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Abstract—A brain computer interface-based smart living
environmental auto-adjustment control system (BSLEACS) is
proposed in this paper. Recently, many environmental con-
trol systems have been proposed to improve human quality
of life. However, little research has focused on environmental
control directly using the human physiological state. Based on
the advantage of our technique on brain computer interface
(BCI), we integrated the BCI technique with universal plug and
play (UPnP) home networking for smart house applications.
BSLEACS mainly consists of a wireless physiological signal
acquisition module, an embedded signal processing module, a
simple control protocol/power line communication environmental
controller, and a host system. Here, the physiological signal
acquisition module and embedded signal processing module were
designed for long-term electroencephalogram (EEG) monitoring
and backend analysis, respectively. The advantages of low power
consumption and small volume of the above modules are suitable
for smart house applications in daily life. Moreover, different
from other BCI systems, the property of using only a single EEG
channel to monitor cognitive state also makes BSLEACS become
more practicable. BSLEACS has been verified in a practical demo
room, and the environmental adjustment can be automatically
controlled by the change of the user’s cognitive state. BSLEACS
provides a novel system prototype for environmental control, and
can be simply extended and integrated with the UPnP home
networking for other applications.

Index Terms—Brain computer interface (BCI), electroen-
cephalogram (EEG), power line communication, simple control
protocol, smart house, universal plug and play (UPnP).

I. Introduction

R ECENTLY, with the advance in sensor technology and
information technology, many studies are trying to de-

velop commercial products to bring the convenience to people
in their usual life. Therefore, a rapid growth of research
on smart houses [1]–[12] is proposed and developed as a
mainstream to provide various kinds of environmental control
systems. Some environmental control systems in a smart house
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employed radio frequency identification (RFID), external sen-
sor modules, and voice recognition as the controlled signals.
RFID tag or external sensors are usually installed in different
areas in advance for automatic detection of users’ motions.
Moreover, by combining with universal plug and play (UPnP)
home networks, users could send out service requests from
their personal digital assistant, mobile phones, a wearable
appliance, or external sensors to home server either with voice,
graphic user interface, or motion.

Moreover, with the development of brain computer interface
(BCI), it is an extremely new option to apply the physiological
signals as the stimulus of environmental control system in a
smart house. However, most of the existing brain computer
interface-based environmental control systems, such as P300-
based BCI [13]–[15] and motor-imagery-based BCI [16]–[18],
require the user’s active mental command to control external
devices. Hence, these systems lack the capability to control
devices automatically and adaptively according to the user’s
current cognitive state. Moreover, most of current BCI-based
environmental control systems are very inconvenient because
bulky and expensive electroencephalogram (EEG) machines
and personal computers are both required for physiological
signals acquisition and backend analysis, which will limit the
flexibility, portability, and practicability of these systems.

Therefore, the goal of this paper is to propose a cost-
effective, simply extendable and easy-to-use brain computer
interface-based smart living environmental auto-adjustment
control system (BSLEACS) to control electric home appli-
ances based on the change of user’s cognitive state (drowsiness
or alertness). In BSLEACS, a wireless physiological signal
acquisition module and an embedded signal processing module
were also proposed. Different from other BCI systems, which
are usually bulky and have to transmit an EEG signal to a
backend personal computer to process the EEG signal [19], our
proposed wireless physiological signal acquisition module and
embedded signal processing module contain the advantages
of small volume and low power consumption, and are more
suitable for practical application. Moreover, by using UPnP
home networking, BSLEACS can easily be integrated with
electric home appliances for other applications. This paper is
organized as follows. The system architecture of BSLEACS
is introduced in Section II. The real-time cognitive state
detection algorithm is introduced in Section III. The system
performances of BSLEACS are investigated in Section IV. The
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Fig. 1. System architecture of proposed BCI-based smart living environmen-
tal auto-adjustment control system.

discussions and conclusions are summarized in Sections V and
VI, respectively.

II. System Architecture

The system architecture of BSLEACS, as shown in Fig. 1,
mainly consists of four parts: 1) wireless physiological signal
acquisition module; 2) embedded signal processing module;
3) host system; and 4) simple control protocol (SCP)/power
line communication (PLC) environmental controller. Here, the
wireless physiological signal acquisition module is designed
to acquire and transmit an EEG signal to the embedded
signal processing module wirelessly via Bluetooth. Bluetooth
provides a short range wireless and secure communication
between devices to eliminate the need for messy cables. By
using the encryption function in the security procedures of
Bluetooth, it will translate the transmitted data into secret
code to avoid the contents being eavesdropped. The embedded
signal processing module is designed to estimate the user’s
cognitive state from his or her EEG, and provides the
estimated cognitive state to the host system. The host system
is designed for data storage/display, and is also served as an
UPnP control point to manage the request from UPnP control
device as well as the SCP/PLC environmental controller,
which is used to control electric home appliances, such as
day and night lamps, air conditioners, and others.

A. Wireless Physiological Signal Acquisition Module

The block diagram of the proposed wireless physiological
acquisition module is shown in Fig. 2(a). It mainly consists
of a front-end amplifier unit, a microprocessor unit, and a
wireless transmission unit. Here, the front-end amplifier unit
contains a preamplifier, a band-pass filter, and a 12-bit analog-
to-digital converter (ADC). The gain of the front-end amplifier
unit is set to 5040 times with a passing frequency band of 0.1–
100 Hz. EEG data digitized by ADC with the sampling rate of

Fig. 2. (a) Block diagram of wireless physiological signal acquisition
module. Photographs of (b) wireless physiological signal acquisition module,
and (c) EEG headband embedded with this module.

512 Hz will be stored into the memory of the microprocessor
unit, and then be processed to pass through a moving average
filter in the microprocessor unit to remove power-line interfer-
ence before being sent to the wireless transmission unit. The
wireless transmission unit consists of a printed circuit board
antenna and a Bluetooth module, which is fully compliant with
the Bluetooth v2.0+ EDR specification. This module operates
at 31 mA with 3.7 V DC power supply, and can continuously
operate over 33 h with a commercial 1100 mAh Li-ion battery.
The volume of the proposed wireless physiological signal
acquisition module is about 4 cm × 2.5 cm × 0.6 cm, which is
small enough to be embedded into a headband as a wearable
device, as shown in Fig. 2(b) and (c).

B. Embedded Signal Processing Module

The proposed embedded signal processing module that
contains a powerful computation capability and can support
various peripheral interfaces, as shown in Fig. 3(a), is de-
veloped to perform the real-time cognitive state detection
algorithm, and is also evaluated as the UPnP control device
to send out the estimated cognitive state and EEG signal to
host system to drive environmental controller via UPnP home
networking. Here, the Blackfin embedded processor is used in
the embedded signal processing unit. The operation frequency
of central processing unit can run at up to 600 MHz. It
contains two 16-bit multiply-and-accumulate to execute 1200
lines addition and multiplication functions and also has four
independent direct memory access mechanisms to effectively
reduce the processing time of core. A memory-mapped thin-
film transistor liquid crystal display, which shares the same
memory bus with synchronous dynamic random access mem-
ory, is used in this module. Here, serial peripheral interface
Flash is used to replace the parallel NOR flash to reduce the
module size. Furthermore, this module also contains power
management circuits. The embedded processor communicates
with wireless transmission unit via universal asynchronous
receiver/transmitter interface. This module can be operated
with a 3.7 V DC power supply, and it can continuously operate
for more than 45 h operations with a 1100 mAh Li-ion battery.
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Fig. 3. (a) Block diagram of embedded signal processing module.
(b) Photograph of embedded signal processing module.

The volume of the embedded signal processing module is
about 6.4 cm × 4.4 cm × 1 cm, as shown in Fig. 3(b).

In this embedded signal processing module, the optimized
universal boot loader was developed to perform the initial
system configuration first and then to boot the Linux operation
system kernel. The cognitive state detection algorithm was
implemented as a multithreaded application on operation
system. The received EEG data will be real-time processed,
analyzed and displayed by the embedded signal processing
module. When the change of cognitive state of the user is
detected, the corresponding command will be transmitted
either by radio frequency (RF) module or by Ethernet
(a RS232-to-Ethernet adopter module is required) through
UPnP protocol to the host system.

C. Host System and Environmental Controller

The host system is an UPnP/SCP bridge and is also served
as the home gateway to internet network. With UPnP/SCP
techniques, BSLEACS was realized to simply plug-and-play
IP/non-IP consumer equipments in home networking with-
out any complicated settings. In the host system computer,
Windows XP was used as the operation system, and the
host system program, developed on Microsoft Visual C#, was
designed to provide following functions: 1) data storage and
display; 2) UPnP control point to receive and reply the request
from UPnP control device; and 3) SCP host to transmit control
commands to environmental controller for operations.

A SCP-based environmental controller with four-channel
AC/DC power line control outputs is used to control home
equipments in this paper. All settings and control commands
are accomplished with writing/reading three continuous regis-
ters. Two or more kinds of commands can be sent from the host
system to environmental controller to control the endpoints
according to user’s cognitive state. In this paper, the SCP-
based environmental controller is used to control the day and
night lamps in the showroom. The adjustable DC outputs of
environmental controller can be also employed if adjustable
illumination of lights is required.

III. Methods

A. Real-Time Cognitive State Detection Algorithm

Previous studies have shown that EEG spectra in theta
rhythm (4–7 Hz) and alpha rhythm (8–11 Hz) usually reflect

Fig. 4. Flowchart of real-time cognitive state detection algorithm.

the changes of drowsiness and alertness [20]–[26]. When an
alert person is becoming drowsy, his or her EEG power in
both theta and alpha rhythms will increase. These discoveries
motivate us to monitor user’s cognitive state from EEG spectra
and apply it on smart living environmental auto-adjustment.
In our previous study [27], an EEG-based unsupervised
approach was proposed to detect the cognitive state without
the requirement of labeled training dataset. Under the
assumption that the subject is in an alert state during the
first few minutes when taking a rest, the alert mode of the
subject can be then derived by the first few minutes of EEG
recording. The specific window is selected to build the alert
mode by Mardia test [28]. If the subject remains alert, his or
her EEG spectra in theta and alpha rhythms should match the
alert model. Otherwise, his or her EEG spectra will diverge
from the alert model if the subject is under drowsy state. In
[27], we also observed that the alpha and theta rhythm of
EEG spectra in the occipital midline (the location of Oz in the
international 10–20 EEG system) can provide discriminating
power and they have high correlation with cognitive state.
Therefore, only a single EEG channel is used in our proposed
system to monitor EEG signal in the occipital midline.

The flowchart of real-time cognitive state detection algo-
rithm is illustrated in Fig. 4. In order to estimate the cognitive
state, the information of theta and alpha rhythms in EEG
spectra has to be preserved and extracted. According to the
Nyquist criterion, the sampling rate of EEG signals related
to cognitive state must be higher than 22 Hz to preserve and
extract information of theta and alpha rhythms. Hence, a low-
pass filter with a cutoff frequency of 32 Hz is first applied to
remove 60 Hz power line noise and other high-frequency noise.
Next, the sampling rate of EEG data will be down-sampled to
64 Hz to reduce the computation load. A 512-point FFT with
448-point overlap is used to obtain the EEG spectra, and then
the EEG spectra in alpha and theta rhythms are extracted to
build up the alert model. A new alert model for each subject
in every experimental session will be constructed separately.
The distribution of power spectrum in the alert state can be
modeled by a multivariate normal distribution N(μ,�2). Here,
μ and �2 denote the mean vector and the variance–covariance
matrix, respectively, and can be estimated by using maximum
likelihood. The alert models of alpha and theta rhythms in this
paper are represented by (μA, �2

A) and (μT , �2
T ), respectively.

After building the alert mode, the Mahalanobis distance
from the alert mode of alpha rhythm (MDA) and that of
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theta rhythm (MDT) will be calculated directly. Mahalanobis
distance is a distance measure based on correlations between
variables by which different patterns can be identified and
analyzed. Different from Euclidean distance, it takes into
account the correlations of the data set, and is scale-invariant.
By estimating the Mahalanobis distance from the alert mode,
the correlation between the current EEG signal and the alert
mode can be effectively evaluated. Let xA and xT be EEG
spectra in alpha and theta rhythms, respectively, at some time
instant, then the values of MDA and MDT can be calculated by

MDA(xA) =
√

(xA − μA)T (�2
A)−1(xA − μA)

MDT (xT ) =
√

(xT − μT )T (�2
T )−1(xT − μT ). (1)

Finally, we use the linear combination MDC of MDT and
MDA, to estimate the user’s cognitive state with the following
formula:

MDC = α × MDA + (1 − α) × MDT, 0 ≤ α ≤ 1 (2)

where α is a constant between 1 and 0. If the value of MDC
is larger than the threshold, the subject can be treated as his
or her cognitive state trends to drowsy state; otherwise, it
trends to alert state. However, using the user’s instantaneous
cognitive state directly to control electric home appliances
is not practicable because the sensitive variation of control
command may cause the discomfort of the user. In this paper,
the control command is decided according to the trend of the
user’s cognitive state. Here, the average of estimated cognitive
states during the previous 10 min is used to estimate the trend
of the user’s cognitive state.

B. Performance Evaluation for Real-Time Cognitive State
Detection Algorithm

Because the user’s cognitive state is subjective and relative,
it is difficult to compare it with the estimated cognitive state
obtained by the real-time cognitive state detection algorithm
directly. In order to evaluate the system performance, the user’s
response behavior, which reflects the user’s cognitive state
indirectly, is used to compare with the estimated cognitive
state. However, the behavior in the past was only available by
subjective examination of users’ cognitive states from a camera
and then cross-referencing with questionnaire forms. Such a
method cannot be used to monitor the user’s cognitive state
continuously, and the results are less meaningful if the num-
bers of participants are insufficient from the statistical point
of view. Therefore, a lane-keeping driving experiment was
designed to collect the user’s response behavior continuously
to provide sufficient behavior data from limited participants.
This experiment estimates the user’s cognitive state indirectly
by monitoring the user’s driving response time [24], [25], [27].
Here, a virtual reality (VR)-based cruising environment was
built to simulate a car driving on a four-lane highway at night.
The car will randomly and automatically deviate from the
center of the cruising lane. Subjects are asked to compensate
for this deviation to keep this car in the center of the third
cruising lane. The time points of three important events, as

Fig. 5. Illustration of driving task in lane-keeping driving experiment.

Fig. 6. Procedure of determining threshold of Mahalanobis distance for
cognitive state detection.

shown in Fig. 5, are recorded to get the driving trajectory:
deviation onset (the car starts to drift away from the cruising
lane), response onset (participants respond to the car-drifting
event), and response offset (the car returns to the center of the
third lane). If the subject is alert, the response time, defined as
the time duration from “deviation onset” to “response onset,”
should be short. Then, the user’s response behavior can be
recorded from the response time which can reflect the driver’s
cognitive state indirectly. In our VR-based four-lane scene, the
car will drift 1/4 of the road width per second after the occur-
rence of car drift events. If the driver’s cognitive state is alert,
he/she should correct the deviation within 0.2–1 s to avoid the
car drifting into other lanes. Moreover, F-measure, the har-
monic mean of precision [positive predictive value (PPV)] and
recall (sensitivity), is used to find out the threshold of Maha-
lanobis distance to decide the cognitive state in this paper. The
procedure of determining the threshold is depicted in Fig. 6,
and the value F of F-measure can be calculated as follows:

F = 2 × precision × recall

precision + recall
. (3)

IV. Results

A. Performance of BSLEACS for Cognitive State Detection

In this section, the optimum parameters for the real-time
cognitive state detection algorithm are first determined.
Here, the parameters of binary classification test are defined
as follows: True Positive (drowsy people correctly recognized
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TABLE I

Results of Testing Session for Cognitive State Detection

Subject F-measure (%) PPV (%) Sensitivity (%)
1 77.7 75.5 80
2 72.2 78.8 66.7
3 89.1 80.4 100
4 87.5 77.8 100
5 87.4 77.6 100
6 88.9 80 100
7 83.5 78.7 88.9
8 81.1 77.9 84.6
9 66.1 65.5 66.7
10 86.8 76.6 100

Average 82 76.9 88.7

as drowsy), False Positive (alert people wrongly recognized as
drowsy), True Negative (alert people correctly recognized as
alert), and False Negative (drowsy people wrongly recognized
as alert). A total of 1370-trial response times and Mahalanobis
distances from 15 subjects were analyzed to determine the
maximum F-measure value with different parameters (α =
0.1–0.9 and the threshold of Mahalanobis distance = 1–15).
After comparing the results with different parameters, the
maximum value 77.6% of F-measure (PPV = 69.2% and
sensitivity = 88.3%) was determined with α = 0.9 and
threshold = 7.5 in this paper.

Next, 1000-trail response times and Mahalanobis distances
from ten subjects for testing session were used to test the per-
formance of this system (α = 0.9 and the threshold of Maha-
lanobis distance = 7.5). The result of testing session for cogni-
tive state detection is listed in Table I. It shows that most of the
precision of drowsiness prediction (PPV) is between 75% and
80% and the sensitivities of subjects are over 80% except sub-
ject 2 and subject 9. The averaged F-measure of ten subjects is
82 % (PPV = 76.9% and sensitivity = 88.7%). For sensitivity
analysis, we perform single sample t-test to investigate the
performance of our system. The p-value and estimated stan-
dard deviation (SD) of PPV and sensitivity are (p = 0.00029
and SD = 4.25) and (p = 0.93 and SD = 13.73), respectively,
which evidences that BSLEACS can provide a stable PPV to
effectively recognize current cognitive state of the user.

B. Performance of BSLEACS for Controlling Home
Appliances

BSLEACS has been constructed at the Eco-City Integrated
Smart Living Technology Regional Center, National Chiao
Tung University, Hsinchu, Taiwan, as the snapshot shown in
Fig. 1. Here, BSLEACS is used to control day and night lamps
in the showroom. For example, activities, such as exercise and
working that people are under alert cognitive state, are more
suitable for bright illumination. On the other hand, relaxing
and sleeping that people are under drowsy state are appropriate
for twilit illumination. Therefore, the control criteria of day
and night lamps in this paper are defined as follows.

Criterion 1) when the trend of cognitive state is alert, the
major day lamp is on and the night lamp is off.

Criterion 2) when the trend of cognitive state is drowsy, the
major day lamp is off and the night lamp is on.

In order to evaluate the system performance of BSLEACS
for controlling home appliances, a total of 75-trial system re-
sponses and questionnaire results from 15 subjects were cross-
referenced and analyzed. The parameters of binary classifica-
tion test are defined as follows: True Positive (control criterion
2 was correctly performed when the subject felt drowsy), False
Positive (control criterion 2 was wrongly performed when
the subject felt alert), True Negative (control criterion 1 was
correctly performed when the subject felt alert), and False
Negative (control criterion 1 was wrongly performed when the
subject felt drowsy). The result of testing session for system
control performance is listed in Table II. The F-measure of
system control performance is 75.27% (PPV = 70% and
sensitivity = 81.40%). The experimental result evidences that
BSLEACS can effectively control home appliance according
to the user’s cognitive state.

V. Discussion

The specification comparisons between BSLEACS and
other environmental control systems are listed in Table III.
Chaya et al. [11] presented a voice-controlled smart house
in 1993. They first categorized the home environment into
several areas, such as energy management, communication,
security, convenience, and entertainment, and then a set of
corresponded voice commands within the defined areas in
a house were recorded. An example of telling smart house
to turn off the lights might be “energy management, light,
off.” Such a voice-controlled smart house is inconvenient for
users in that they must predefine their home environments
and record the corresponding voice commands. Corcoran et
al. [12] proposed an UPnP home network infrastructure to
provide services to user of a wireless home network from
a mobile phone, or a wearable appliance to overcome the
inconvenience in [11]. User could send out the service request
to home server either with voice or user interface, which could
overcome the inconvenience of predefined areas and voice
commands. However, the cost of such a PDA-based smart
appliance is expensive and difficult for operations. Hwang
et al. [10] introduced a RFID-based multiuser access control
algorithm in an UPnP smart home. The user has to take
a RFID tag and many additional RFID readers have to be
installed in different areas, such as bed room, kitchen and
living room, in advance for automatic detection of users’
moving-in or moving-out a specific region. Helal et al. [2]
proposed a wear-less smart floor technology with pressure
sensor to detect inhabitant location in a house. Liau et al.
[3] also proposed a wear-less inhabitants tracking system in a
cluttered home environment via floor load sensors. However,
the cost of the smart floor is about USD 4.00 per square-foot
that is quite expensive for practical implementation in a house.
These studies provided the environmental control technologies
either with voice or position detection by floor pressure sensor.
However, all of the above systems cannot adjust environment
automatically according to the change of users’ physiological
state.

Some brain computer interface-based control systems,
which are designed to control external devices by using users’
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TABLE II

Results of Testing Session for System Control Performance

System Control Output
Control Criterion 1 Control Criterion 2

Cognitive state (questionnaire) Drowsy 8 (FN) 35 (TP)
Alert 17 (TN) 15 (FP)

TABLE III

Comparison Between BSLEACS and Other Environmental Control Systems

EC System Chaya [11] Corcoran [12] Hwang [10] Helal [2] BSLEACS
Major technique Voice 1. Voice/UI 1. RFID 1. RFID 1. EEG processing

recognition 2. UPnP 2. UPnP 2. Floor sensor 2. UPnP
3. External sensor 3. SCP/PLC

Controlled signal Voice Voice/UI RF RF EEG
Nondisabled users Yes Yes Yes Yes Yes

Disabled users Yes Yes No No Yes
Aged people Yes Yes Yes Yes/No Yes

Low vision people Yes No Yes/No Yes/No Yes
Hearing impaired people Yes/No Yes/No Yes Yes Yes
Voice impaired people No No Yes Yes Yes

Ty
pe

of
sm

ar
t

ho
us

e

Cognitive impaired users Yes/No Yes/No Yes/No Yes/No Yes
Health monitoring device No No No No Yes

Wearable No No Yes No Yes

Cost − − − >$41 <$302

1Unit price for smart floor sensor per square-foot.
2Bill of material cost for embedded signal processing module.

TABLE IV

Comparison Between BSLEACS and Other BCI Systems

MindBalance Graz-BCI SSVEP BCI
BCI System [13] [17] Multimedia BSLEACS

Control [15]
EEG signal SSVEP Motor imagery SSVEP Alpha and theta rhythms

3 x EEG
Channels 2 x EEG 3 x EEG 1 x EEG 1 x EEG

4 x EMG
Transmission Cable Cable RF transmission Bluetooth
Power supply Power line Power line Power line 3.7 V Li battery
Backend signal Personal Personal Embedded signal
Processing unit computer computer FPGA board Processing

Module
Control mode Active mental Active mental Active mental Adaptation

command command command

physiological state, also have been developed in previous
studies. The specification comparisons between BSLEACS and
other BCI-based control systems are listed in Table IV. Lalor
et al. proposed MindBalance system to control videogame
[13]. MindBalance gains 1-D control of the character’s balance
on a tightrope by using SSVEP generated in response to
phase-reversing checkerboard patterns. Leeb et al. developed
Graz-BCI system for virtual reality control [17]. The user
can decide how they wanted to explore the virtual apart-
ment by using their motor imagery. However, both of the
above BCI systems have to send EEG signal to backend
personal computer to process EEG signal. Bulky and expensive
EEG machines and personal computers are required for real-
time EEG processing. Shyu et al. proposed a FPGA-based
SSVEP BCI control system [15]. Instead of personal computer,
the real-time SSVEP BCI algorithm was implemented in a
FPGA board. All of the above BCI-based control systems

require the user’s active mental command to control external
devices.

BSLEACS uses EEG signal as the device control signal
that is suitable for any alive human, and the environmental
adjustment can be controlled automatically according to the
change of the user’s cognitive state. Here, only a single
EEG channel is required to monitor the user’s cognitive state.
It can avoid the inconvenience of other BCI-based control
systems for wearing many EEG electrodes on his or her
head, and also makes BSLEACS become more practicable
in daily application. Moreover, different from other bulky
EEG machines and personal computers, the portability of the
proposed wireless physiological signal acquisition module and
embedded signal processing module are more suitable for
daily application. Furthermore, the cost of the embedded signal
processing module is less than USD30, which can be cheaper
for mass production.
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VI. Conclusion

A brain computer interface-based smart living environ-
mental auto-adjustment control system was proposed in this
paper. The wireless physiological signal acquisition module is
small enough to be embedded into a headband as a wearable
EEG device, and provides the advantages of mobility and
long-term EEG monitoring (over 33 h by using 1100 mA
Li-ion battery). The embedded signal processing module,
which provides powerful computations, was designed to recog-
nize the user’s cognitive state and was also implemented as an
UPnP control device. Different from other BCI-based control
systems [29], BSLEACS can process EEG signal without
transmitting EEG signal to backend personal computers. Such
flexibility and the advantages of low power consumption and
small volume of the wireless physiological signal acquisition
module and embedded signal processing module are suitable
for various kinds of smart applications in daily life.

Based on the unsupervised approach proposed in our previ-
ous study, a real-time cognitive state detection algorithm was
also implemented in the embedded signal processing module
to recognize the user’s cognitive state continuously and to
change the environment setting automatically when cognitive
state changes. Different from other BCI-based control systems
which require many EEG channels to extract sufficient EEG
feature, BSLEACS only needs single EEG channel to recog-
nize cognitive state by monitoring EEG signal in the location
of Oz of the international 10–20 EEG system. Avoiding the in-
convenience of that the user has to wear many EEG electrodes
on his or her head, also makes BSLEACS become more practi-
cable in daily application. For 75-trial test results, the PPV and
sensitivity of BSLEACS for controlling home appliances are
70% and 81.40%, respectively. BSLEACS has been verified in
a practical environment and shows that the lights/lamp can be
successfully and automatically adjusted in real time based on
the change of the user’s cognitive state. BSLEACS provides
a novel system prototype for environmental control, and can
be generalized for other applications that are implemented and
constructed in an UPnP-based smart house.
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