (t) = max{0, t − dj };
Uj(t): the tardiness status of job j completing at time t , i.e. Uj(t) = 1 for t > dj and
Uj(t) = 0 for t ≤ dj ;
c[i:j ] := (ci, ci+1, . . . , cj ); u[i:j ] := (ui, ui+1, . . . , uj );
pc,[i:j ] := ∑j

l=i pc,l ; pu,[i:j ] := ∑j

l=i pu,l ; pa,[i:j ] := ∑j

l=i pa,l .

We now present several optimality properties for problem F2|(cj , uj , aj ), s-batch|γ , γ ∈
{∑Cj ,Lmax,

∑
Tj ,

∑
Uj }, without the fixed sequence assumption, which are similar to

those for problem F2|(cj , uj , aj ), s-batch|Cmax in Cheng and Wang (1999).

Lemma 1 (Analog of Theorem 3 in Cheng and Wang 1999) There exists an optimal sched-
ule for problem F2|(cj , uj , aj ), s-batch|γ , γ ∈ {∑Cj ,Lmax,

∑
Tj ,

∑
Uj }, whose process-

ing orders of common operations and unique operations are the same.

Proof Since all the considered objective functions are regular, i.e. non-decreasing in job
completion times, the statement follows from the proof of Theorem 3 in Cheng and Wang
(1999). �

Lemma 2 (Analog of Theorem 4 in Cheng and Wang 1999) There exists an optimal
schedule for problem F2|(cj , uj , aj ), s-batch|γ , γ ∈ {∑Cj ,Lmax,

∑
Tj ,

∑
Uj } satisfy-

ing Lemma 1 which is permutational, i.e., the machine-1 processing order of common (or
unique) operations coincides with the machine-2 processing order of assembly operations.

Proof Lemma 1 indicates that in some optimal schedule the common operations and the
unique operations have the same processing order on machine 1. Suppose that we have
an optimal schedule π where the machine-1 job processing order is different from the
machine-2 assembly order. Hence, there exists a pair of jobs i and j such that Sc,i(π) <

Sc,j (π), Su,i(π) < Su,j (π) and Sa,i(π) > Sa,j (π). Then only one case out of the six cases
given below can take place. In each case, we will construct a new schedule π ′ by moving ci

and ui to the positions immediately following cj and uj , respectively, and reallocating ci to
the batch that contains cj .

Case 1. Sc,j (π) < Su,i(π)

This case is characterized by σ(π) = (ρ1, ci, ρ2, cj , ρ3, ui, ρ4, uj , ρ5), where ρl , l = 1, . . . ,5
is a segment of σ(π). We obtain a new schedule π ′ with σ(π ′) = (ρ1, ρ2, cj , ci , ρ3, ρ4, uj ,

ui, ρ5). In the new schedule, the completion times of the machine-1 operations in ρ1, ρ3 and
ρ5 remain unchanged, and those of ρ4 and uj have a reduction of pu,i . As for ρ2 and cj ,
their operation completion times either decrease or remain unchanged. So we have rl(π

′) ≤
rl(π) ≤ Sa,l(π) for 1 ≤ l ≤ n, l �= i. Besides, it can be demonstrated that ri(π

′) = rj (π) ≤
Sa,j (π) < Sa,i(π).
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Case 2. Sc,i(π) < Su,i(π) < Sc,j (π) < Su,j (π)

In this case, σ(π) = (ρ1, ci, ρ2, ui, ρ3, cj , ρ4, uj , ρ5) and σ(π ′) = (ρ1, ρ2, ρ3, cj , ci, ρ4, uj ,

ui, ρ5). The completion times of the machine-1 operations in ρ1 and ρ5 remain the same,
and those of ρ3, cj , ρ4 and uj decrease by at least pu,i . As for the operations of ρ2, their
completion times decrease by pc,i . We have rl(π

′) ≤ Sa,l(π) for 1 ≤ l ≤ n.

Case 3. Sc,i(π) < Su,i(π) and Su,j (π) < Sc,j (π)

In this case, σ(π) = (ρ1, ci , ρ2, ui, ρ3, uj , ρ4, cj , ρ5) and σ(π ′) = (ρ1, ρ2, ρ3, uj , ui, ρ4, cj ,

ci , ρ5). The completion times of the machine-1 operations in ρ1 and ρ5 remain the same, and
those of ρ2 have a reduction of pc,i . The operation completion times of ρ3 and uj decrease
by pc,i + pu,i , and those of ρ4 and cj either decrease or remain unchanged. So we have
rl(π

′) ≤ Sa,l(π) for 1 ≤ l ≤ n.

Case 4. Su,i(π) < Sc,i(π) < Su,j (π) < Sc,j (π)

In this case, σ(π) = (ρ1, ui, ρ2, ci , ρ3, uj , ρ4, cj , ρ5) and σ(π ′) = (ρ1, ρ2, ρ3, uj , ui, ρ4, cj ,

ci , ρ5). The changes of all the operation completion times are identical to those in case 3,
except for ρ2 whose operation completion times decrease by pu,i . Again, we have rl(π

′) ≤
Sa,l(π) for 1 ≤ l ≤ n.

Case 5. Su,j (π) < Sc,i(π)

In this case, σ(π) = (ρ1, ui, ρ2, uj , ρ3, ci , ρ4, cj , ρ5) and σ(π ′) = (ρ1, ρ2, uj , ui, ρ3, ρ4, cj ,

ci , ρ5). The operation completion times of ρ1, ρ3 and ρ5 remain unchanged, and those of ρ2

and uj decrease by pu,i . As for ρ4 and cj , their operation completion times either decrease
or remain unchanged. Hence, we have rl(π

′) ≤ Sa,l(π) for 1 ≤ l ≤ n.

Case 6. Su,i(π) < Sc,i(π) and Sc,j (π) < Su,j (π)

In this case, we have σ(π) = (ρ1, ui, ρ2, ci, ρ3, cj , ρ4, uj , ρ5) and a new schedule π ′ with
σ(π ′) = (ρ1, ρ2, ρ3, cj , ci , ρ4, uj , ui, ρ5). The changes of all the operation completion times
after schedule alteration are identical to those in case 2, except for ρ2 whose operation
completion times decrease by pu,i . Thus we have rl(π

′) ≤ Sa,l(π) for 1 ≤ l ≤ n.

Repeating the described schedule update procedure a finite number of times, if necessary,
yields a permutation schedule with no increase in the objective function value. �

Lemma 3 (Analog of Theorem 5 in Cheng and Wang 1999) There exists an optimal sched-
ule π for problem F2|(cj , uj , aj ), s-batch|γ , γ ∈ {∑Cj ,Lmax,

∑
Tj ,

∑
Uj }, which satis-

fies Lemma 2, such that the sequence on machine 1 is of the form

σ(π) = (c[1:n1], u[1:n1], c[n1+1:n2], u[n1+1:n2], . . . , c[nk−1+1:n], u[nk−1+1:n]),

where k is the number of batches of common operations, 1 ≤ n1 < n2 < · · · < nk−1 < n, and
each segment c[i:j ] of common operations forms a single batch.

Proof The lemma can be proved by exploiting the statements of Lemmas 1 and 2 and the
proof of Theorem 5 in Cheng and Wang (1999). �

Since the specificity of a job sequence plays no role in the proof of Lemma 3, this lemma
also holds for problem F2|(cj , uj , aj ), s-batch,fix_seq|γ , γ ∈ {∑Cj ,Lmax,

∑
Tj ,

∑
Uj },

with a fixed job sequence. This lemma implies that an optimal schedule for the latter problem
can be fully specified by a sequence of batches of common operations.

Note that the above three lemmas apply for all regular performance measures.
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3 Dynamic programming algorithm

In this section, a generic dynamic programming algorithm, denoted as DP, for the studied
problem is presented. The development is based upon the ideas of block and critical block,
which stem from the well-known concept of critical path.

In devising a polynomial-time dynamic program for the performance metric other than
makespan, the potential conflict between the makespan and the considered objective func-
tion needs to be addressed (Hwang et al. 2012). Minimizing the considered objective func-
tion value for the first j jobs may induce a comparatively large processing span, which will
worsen the performance metric of the remaining n − j jobs. To make the principle of op-
timality apply in the designed dynamic program, a subschedule shall be defined by a state
where the processing span on each machine is specified. By virtue of the concept of critical
path, we utilize a constant number of job indices as state variables to describe the state for a
considered subschedule.

Recall that the fixed job sequence is (1,2, . . . , n). In algorithm DP, partial schedules
for the jobs 1, . . . , j are constructed by appending the jobs j ′ + 1, . . . , j to the end of a
current partial schedule of the jobs 1, . . . , j ′ such that common operations of the jobs j ′ +
1, . . . , j form a single batch. For a partial schedule, a maximal, by inclusion, subsequence of
successive assembly operations on machine 2 with no inserted idle time is called a block. The
last block of a partial schedule is called the critical block. A partial schedule is characterized
by state (j, i, i1, kL, kR), where

1. 1, . . . , j are all the jobs in the partial schedule,
2. ai is the first operation of the critical block,
3. kL (respectively, kR) is the number of batches of common operations before (respectively,

after) the completion of ui , and
4. ci1 is the last operation in the batch BkL

.

Note that it is sufficient to assume that 1 ≤ kL ≤ i ≤ i1 ≤ j ≤ n and � j−i1
j

� ≤ kR ≤ j − i1 for
any state.

The structure of a partial schedule in the state (j, i, i1, kL, kR) is illustrated in Fig. 2.
A state (j, i, i1, kL, kR) can be associated with several partial schedules that have dif-
ferent objective function values but retain the same machine-1 processing span (kL +
kR)s + pc,[1:j ] + pu,[1:j ] and machine-2 span kLs + pc,[1:i1] + pu,[1:i] + pa,[i:j ]. We define
g(j, i, i1, kL, kR) as the minimum objective function value among the partial schedules in
the same state (j, i, i1, kL, kR). In dynamic programming recursion, a partial schedule with
the value g(j, i, i1, kL, kR) dominates all other partial schedules in the state (j, i, i1, kL, kR)

in the sense that if some partial schedule in this state can be extended to an optimal schedule
then so can the dominant schedule. This is justified by the structure of the designed partial
schedule which possesses the invariable machine-1 and machine-2 processing spans.

We call a subsequence of jobs (j1, . . . , j2) an element if the common operations c[j1:j2]
form a single batch. It follows from Lemma 3 that the batch of c[j1:j2] is immediately fol-
lowed by u[j1:j2]. Assuming that aj1 starts exactly at the completion time of uj1 , we denote
by L(j1, v) the processing span from the completion of uj1 to that of some operation av ,
where 1 ≤ j1 ≤ v ≤ j2 ≤ n, as shown in Fig. 3. For 1 ≤ j1 ≤ n, we have L(j1, j1) = pa,j1 .
For 1 ≤ j1 < v ≤ n, we denote

L(j1, v) = max
{
L(j1, v − 1),pu,[j1+1:v]

} + pa,v.

A partial schedule in some state is constructed by appending an element to the end of
a dominant partial schedule in a ‘previous’ state. The concatenation may shift the first few
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Fig. 2 Illustration of a partial schedule in state (j, i, i1, kL, kR)

Fig. 3 An element (j1, . . . , j2)

and the time span L(j1, v)

Fig. 4 Illustration of the element concatenation

or all assembly operations of this element to the right. Consider that an element consisting
of jobs j1, . . . , j2 is appended to a dominant partial schedule in state (j1 − 1, h1, h2, kL, k1),
as shown in Fig. 4. After the concatenation, the time gap elapsed between uj1 and aj1 is
denoted by

δ(j1, j2, h1, h2, k1) = max
{
0,pa,[h1:j1−1] − (k1 + 1)s − pu,[h1+1:j1] − pc,[h2+1:j2]

}
.

The time span from the completion of uj1 to that of av is denoted by

L′(j1, j2, v,h1, h2, k1) = max
{
L(j1, v), δ(j1, j2, h1, h2, k1) + pa,[j1:v]

}
.

The values L(j1, v) for 1 ≤ j1 ≤ v ≤ n, δ(j1, j2, h1, h2, k1) and L′(j1, j2, v,h1, h2, k1) for
1 ≤ h1 ≤ h2 < j1 ≤ v ≤ j2 ≤ n, � j1−h2−1

j1−1 � ≤ k1 ≤ j1 − h2 − 1 can be calculated by straight-

forward preprocessing procedures, which require O(n2), O(n5) and O(n6) times, respec-
tively.2

In algorithm DP, all states (j, i, i1, kL, kR) for 1 ≤ kL ≤ i ≤ i1 ≤ j ≤ n and � j−i1
j

� ≤
kR ≤ j − i1 are enumerated and the corresponding dominant partial schedules are con-

2Function L(· , · ) can be utilized to improve the time complexity of the aforementioned algorithm BA-1

(Cheng and Wang 1999) from O(n4) to O(n3). The justification is given in Appendix B.
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structed by forward recursion with element concatenation. To define the boundary condi-
tions, a dummy job 0 with pa,0 = 0 and L′(j1, j2, v,0,0,0) = L(j1, v) for 1 ≤ j1 ≤ v ≤
j2 ≤ n is used.

Algorithm DP
Initialization:

g(j, i, i1, kL, kR) =
{

0, if j = i = i1 = kL = kR = 0;
∞, otherwise.

Recursion:
For each feasible j, i, i1, kL, kR satisfying 1 ≤ kL ≤ i ≤ i1 ≤ j ≤ n, � j−i1

j
� ≤ kR ≤ j − i1

do
Case kR = 0 (cf. Fig. 5):

g(j, i, j, kL,0) = min
A

{
f1(j, j

′, i ′, i ′
1, kL, k′

L), if condition B;
∞, otherwise.

(1)

Case kR ≥ 1 (cf. Fig. 6):

g(j, i, i1, kL, kR) = min
i1+kR−1≤j ′≤j−1

{
f2(j, j

′, i, i1, kL, kR), if condition C;
∞, otherwise.

(2)

Goal: Find min{g(n, i, i1, kL, kR) | 1 ≤ kL ≤ i ≤ i1 ≤ n, � n−i1
n

� ≤ kR ≤ n − i1}.
In Eq. (1), range A represents the relations

0 ≤ i ′ ≤ i ′
1 ≤ j ′ ≤ i − 1, 0 ≤ k′

L ≤ kL − 1,

and condition B indicates the conditional expression

(
L(i, j) = pa,[i:j ]

)

∧ [((
j ′ = i − 1

) ∧ (
pa,[i′:i−1] <

(
kL − k′

L

)
s + pu,[i′+1:i] + pc,[i′1+1:j ]

))

∨ ((
j ′ < i − 1

) ∧ (
L′(j ′ + 1, j, i − 1, i ′, i ′

1, kL − k′
L − 1

)
< pu,[j ′+2:i]

))]
.

Condition C in Eq. (2) is specified by the equality

kRs + pu,[i+1:j ′+1] + pc,[i1+1:j ] + L′(j ′ + 1, j, j, i, i1, kR − 1
) = pa,[i:j ].

For the total completion time minimization, we have

f1

(
j, j ′, i ′, i ′

1, kL, k′
L

) = g
(
j ′, i ′, i ′

1, k
′
L, kL − k′

L − 1
) + (

j − j ′)(kLs + pc,[1:j ] + pu,[1:j ′+1])

+
j∑

h=j ′+1

L′(j ′ + 1, j, h, i ′, i ′
1, kL − k′

L − 1
)

in Eq. (1), and
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f2

(
j, j ′, i, i1, kL, kR

) = g
(
j ′, i, i1, kL, kR − 1

) + (
j − j ′)((kL + kR)s + pc,[1:j ] + pu,[1:j ′+1]

)

+
j∑

h=j ′+1

L′(j ′ + 1, j, h, i, i1, kR − 1
)

in Eq. (2).
For the maximum lateness minimization,

f1
(
j, j ′, i ′, i ′

1, kL, k′
L

) = max

⎧
⎪⎪⎨

⎪⎪⎩

g(j ′, i ′, i ′
1, k

′
L, kL − k′

L − 1);
kLs + pc,[1:j ] + pu,[1:j ′+1]

+ max
j ′+1≤h≤j

{L′(j ′ + 1, j, h, i ′, i ′
1, kL − k′

L − 1) − dh},

and

f2

(
j, j ′, i, i1, kL, kR

) = max

⎧
⎪⎪⎨

⎪⎪⎩

g(j ′, i, i1, kL, kR − 1);
(kL + kR)s + pc,[1:j ] + pu,[1:j ′+1]

+ max
j ′+1≤h≤j

{L′(j ′ + 1, j, h, i, i1, kR − 1) − dh}.

For the total tardiness minimization,

f1

(
j, j ′, i ′, i ′

1, kL, k′
L

)

= g
(
j ′, i ′, i ′

1, k
′
L, kL − k′

L − 1
)

+
j∑

h=j ′+1

Th

(
kLs + pc,[1:j ] + pu,[1:j ′+1] + L′(j ′ + 1, j, h, i ′, i ′

1, kL − k′
L − 1

))
,

and

f2

(
j, j ′, i, i1, kL, kR

)

= g
(
j ′, i, i1, kL, kR − 1

)

+
j∑

h=j ′+1

Th

(
(kL + kR)s + pc,[1:j ] + pu,[1:j ′+1] + L′(j ′ + 1, j, h, i, i1, kR − 1

))
.

As for the minimization of the number of tardy jobs,

f1

(
j, j ′, i ′, i ′

1, kL, k′
L

)

= g
(
j ′, i ′, i ′

1, k
′
L, kL − k′

L − 1
)

+
j∑

h=j ′+1

Uh

(
kLs + pc,[1:j ] + pu,[1:j ′+1] + L′(j ′ + 1, j, h, i ′, i ′

1, kL − k′
L − 1

))
,

and

f2

(
j, j ′, i, i1, kL, kR

)

= g
(
j ′, i, i1, kL, kR − 1

)
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+
j∑

h=j ′+1

Uh

(
(kL + kR)s + pc,[1:j ] + pu,[1:j ′+1] + L′(j ′ + 1, j, h, i, i1, kR − 1

))
.

Justification of algorithm DP is given as follows. The initial state (0,0,0,0,0) with
g(0,0,0,0,0) = 0 is set in the initialization. In the recursion, g(j, i, i1, kL, kR) is deter-
mined by two disjoint cases, kR = 0 and kR ≥ 1. In Case kR = 0, where i1 = j is also im-
plied, a partial schedule in state (j, i, j, kL,0) can be constructed by appending the element
(j ′ +1, . . . , j) to the end of the dominant partial schedule in state (j ′, i ′, i ′

1, k
′
L, kL − k′

L −1)

for range A. In Eq. (1), the validity of the concatenation (cf. Fig. 5) is confirmed by con-
dition B, which examines whether operation ai leads a critical block. The consecutive
processing of a[i:j ] without an inserted idle time is required, i.e. L(i, j) = pa,[i:j ]. As for
the requirement that operation ai is preceded by an idle time, the inequality pa,[i′ :i−1] <

(kL − k′
L)s +pu,[i′+1:i] +pc,[i′1+1:j ] must hold in case of j ′ = i − 1. If j ′ < i − 1, we have the

inequality L′(j ′ + 1, j, i − 1, i ′, i ′
1, kL − k′

L − 1) < pu,[j ′+2:i]. In Case kR ≥ 1, we need to
check whether a partial schedule in state (j, i, i1, kL, kR) can be built by appending the ele-
ment (j ′ + 1, . . . , j) to the end of the dominant partial schedule in state (j ′, i, i1, kL, kR − 1)

for i1 + kR − 1 ≤ j ′ ≤ j − 1. To uphold the validity of the concatenation (cf. Fig. 6), con-
dition C is utilized to guarantee the consecutive processing of a[j ′:j ] without an inserted idle
time. The optimal objective value is min{g(n, i, i1, kL, kR) | 1 ≤ kL ≤ i ≤ i1 ≤ n, � n−i1

n
� ≤

kR ≤ n − i1}, and its corresponding optimal schedule can be produced by backtracking.
Algorithm DP consists of two stages: (1) preprocessing stage, in which L(j1, j2) and

L′(j1, j2, v,h1, h2, k1) are calculated, and (2) construction of dominant partial schedules
in various states. Calculations of all feasible values L(j1, j2) and L′(j1, j2, v,h1, h2, k1)

require O(n2) and O(n6) time, respectively. To construct the dominant partial sched-
ules for Case kR = 0, there are O(n3) states (j, i, j, kL,0), each of which considers
O(n4) combinations of j ′, i ′, i ′

1, k
′
L. For each single combination, O(1) time is required

to check the validity of element concatenation and calculate the objective function value
with f1(j, j

′, i ′, i ′
1, kL, k′

L). For Case kR ≥ 1, there are O(n5) states (j, i, i1, kL, kR), each
of which requires O(n) operations for j ′. In each operation, O(1) time is needed to perform
the if-condition evaluation and the calculation of function f2(j, j

′, i, i1, kL, kR). Note that
for any considered performance metric the calculation of function f1(j, j

′, i ′, i ′
1, kL, k′

L) or
f2(j, j

′, i, i1, kL, kR) in which a simple preprocessing procedure can be included requires a
constant time. Thus, the total run time for constructing dominant partial schedules is O(n7).
The goal step requires O(n4) comparisons, each of which requires a constant time. There-
fore, the overall run time of algorithm DP is O(n7). The discussion is concluded in the
following theorem and a numerical example is provided in Appendix C for illustration.

Theorem 1 The F2|(cj , uj , aj ), s-batch,fix_seq|γ problem can be solved in O(n7) time,
where γ ∈ {∑Cj ,Lmax,

∑
Tj ,

∑
Uj }.

4 Conclusion

This study investigated the fabrication and assembly scheduling problem F2|(cj , uj , aj ),

s-batch,fix_seq|γ , where γ ∈ {∑Cj ,Lmax,
∑

Tj ,
∑

Uj }. A generic dynamic program-
ming algorithm with run time O(n7) has been developed. Although the developed algo-
rithm could be deemed not sufficiently efficient, its generalized applicability to all the
considered regular performance metrics shall be highlighted. Side results include the op-
timality properties of problem F2|(cj , uj , aj ), s-batch|γ , γ ∈ {∑Cj ,Lmax,

∑
Tj ,

∑
Uj },
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with no fixed-job-sequence assumption, and a reduction in the time complexity of problem
F2|(cj , uj , aj ), s-batch,fix_seq|Cmax from O(n4) to O(n3) with the designed preprocessing
procedure. Furthermore, the presented optimality properties and the proposed algorithm can
be readily generalized to the weighted counterparts of the addressed performance measures.

For further extension of this research, a different batching pattern, e.g. the parallel-batch
model, could be investigated for common operations processing. One typical example of
this model is the etching process in the fabrication of printed wiring boards (Mathirajan and
Sivakumar 2006), where components in the same batch are processed simultaneously and
a limited batch size is considered. On the other hand, batch processing at both stages of a
flowshop has been widely studied in the scheduling literature. Another possible direction
is to explore batch processing on the stage-2 machine as well. Furthermore, considering a
non-regular performance measure, e.g. Just-In-Time scheduling or total earliness and tardi-
ness (Hazır and Kedad-Sidhoum 2012), would be interesting.

Acknowledgements The authors are grateful to the reviewers for their constructive comments on an earlier
version of the paper. This research was partially supported by the National Science Council under grant 098-
2912-I-009-002.

Appendix A: Generalization of Algorithm BA-1 for problem
F2|(cj ,uj , aj ), s-batch,fix_seq|Cmax

There are five steps (a)–(e) in Algorithm BA-1 proposed by Cheng and Wang (1999). In
Step (a), the jobs are sequenced according to Johnson’s rule. Step (b) denotes C(1)(j, k)

and C(2)(j, k) as the minimum machine-1 and machine-2 completion times, respectively,
among the partial schedules which consist of jobs 1, . . . , j and have exactly k batches
of common components. The dynamic programming recursive formula and initial values
are given in Step (c) and (d), respectively. The optimal schedule whose objective value is
min1≤k≤n C(2)(n, k) can be obtained in Step (e).

To solve problem F2|(cj , uj , aj ), s-batch,fix_seq|Cmax, we directly use the preassigned
job sequence in Step (a) and generalize the recursive formula in Step (c) as

For j = 1, . . . , n and k = 1, . . . , j :

C(1)(j, k) = ks + pc,[1:j ] + pu,[1:j ];

C(2)(j, k) = min
1≤i≤j−k+1

⎧
⎪⎪⎨

⎪⎪⎩
max

⎧
⎪⎪⎨

⎪⎪⎩

C(1)(j − i, k − 1) + s + pc,[j−i+1:j ]
+ max

j−i+1≤h≤j
{pu,[j−i+1:h] + pa,[h:j ]},

C(2)(j − i, k − 1) + pa,[j−i+1:j ].

(3)

Note that i is the number of common components in the last batch of the considered partial
schedule.

Appendix B: Reduction of the time complexity of Algorithm BA-1

The recursive equation (Eq. (3)) in Step (c) of Algorithm BA-1 retains O(n2) states, each of
which needs O(n2) time, and the time complexity of Algorithm BA-1 is O(n4). Since the
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fixed job sequence is determined in Step (a), we can have an O(n2) preprocessing procedure
for function L(· , · ) inserted between Step (a) and (b). In doing so, Eq. (3) can be modified
by replacing maxj−i+1≤h≤j {pu,[j−i+1:h] +pa,[h:j ]} with pu,j−i+1 +L(j − i +1, j) and the run
time for Step (c) can be reduced to O(n3). This modification can be justified by the concept
of critical path. If the last critical path of a considered partial schedule occurs on one of the
jobs {j − i +1, . . . , j}, which can be determined by arg maxj−i+1≤h≤j {pu,[j−i+1:h] +pa,[h:j ]},
the time span from the completion of uj−i+1 to that of aj can be obtained by L(j − i +1, j).

Appendix C: Example of algorithm DP

Example 2 Consider the following instance with n = 2: (pc,1,pu,1,pa,1) = (1,2,2),
(pc,2,pu,2,pa,2) = (2,3,4) and s = 1. Algorithm DP is demonstrated for the objective
function of total completion time as follows:

Stage 1. (Preprocessing for L(j1, v), δ(j1, j2, h1, h2, k1) and L′(j1, j2, v,h1, h2, k1))

For 1 ≤ j1 ≤ v ≤ 2,
L(1,1) = pa,1 = 2;
L(1,2) = max{L(1,1),pu,[2:2]} + pa,2 = max{2,3} + 4 = 7;
L(2,2) = pa,2 = 4.

For 1 ≤ h1 ≤ h2 < j1 ≤ j2 ≤ 2 and � j1−h2−1
j1−1 � ≤ k1 ≤ j1 − h2 − 1,

δ(2,2,1,1,0) = max{0,pa,[1:1] − s − pu,[2:2] − pc,[2:2]} = max{0,2 − 1 − 3 − 2} = 0.
For 1 ≤ h1 ≤ h2 < j1 ≤ v ≤ j2 ≤ 2 and � j1−h2−1

j1−1 � ≤ k1 ≤ j1 − h2 − 1,
L′(2,2,2,1,1,0) = max{L(2,2), δ(2,2,1,1,0) + pa,[2:2]} = max{4,0 + 4} = 4;

For 1 ≤ j1 ≤ v ≤ j2 ≤ 2,
L′(1,1,1,0,0,0) = L(1,1) = 2;
L′(1,2,1,0,0,0) = L(1,1) = 2;
L′(1,2,2,0,0,0) = L(1,2) = 7;
L′(2,2,2,0,0,0) = L(2,2) = 4.

For other values of j1, j2, v,h1, h2, k1, we set L′(j1, j2, v,h1, h2, k1) = ∞.

Stage 2. (Algorithm DP)

Initialization:
g(0,0,0,0,0) = 0;
For other values of j, i, i1, kL, kR , we set g(j, i, i1, kL, kR) = ∞.
Recursion: For 1 ≤ kL ≤ i ≤ i1 ≤ j ≤ 2 and � j−i1

j
� ≤ kR ≤ j − i1,

(j, i, i1, kL, kR) = (1,1,1,1,0)

(j, j ′, i ′, i ′
1, kL, k′

L) = (1,0,0,0,1,0)

(L(1,1) = 2 = pa,[1:1])∧
((j ′ = 0 = i − 1) ∧ (pa,[0:0] = 0 < (1 − 0)s + pu,[1:1] + pc,[1:1] = 1 + 2 + 1 = 4))

z1 = f1(1,0,0,0,1,0) = g(0,0,0,0,0) + (1 − 0)(s + pc,[1:1] + pu,[1:1])

+ L′(1,1,1,0,0,0)

= 0 + (1 + 1 + 2) + 2 = 6.

g(1,1,1,1,0) = min{z1} = 6.
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(j, i, i1, kL, kR) = (2,1,1,1,1)

(j, j ′, i, i1, kL, kR) = (2,1,1,1,1,1)

s + pu,[2:2] + pc,[2:2] + L′(2,2,2,1,1,0) = 1 + 3 + 2 + 4 = 10 > pa,[1:2] = 6
z1 = ∞.

g(2,1,1,1,1) = min{z1} = ∞.

(j, i, i1, kL, kR) = (2,1,2,1,0)

(j, j ′, i ′, i ′
1, kL, k′

L) = (2,0,0,0,1,0)

L(1,2) = 7 > pa,[1:2] = 6
z1 = ∞.

g(2,1,2,1,0) = min{z1} = ∞.

(j, i, i1, kL, kR) = (2,2,2,1,0)

(j, j ′, i ′, i ′
1, kL, k′

L) = (2,0,0,0,1,0)

(L(2,2) = 4 = pa,[2:2])∧
((j ′ = 0 < i − 1 = 1) ∧ (L′(1,2,1,0,0,0) = 2 < pu,[2:2] = 3))

z1 = f1(2,0,0,0,1,0) = g(0,0,0,0,0) + (2 − 0)(s + pc,[1:2] + pu,[1:1])

+ L′(1,2,1,0,0,0) + L′(1,2,2,0,0,0)

= 0 + 2(1 + 3 + 2) + 2 + 7 = 21.

(j, j ′, i ′, i ′
1, kL, k′

L) = (2,1,0,0,1,0)

(L(2,2) = 4 = pa,[2:2])∧
((j ′ = 1 = i − 1) ∧ (pa,[0:1] = 2 < (1 − 0)s + pu,[1:2] + pc,[1:2] = 1 + 5 + 3 = 9))

z2 = f1(2,1,0,0,1,0) = g(1,0,0,0,0) + (2 − 1)(s + pc,[1:2] + pu,[1:2])

+ L′(2,2,2,0,0,0)

= ∞.

(j, j ′, i ′, i ′
1, kL, k′

L) = (2,1,0,1,1,0)

(L(2,2) = 4 = pa,[2:2])∧
((j ′ = 1 = i − 1) ∧ (pa,[0:1] = 2 < (1 − 0)s + pu,[1:2] + pc,[2:2] = 1 + 5 + 2 = 8))

z3 = f1(2,1,0,1,1,0) = g(1,0,1,0,0) + (2 − 1)(s + pc,[1:2] + pu,[1:2])

+L′(2,2,2,0,1,0)

= ∞.

(j, j ′, i ′, i ′
1, kL, k′

L) = (2,1,1,1,1,0)

(L(2,2) = 4 = pa,[2:2])∧
((j ′ = 1 = i − 1) ∧ (pa,[1:1] = 2 < (1 − 0)s + pu,[2:2] + pc,[2:2] = 1 + 3 + 2 = 6))

z4 = f1(2,1,1,1,1,0) = g(1,1,1,0,0) + (2 − 1)(s + pc,[1:2] + pu,[1:2])

+L′(2,2,2,1,1,0)

= ∞.

g(2,2,2,1,0) = min{z1, z2, z3, z4} = 21.
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Fig. 7 Optimal schedule with
g(2,2,2,2,0) = 20

(j, i, i1, kL, kR) = (2,2,2,2,0)

(j, j ′, i ′, i ′
1, kL, k′

L) = (2,1,1,1,2,1)

(L(2,2) = 4 = pa,[2:2])∧
((j ′ = 1 = i − 1) ∧ (pa,[1:1] = 2 < (2 − 1)s + pu,[2:2] + pc,[2:2] = 1 + 3 + 2 = 6))

z1 = f2(2,1,1,1,2,1) = g(1,1,1,1,0) + (2 − 1)(2s + pc,[1:2] + pu,[1:2])

+ L′(2,2,2,1,1,0)

= 6 + (2 + 3 + 5) + 4 = 20.

g(2,2,2,2,0) = min{z1} = 20.

Goal: min
1≤kL≤i≤i1≤2,� 2−i1

2 �≤kR≤2−i1
{g(2, i, i1, kL, kR)} = g(2,2,2,2,0) = 20.

The corresponding optimal schedule can be constructed by backtracking the recursion,
as illustrated in Fig. 7.
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Błażewicz, J., Ecker, K. H., Pesch, E., Schmidt, G., & Węglarz, J. (2007). Handbook on scheduling: from
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