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Abstract: A general event data recorder is a device installed in automobiles to record information related to vehicle crashes or
accidents. The data provide a better understanding of how certain crashes come about. This study made a prototype of a driving
behaviour-based event data recorder (DBEDR), which provides the information of driving behaviours and a danger level. The
authors approach is to recognise the seven behaviours: normal driving, acceleration, deceleration, changing to the left lane or
right lane, zigzag driving and approaching the car in front by the hidden Markov models. All data were collected from a real
vehicle and evaluated in a real road environment. The experimental results show that the proposed method achieved an
average detection ratio of 95% for behaviour recognition. The danger level is inferred by fuzzy rules involved with the above
behaviours. DBEDR recorded the recognised driving behaviours and the danger level, and the places were stored with the
assistance of a global positioning system receiver. By integrating Google Maps, the locations, the driving behaviour
occurrences, the danger level on the travel routes and the recorded images, the proposed DBEDR could be more useful
compared with the traditional EDRs.
1 Introduction

The study from the National Highway Traffic Safety
Administration reported that each year about 56 000 car
accidents caused by driver fatigue, of which about 1500
drivers died. In Taiwan, a road accident happens every 2 min
on an average, whereas drunk driving and other human
errors are the first cause of the accidents in a decade. To
protect the rights of pedestrians and drivers, an event data
recorders (EDRs), which is a device installed in automobiles
to record information related to vehicle crashes or accidents,
is widely used among drivers [1]. Most EDRs can record
longitudinal, lateral accelerations (ACCs), velocities,
headings, headlights, indicator lights, breaks, speakers etc. In
recent years, the function of video recording becomes
widespread in EDRs, some of them even can access to the
Internet to upload the data to a remote server [2].
Many researchers have been developed on the design of

EDRs, the integration of them and the analysis from the
data of them. Perez et al. [3] presented Argos, which is an
improved in-vehicle data recorder (IVDR) that allows
recording many kinds of alphanumerical data such as the
speed (vehicle data), the point of gaze (driver data) or the
current distance to lateral road marks (environmental data),
to help researchers in the study of car driver behaviour. Jain
and Busso [4] employed the UTDrive platform, a car
equipped with multiple sensors, including cameras,
microphones and controller area network-bus (CAN-bus)
information to identify relevant features extracted from a
frontal video camera and the car CAN-bus data that can be
used to distinguish between the normal and task driving
conditions. Toledo et al. [5] discussed the potential of
IVDR systems to be used in various commercial and
research applications as tools to monitor and provide
feedback to drivers on their on-road behaviour.
Moreover, the driving safety is such an important concern,

so that a wide range of automotive safety systems have been
released, such as driving blind spot detection, a 360°
panorama imaging system [6–8]. In addition to the system
focused on the detection of the surrounding status, the
research of monitoring a driver’s performance to prevent
potential risks is growing. If the EDR can be integrated
with the information of driving behaviour analysis, it can
provide more useful information when accidents occur.
The methods to determine the degree of dangerous driving

are broadly divided into two categories. One is to use
physiological signals and their derivative status of drivers,
and the other is to use the behaviours of their own vehicles.
The first type considers the danger coming from the driver
itself. Driver fatigue, distraction and drunkenness are often
to blame. If a system can identify these states, drivers might
be awakened in time to correct their courses by the system
warning and the possible accidents might be avoided.
Various physiological and biobehavioural signals such as
heart rate [9, 10], electroencephalogram (EEG) [11–13],
electrocardiograph (ECG) [14] and respiration rate [15] are
used to distinguish the driver’s state. However, to acquire
the above signals, one or more intrusive sensors have to be
attached on a driver’s body, and this may affect the
willingness of the drivers to use the system. The other kind
is to use cameras to recognise the facial expression using
the features such as eyes and a lip [16]. However, the
variance of light and shadow during the day affects
the visual cues of drivers. It is a difficult challenge by using
the computer vision techniques to always obtain accurate
and robust results. On the other hand, the second type aims
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Fig. 1 System architecture and functional schemes of DBEDR
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on the behaviour of vehicles, not that of human. The
interested features include the parameters of the host vehicle
and the environment such as lateral positions, ACCs/
decelerations (DECs), the distance to the vehicle in front
and the distance to the lane markings [17, 18]. These
features also indirectly indicate drivers’ states and can be
extracted by various sensors. Many researchers have studied
on this type to develop driving safety systems.
There are several challenges in developing a safetymonitoring

system by identifying a vehicle’s behaviours. For the rule-based
approaches, it is difficult to design a comprehensive set of rules to
cover all dangerous behaviours. Therefore some researchers use
statistical methods to determine the dangerous behaviours by
using pattern recognition techniques. However, the pattern of
dangerous behaviour is difficult to define, and the boundary of
the pattern may not be so clear. Other researchers use
regression techniques to identify the danger level. However, it
is also arduous to explain the influence of each parameter in
the regression model.
In this paper, we propose a driving behaviour-based EDR

(DBEDR). The driving behaviour is firstly recognised using
the hidden Markov models (HMMs), and then the danger
level is inferred by the fuzzy logic. There are seven driving
behaviours included in our system: normal driving (ND),
ACC, DEC, changing left (CL), changing right (CR), zigzag
driving (ZD) and approaching the car in front (AFC). Except
the recognised behaviours, the corresponding degree reflects
the intensity of each behaviour is also calculated. The
parameters for calculating the degree come from a camera,
an accelerometer and a global positioning system (GPS)
receiver, which provide the information of the lane bias, the
distance to the car in front, the frontal/lateral accelerations
and the velocity of the host vehicle. This information is used
in a fuzzy inference system (FIS) to yield a danger level. The
higher the value represents, the worst status of the driver is.
We try to treat the process into a clear analysis. The first
stage is a classification-based problem and we have to well
design the approach to obtain a good detection ratio. In the
second stage, an expert system is relied and we expect to
offer drivers a reasonable and clear explanation for the
meaning of the danger-level indicator.
When the driver is driving on the road, not only the

information of behaviours and danger level are stored, but
also the position, velocity, accelerations, images and
timestamp are also kept. Therefore when the user examines
the data offline by our event viewer, he can view his
trajectory on Google Maps and the route is marked with
different colours according to the danger level. The user can
check the route with the higher danger level by a single
click, and he can quickly know the status of various sensor
values and the behaviours at that moment. For the
applications such as fleet management, our system provides
extra information (behaviours and danger level) of the driver,
which could be beneficial for managers to evaluate the
driver’s performance. The main contributions of this paper
are on providing drivers a DBEDR with the information of
danger level and caused behaviours, which is particularly
useful for management applications; and on using easily
installed sensors without any intrusive interfaces, both for
human and vehicles, and it greatly increases willingness for
the system usages. The rest of the paper is organised as
follows: Section 2 addresses the system architecture of
DBEDR. Section 3 describes the proposed methodology
from data and knowledge acquisition to infer the danger
level. Implementation and experimental results are presented
in Section 4. Finally, the conclusions are given in Section 5.
362
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2 System architecture

The system architecture and functional schemes of DBEDR
are shown in Fig. 1 and described as follows. DBEDR was
designed to run on a dual-core embedded platform.
Therefore the functional modules were carefully planned to
enhance the processing performance. Three sensors
including a GPS receiver, an accelerometer and a
charge-coupled device camera are used to extract the
needed parameters for the system usage. The GPS data are
transferred to the platform through the Bluetooth interface,
whereas the data from the accelerometer are transferred
through a USB to RS232 connector. A Radio Corporation
of America connector is used to connect the camera and the
video input on the platform, and then the system can access
the image buffer by the video for Linux two (V4L2) driver.
The digital signal processor (DSP) core has implemented
the image processing algorithm of lane departure warning
system (LDWS) and forward collision warning system
(FCW), which are mainly designed to detect lane markings
and vehicles, and the details can be referred in our previous
work [19, 20]. In this work, LDWS and FCW are used to
obtain the parameters of lane bias and the distance to the
car in front. Moreover, the DSP core also serve the function
of encode, which compress the raw images into the video in
H.264 format for our event viewer in PC. An embedded
Linux is run on the advanced reduced instruction set
computing (RISC) machine (ARM) core and dealing with
the peripheral and graphical user interface. There are four
main functional modules on the ARM side: data
preprocessing, behaviour recognition, danger-level inference
and data logger. All the data from sensors (velocity and
acceleration) and DSP (lane bias and the distance to the car
in front) are collected and processed in the data
preprocessing module. Then, the behaviour recognition
module use the collected data as patterns do recognise the
behaviours by HMM. After the behaviours are recognised
and the corresponding degrees are calculated, the
danger-level module uses the obtained information to infer
the danger level by an FIS. All information is displayed on
the screen of the platform, and the data logger module
records the information such as positions, velocities,
accelerations, timestamps, current behaviours and danger
level. For our event viewer, these data can be loaded to
provide a convenient interface to examine the drivers’ status.
IET Intell. Transp. Syst., 2014, Vol. 8, Iss. 4, pp. 361–367
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Table 1 Driving behaviour categories

Longitudinal
behaviours

Lateral
behaviours

Car-following
behaviours

ND ND ND
ACC CL AFC
DEC CR

ZD
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3 Design of functional modules

There are four functional modules in the system. First, data
are acquired from the camera, the accelerometer and the
GPS receiver, and then the interested features are extracted.
Second, the features are applied to recognise the most
likely driving behaviour using HMMs. The corresponding
parameters of the recognised behaviours, which will affect
the dangerous degree, are also calculated. Third, these
parameters are used to deduce the danger level by a FIS.
Finally, the information of recognised behaviours and
inferred danger level will be recorded for users to examine
the driving performance offline.

3.1 Data acquisition and preprocessing

The data collected from sensors include the lane bias, the
distance to the car in front, the frontal/lateral accelerations
and the velocity of the host vehicle. The lane bias and the
distance to the car in front are acquired from the captured
images using the image processing technologies, containing
the image/world coordinate transformation, the lane model
regression and the morphology detection. On the other
hand, the acceleration and the velocity are directly obtained
from the accelerometer and the GPS receiver. However, the
data have to be preprocessed before entering the next stage.
First, a second-order Butterworth lowpass filter with a 2 Hz
cutoff frequency is applied to reduce the influence of noise.
Since a vehicle is of a relatively large mass, the behaviours
of concern in our system generally belong to the
low-frequency part. Second, the input data with high
sampling rate have to be downsampled to reduce the
computational load. Both the data from the accelerometer
and the camera are downsampled to 5 Hz. Taking the
accelerometer as an example, it provides the three-axis
acceleration at a sampling rate of 50 Hz. The mean is
calculated every ten samples as a new value. It implies the
original sampling rate of 50 Hz is downsampled to a rate of
5 Hz. Third, the downsampled data are gathered through a
sliding window. We assume that the normal behaviour of
a vehicle is presented within 5 s. That means there are 250
samples of raw data and 25 samples after downsampling.
Therefore the length of the sliding window is set to 25
to acquire sufficient data. Fourth normalisation used to
standardise the range of independent variables or features of
data is applied. Since the range of values of raw data varies
widely, objective functions do not work properly without
normalisation in many machine learning algorithms. The
selected HMM method is no exception. The minimum
and the maximum are selected from the 25 samples in the
window, and these two values are used to scale the data
range into [0, 1]. Finally, the vector quantisation is
introduced to generate distinct observation symbols for the
HMM usage. Vector quantisation works by encoding values
from a multidimensional vector space to a finite set of
values from a discrete subspace of a lower dimension. The
dimension of quantised data represents the number of
symbols used in an HMM, and it affects the HMM
complexity. The quantised data with a low dimension may
eliminate the variation of the data, whereas data with a high
dimension increases the computational complexity. By
observing the recording data, we chose a dimension of ten
to preserve the trend of the data. It means that the
normalised value in [0, 1] is quantised with an integer in
[1, 10]. To achieve this purpose, k-means, a classic
clustering algorithm, is used to divide the original data into
IET Intell. Transp. Syst., 2014, Vol. 8, Iss. 4, pp. 361–367
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one of ten groups, and each of which is represented by its
centroid point.
3.2 Behaviour recognition

To examine the driving behaviours clearly and to study further
information, driving behaviours are divided into three
categories, longitudinal behaviours, lateral behaviours and
car-following behaviours. Each category contains one normal
situation and other situations. Details are listed in Table 1.
With these behaviour categories, it is easier to describe one
driving section, and further analyse the danger level.
Therefore the HMM is applied to recognise the driving
behaviours.
HMM is a probabilistic tool for time series data recognition.

Owing to its stochastic nature, HMM successfully has a wide
range of applications in area of pattern recognition,
especially in speech recognition. Theories of HMMs were
introduced by Baum and Petrie in the late 1960 s [21]. In this
section, only basic concepts are introduced. Detailed tutorials
on HMM could be found in [22].
An HMM is characterised by the following elements:

† N, the number of states in the HMM model.
† M, the number of distinct observation symbols per state.
† The state transition probability distribution A = {aij}, where
aij = P[qt + 1 = Sj|qt = Si], 1≤ i and j≤N.
† The observation symbol probability distribution in state j,
B = {bj(k)}, where bj(k) = P[vk at t|qt = Sj], 1≤ j≤N and
1≤ k≤M.
† The initial probability distribution π = {πi}, where πi = P
[q1 = Si], 1≤ i≤ N.

Therefore an HMM λ could be specified as λ = (N,M, A, B,
π). The observation probability of the sequence O is P(O|λ).
Moreover, there are different types of HMMs according

to the limitation on the state probability matrix A. The
architecture of HMMs adopted in the algorithm is the
so-called left-to-right model. The left-to-right model always
starts from the first state, and the transitions are only allowed
towards right state or the same state. The left-to-right model
is better than the general model at performing dynamic
pattern recognition, like speech recognition, gesture
recognition and signature verification because it emphasises
more on the context relationship between states.
For each driving behaviour, an HMM is constructed. As

mentioned above, the left-to-right HMM was adopted.
The training phase is done by the Baum–Welch
reestimation method. The larger number of symbols would
reduce the quantisation error, but in the meanwhile reduces
the recognition rate and increases the computation
complexity. On the other hand, an HMM with a large
number of states leads to a larger error rate. Therefore the
numbers of states and symbols of each model are tested in
order to find the preferable result. In all the cases, except
363
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for an ND, the number of states is five; for an ND, the number
of states is two. The number of all symbols is ten. The number
of symbols is decided according to the design in the
quantification step. As to the number of states, we made
preliminary tests with various numbers of states. The
number was chosen from two to five to train each model.
Then, observation probabilities were found for each
observation sequence from the same set. The number that
had the smallest variance in output probabilities was then
selected as the parameter of each HMM, because the results
show that it effectively minimised false rejections.
The behaviour recognition procedure is shown in Fig. 2.

Given an observation sequence, the observation probabilities
of each HMM model are calculated by the forward
algorithm. Then, the model with the highest probability is
selected as the recognised manoeuvre. In other words, for
one observation sequence set, one of the longitudinal
behaviours is output as the result, like DEC. Similarly, the
lateral behaviours and the car-following behaviours.
3.3 Danger-level inference

The major task in the second stage is to combine the effect of
each driving event in order to infer the danger level using an
FIS. The degree of each driving event is estimated as a
quantifiable indicator that represents a more explicit
description. In addition, a hierarchical decision strategy is
also presented to improve the efficiency of the fuzzy rule
selection by using the recognised results obtained from the
first stage as conditions. The danger level provides drivers
an intuitive indicator of current driving status. Three basic
states, normal, attention and danger, are designed as three
different danger levels. However, it is a challenge to exactly
define what values belong to which danger level. We know
driving in high speed is dangerous, but the boundary of the
speed to represent danger or not is ambiguous. To handle
this kind of problem, an effective method, fuzzy logic, was
adopted to model the human decision making to achieve
our objective. The basic concept underlying fuzzy logic is
the linguistic variable, which is a variable whose values are
words rather than numbers. A general fuzzy logic model
contains four components: fuzzification, fuzzy inference
engine, defuzzification and a fuzzy rule base.
In the first stage, the recognised behaviours with the

corresponding parameters are obtained. In this stage, these
results are used to design the fuzzy IF-THEN rules to infer
the desired danger level. Except ND, recall that there are
six recognised behaviours including ACC, DEC, CL, CR,
ZD and AFC. If each behaviour is designed for three
degrees, such as HIGH, MEDIUM and LOW, the rules of
combinations have more than 700. Not to mention the other
factor like the velocity of the host vehicle has not been
Fig. 2 HMM recogniser
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considered yet. Too many rules increase the computational
load, and it also lacks a clear understanding of the
relationship between the behaviours and the danger level.
To overcome the above shortcomings, a hierarchical

process flow is designed to decrease the number of fuzzy
rules. There are three ideas involved. First, we can know
that some behaviours are mutually exclusive, that is, they
cannot simultaneously occur. For example, when the
vehicle is zigzagging in a lane, the behaviour of lane
changing cannot happen at the same time. Therefore if we
know the current behaviour is the ZD, the parameters
corresponding to the lane changing can be ignored. Thus,
the number of combinations is reduced. Second, if the
behaviour itself does not exist, its effect has not to be
considered. For example, the behaviour of the host vehicle
AFC of it can only be observed when there actually is a car
in front. Third, if the parameters of corresponding
behaviours are the same, they can be merged by using the
same membership function. For example, the parameters of
ACC and DEC are both the variation of longitudinal
accelerations. According to the sign of the values, we know
it represents the influence of accelerations or DECs.
Therefore we can create a new linguistic variable
acceleration and deceleration (AD) to denote the effect of
ACC and DEC. In a similar sense, we also use another
linguistic variable, LC (lane changing), to indicate the
degrees of CL and CR. According to these three conditions,
the fuzzy rules can be reduced by the hierarchical process
flow as shown in Fig. 3.

3.4 Data logger and event viewer

The data logger module is responsible to record the important
information in a secure digital (SD) card, whereas the event
viewer is a program running in PC to load the data in the
SD card. There are two types of files which will be loaded
together. One is a text file, and the other is a video file.
Both of them are indexed with the date. The text file stores
the data of positions, velocities, accelerations, timestamps,
current behaviours and danger level, whereas the video is
the compressed H.264 video at the same date. Remember
that Google Maps is utilised in the event viewer to provide
a friendly interface of maps. To show the customised
information on the map, all the data in the text file have to
be extracted and converted to keyhole markup language
format. The user can find that there are many markers with
Fig. 3 Hierarchical process flow
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Table 2 Detection ratio of behaviour recognition

False negative/true positive Detection ratio, %

ND 0/193 100
ACC 2/113 98.2
DEC 0/110 100
CL 1/161 99.3
CR 2/158 98.7
ZD 2/152 98.7
AFC 0/102 100

www.ietdl.org

three different colours on the map. The colour is set according
to the danger level. Therefore the user can easily identify the
zone with the various driving performance by browsing these
markers. Our event viewer provides two different ways for
users to efficiently review the recorded videos. The first
way is ‘select by the list’. All information is listed in a table
and ordered according to the timestamp. This mode is
suitable for users to quickly examine the video at a certain
moment. The second way is ‘select by the map’. The user
just click the marker on the map and the timeline of the
video will immediately jump to the time of the event
occurring. This mode is particularly suitable for users who
want to examine their driving status at certain locations.

4 Experimental results

This section addresses the implementation details and the
experimental results. All functionalities have been
successfully implemented and installed in our experimental
car. The camera was mounted in the front windshield, and
the accelerometer at a sampling rate of 50 Hz and the
Bluetooth GPS receiver were attached on the top of the
dashboard. The system prototype was implemented on a
platform based on a TI DM3730 processor, which has a 1
GHz ARM core and a 600 MHz DSP core as shown in
Fig. 4. The captured image size is 320 × 240 (QVGA), and
the processing performance achieved 30 frames per second
for lane marking and vehicle detection. All data for training
and testing were recorded under the real environment with
the experimental car. The experimental results of each
function are described below.

4.1 Recognition results

All data for training and testing are recorded with the
experimental car under the environment of the freeway,
highway and routes in suburban in Taiwan. Freeway and
highway are used for recording the data at high speed,
whereas the routes in suburban are for the one at low speed.
Three test drivers are requested to execute all driving events
under the safe conditions. The data were all collected in
sunny and cloudy conditions at daytime. The recorded data
were manually selected for training and testing the HMMs
of all driving events. The x-axis acceleration is used for
longitudinal behaviours, the lane bias is used for lateral
behaviours, and the distance to the front car is for
car-following behaviours. Table 2 contains the detection
ratio of the experimental results. Detection ratio is defined
Fig. 4 System prototype
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as true positive/(true positive + false negative), where true
positive means the number of evaluated sequences for
which the driving behaviours are correctly recognised, and
false negative represents the number of evaluated sequences
for which the driving behaviours are misrecognised.
Of about 30% of the data of each evaluated sequence were
used to train each HMM, whereas the remainder was used
to evaluate the detection ratio of recognition. It can be
noted that ND, DEC and AFC are perfectly discriminated
by the classifier. Although the behaviours of acceleration
and DEC are similar, ACC may be misrecognised as ND
because of the unobvious variation of acceleration
compared with DEC. This can be understood from the
different delay effect of the throttle and brakes. ZD is the
one with worst recognition ratio, because the trendy is very
similar to ND, the data of ZD with a smaller variation are
confused with that of ND.
4.2 Event viewer

The event viewer loads the recorded data of the DBEDR to let
drivers examine their routes and driving status. Fig. 5 shows
the list mode, which is suitable for users to quickly examine
the video at a certain moment. The left side of the event
viewer is a video player used to display the video file,
whereas the right side is a list table, which shows the
information of the danger level and the timestamp.
Furthermore, the timestamp in the list and the timeline of
the video is synchronised. When the user selects the certain
row of the list, the video will jump to the time of the event
occurring. On the other hand, Fig. 6 shows the map mode,
which is suitable for users to examine their driving status at
certain locations. The left side is still a video player,
whereas the right side shows Google Maps. The map
displays the trajectory and the markers. The user can easily
drag the map to examine his trajectory. The markers
365
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Fig. 5 List mode of the event viewer

Fig. 6 Map mode of the event viewer
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indicate the places of the events happening, and the danger
level is represented with red/yellow/green. The red marker
means an event with high risk, whereas the green one is
low risk. If the user clicks the marker, a popup dialog with
the information of timestamp and recognised driving
behaviours will appear. If the recognised driving behaviour
is not an ND, it will be displayed in red. In the meantime,
the video also jumps to the time of the event occurring.

5 Conclusions

We have presented a driving DBEDR for providing the
information of driving behaviours and the danger level. The
seven driving behaviours including ND, acceleration, DEC,
changing to the left lane or right lane, ZD and AFC, are
recognised by HMMs, and the danger level is inferred by
an FIS through a hierarchical process flow. Except the
information of driving events, a single index to evaluate a
driver’s performance is very useful, because it is convenient
to know drivers’ status on their routes. People could more
easily clarify the cause of an accident or know the stability
of a driver by examining the occurring driving events
according to the danger levels. The event viewer provides
two modes for users to efficiently examine the event data
366
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by list mode and map mode, which mainly prevent users
from spending time by searching certain interesting
moments of the video. The proposed DBEDR offers users
the additional information of driving risk compared with the
traditional EDR. The developed functions were fully
implemented on an embedded platform and tested in the
real environment. Experimental evaluation shows that all
HMM training models for seven behaviours achieved an
average detection ratio at more than 95%. Currently the
proposed DBEDR is implemented on an embedded
platform. Owing to the prototype of DBEDR, the
installation of the system is a little inconvenient. Three
sensors have to be properly set first in the vehicle. This is a
disadvantage for people who want to try our system.
Therefore to ease the installment of DBEDR is another goal
of development. With the growing of powerful
smartphones, the porting of DBEDR is possible [23]. Since
the sensors used in DBEDR, that is, a camera, an
accelerometer and a GPS receiver, most smartphones in the
market also have. However, the performance has to be
optimised because of the computing load, especially in
image processing. This direction is an interesting field
because we believe that if DBEDR can be deployed as
application software (APP) for smartphones, it would
IET Intell. Transp. Syst., 2014, Vol. 8, Iss. 4, pp. 361–367
doi: 10.1049/iet-its.2013.0009
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encourage people to use this system. Moreover, we plan in the
future to add more sensors to collect more data of the vehicles
for identifying more driving behaviours. The use of a
hierarchical HMM structure for recognising more general
driving behaviours patterns also belongs to our future plan.
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