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Abstract: One of the most serious problems for 
vector quantisation is the high computational 
complexity of searching for the closest codeword 
in the codebook design and encoding phases. The 
authors present a fast algorithm to search for the 
closest codeword. The proposed algorithm uses 
two significant features of a vector, mean value 
and variance, to reject many unlikely codewords 
and saves a great deal of computation time. Since 
the proposed algorithm rejects those codewords 
that are impossible to be the closest codeword, 
this algorithm introduces no extra distortion than 
conventional full search method. The results 
obtained confirm the effectiveness of the proposed 
algorithm. 

1 Introduction 

Vector quantisation (VQ) is a very efficient approach to 
low-bit-rate image compression [l]. It is defined as a 
mapping Q from a k-dimensional Euclidean space Rk to a 
finite subset Y of Rk. That is 

Q :  R ~ - +  Y 

where Y = { y i  I i = 1, 2, . . . , N }  is called the codebook, 
and N is the size of the codebook. Each yi  = (yil. y i 2 ,  . . . , 
y i x )  in Y is called a codeword. For the compression 
purpose, a VQ consists of three phases: codebook design 
phase, encoding phase and decoding phase. The objective 
of codebook design is to find a codebook Y which con- 
tains the most representative codewords. This codebook 
will be used by encoder and decoder. In the encoding 
phase, the encoder designs a mapping Q and assigns an 
index i to each input vector x = (xlr x2,  ..., .xk) with 
Q(x) = yi  . In this paper, we will consider the mapping Q, 
which is designed to map x to y i  with y i  satisfying the 
following condition 

(1) 

where d2(x, y,) is the distortion of representing the input 
vector x by the codeword y,, as measured by the squared 

d2(x, yi)  = min dZ(x, y,) for j  = 1, 2, . . . , N 
j 
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Euclidean distance, i.e. 
k 

When encoding an image, the encoder first divides the 
image into several blocks, usually in square. Each block x 
containing k entities is considered as a k-dimensional 
vector. Hence, for each input vector x (i.e. a block), the 
encoder only needs to transmit or store the index i 
assigned to x. The decoder has the same codebook as the 
encoder. In the decoding phase, for each index i, the 
decoder merely performs a simple table look-up oper- 
ation to obtain y i ,  and then uses y i  to represent the input 
vector x. 

From the above description, we see that the compres- 
sion ratio is determined by the codebook size and the 
vector dimension; the distortion is dependent on the 
codebook size and selection of codewords. Therefore, 
designing a good codebook is the main task of VQ. 
Many algorithms for codebook design have been pro- 
posed [l-31. Among these algorithms, the most popular 
one was developed by Linde, Buzo and Gray [I, 21 and 
is referred to as the LBG algorithm. This algorithm iter- 
atively minimises the total distortion of representing the 
training vectors by their corresponding codewords. It 
divides the training vectors into several classes, each class 
is represented by the centroid of that class. The set of all 
centroids forms a codebook, and each centroid is referred 
to as a codeword. The algorithm is iterative, it first takes 
an initial codebook Yo with predetermined size N and 
then starts iterating. In each iteration, for each training 
vector x, it searches the current codebook exhaustively to 
find the closest codeword y i  and assign x to class i. After 
all training vectors have been classified, the distortion 
between the set of training vectors and their correspond- 
ing codewords is calculated. The distortion difference 
between the current iteration and the previous iteration is 
then calculated. The ratio of the distortion difference to 
the distortion of the current iteration is checked to see if 
it is greater than a preset value E. If it is true, yi is then 
replaced by the centroid of the new class i, and a new 
iteration starts; otherwise, the algorithm stops. Note that 
the LBG algorithm uses a full codebook search to find 
the closest codeword for each training vector. If the 
codebook size is N ,  the full codebook search (i.e. to 
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evaluate eqns. 1 and 2, requires Nk multiplications, 
N(2k - 1) additions, and N - 1 comparisons for each k- 
dimensional training vector). 

As mentioned above, N determines the accuracy of 
VQ. The larger N is, the more accurate VQ. However, 
when N is large, the computational complexity problem 
for full codebook search will occur. This problem is crit- 
ical in the codebook design and encoding of VQ. To 
avoid such an exhaustive search through the codebook, 
many fast algorithms [4-101 have been proposed. These 
algorithms reduce the computational complexity by first 
performing some simple tests before computing the dis- 
tortion between the training vector and each codeword, 
and then rejecting those codewords which fail in the tests. 
In the next Section, we will briefly review some of these 
algorithms. 

2 

2.1 Partial distortion elimination algorithm 
The partial distortion elimination (PDE) algorithm [4] 
allows early termination of the distortion calculation 
between a training vector and a codeword by introducing 
a premature exit condition in the search process. For 
each training vector x, the algorithm first calculates the 
distortion between x and an arbitrary codeword and 
takes this distortion as the current minimum distortion 
d l i n .  Then, for any other codeword yi = (yil, yi,, .. . , yik), 
if there exists q < k with the accumulated distortion for 
the first q samples in eqn. 2 larger than the current 
minimum distortion d:, , i.e. 

Some existing fast closest codeword search 
algorithms 

4 c (x. - Y i J 2  2 dli" 
"=l 

this algorithm stops computing the distortion for code- 
word yi and begins trying the next codeword. This will 
reduce (k - q)  multiplications and 2(k - q) additions. 
Simulations [4] indicate that the PDE method can 
reduce a good number of multiplication operations and 
addition operations in the search process, and only 
increases some comparison operations. 

2.2 Partial search partial distortion algorithm 
The partial search partial distortion (PSPD) algorithm 
[ 5 ]  builds up a partial codebook based on the mean 
value m, of a k-dimensional training vector x = (xl, x2,  
. . . , xk), in which m, is defined as 

1 m, = integer part of - 1 xj + 0.5 I' k j=l  

The algorithm then uses the PDE method to search the 
partial codebook for the closest codeword. 

The PSPD algorithm first calculates the mean values 
of all codewords and sorts the codebook according to 
increasing order of the codeword means. For each train- 
ing vector, it then finds the codeword y p  with minimum 
mean difference to the training vector. The codewords 
with mean differences to y, less than a predetermined 
threshold T form the partial codebook. The PDE 
method is then employed to find the closest codeword in 
this partial codebook. Experimental results [6] show that 
the execution time of the PSPD algorithm is about 12% 
of that required by the LBG algorithm. However, some- 
times the closest codeword may not be located in the 
partial codebook, this will introduce more distortion 
than the LBG algorithm. 
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2.3 Fast nearest neighbour search algorithm 
The fast nearest neighbour search (FNNS) algorithm [6] 
uses the triangle inequality to reject a great many 
unlikely codewords. For a vector x, it first finds a prob- 
ably nearby codeword y, with distortion d2(x, y,). This 
algorithm then eliminates those codewords which are 
impossible to be the closest codeword, based on the tri- 
angle inequality and a precomputed table which contains 
the distances of all pairs of codewords. That is, for each 
codeword y j ,  if 

d ( y j ,  Y I )  > 24x, Y O  
through the triangle inequality, we have 

d(x, ~ j )  + d(x ,  ~3 2 d b j ,  Y,) > 24x, Y I )  

The above inequality can be reduced to be 

4x9 ~ j )  > 4x9 Y,)  

Therefore, those codewords with distances to y, larger 
than 2d(x, y,) will be eliminated from consideration to be 
a candidate of the closest codeword. Simulations show 
that high saving rate over conventional full codebook 
search method can be achieved. However, this algorithm 
requires a table of size N2/2 to store the distances of all 
pairs of codewords. When N is large, the memory 
requirement is a serious problem. 

2.4 Equal-average nearest neighbour search 

The closest codeword search problem in vector quantisa- 
tion is a nearest neighbour search (NNS) problem which 
can be stated as: given a set Y, of N prototypes in a 
k-dimensional space Rk, for a query point x E Rk, deter- 
mine which prototype is closest to x. Guan et al. [7] 
proposed an equal-average nearest neighbour search 
(ENNS) algorithm which uses hyperplanes orthogonal to 
the central line I to partition the search space. Each coor- 
dinate value of any point p = (pl, p2 ,  . . . , p 3  on I has the 
same value (i.e. pi = p j .  i, j = 1, 2, . .. , k). Each point on a 
fixed hyperplane H, which is orthogonal to the central 
line I and intersects l at point L, = ( m H ,  m,, . . . , m,), will 
have the same mean value m,, such a hyperplane is 
called an equal average hyperplane. For an input vector 
x = (xl, x 2 ,  . . . , xk), the algorithm first calculates its mean 
value m, with m, = (l/k) xj. The algorithm then 
finds the codeword y, which has the minimum mean 
difference to x and calculates the distance r ,  between x 
and y p .  It is obvious that any other codeword which is 
closer to x than y, has to be located inside the hyper- 
sphere centred at x with radius r,. By projecting the 
hypersphere on I ,  two boundary projection points, 
L,, = (m,,, m,,, . . . , m,,) and Lmin = (mmin, . . . , mmin, 
. . . , mmin) on 1 can be found, where 

algorithm 

and 

(3) 

(4) 

The hypersphere can be bounded by two equal-average 
hyperplanes with mean values mW, and mmin. Hence, it is 
only necessary to search those codewords with mean 
values ranging from mmin to mWx. Fig. 1 shows the geo- 
metric interpretation of the method for a two- 
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dimensional case, the search area is bounded by two lines 
I ,  and I,, which are perpendicular to the central line I at 
L,,, and L,, , respectively. 

4 

me I 

Fig. 1 

0 input vector x 
ccdewords 

Example of ENNS algorithm for 2-dimensional case 

As discussed previously, the ENNS algorithm uses 
mean value as a feature to reject unlikely codewords and 
thus saves much of computation time. However, two 
vectors with the same mean value may have a large dis- 
tance. For example, one vector represents an almost 
homogeneous block (i.e. entities in the vector are almost 
the same); the other represents an edge block (i.e. some 
entities will be larger than others). The distance between 
these two types of vectors will be large. To treat this phe- 
nomenon, we propose a new search method to reduce the 
search area of the ENNS algorithm. Since the variance of 
a vector is a simple measure to detect whether a vector is 
homogeneous, the proposed method uses both the mean 
value and the variance of a vector as two significant fea- 
tures to search for the closest codeword. 

3 The proposed algorithm 

In this Section, we will present the proposed algorithm, 
which uses the mean value and the variance of a vector 
as two significant features to speed up the closest code- 
word search process. Before describing the algorithm, we 
will first give some definitions and a theorem. 

Definition 1:  Let x = ( x l ,  x 2 ,  .. ., x k )  be a vector, define 
the mean value m, of x and the variance Vf as 

1 '  
k j = 1  

m, = - 1 x j  

and 
k 

V: = 1 ( x j  - m,)' 
j = 1  

Definition 2: Let 1 be a line on Rk, if any point p = (pl, 
p 2  , . . . , p k )  on I satisfies the following condition 

P k  p l = p z = " ' =  

Let I be the central line of R' and L, be the projection 

By the above definitions, we have the following 

I is called the central line of R'. 

point of x on 1. It can be seen that L, = (m,, m,,  . . . , m.). 

theorem. 
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Theorem 1 :  Let x = ( x l ,  x 2 ,  . . . , x k )  be a vector and yi  = 
(yil, yiz , . . . , yik)  be a codeword. If the distortion between 
x and y i  is defined to be the squared Euclidean distance, 
i.e. 

j =  1 

then V, = d(x, L,), V,i = d ( y i ,  Lyi) 

and 

The proof is given in Appendix 7.1. By Theorem 1, we 
obtain the following corollary immediately. 

Corollary 1 :  Let x be a vector and dfin be a known 
current minimum distortion of x represented by a certain 
codeword. For any codeword y i ,  if (V,  - 3 d;, , y i  
will not be the closest codeword of x and it is unneces- 
sary to calculate dZ(x ,  yi) .  

With the above theorem and corollary in hand, we 
now turn to describe the proposed algorithm. This algo- 
rithm consists of two steps. The first step is the same as 
the ENNS algorithm, the second is a new one. For a 
training vector x,  the proposed algorithm first calculates 
the mean value m, and the squared root of the variance 
V, of x .  The algorithm then finds the codeword y, with 
the minimum mean difference to x ,  calculates the distance 
r ,  between x and y, and sets the current minimum distor- 
tion d i in  as r i  . For each codeword y i ,  the algorithm 
checks if myi is between mmin and mmx, where 

If the answer is no, codeword yi is rejected without calcu- 
lating the distortion d2(x, yi) .  Otherwise, the second step 
is conducted. In the second step, if (V, - V y J 2  2 dfim, the 
codeword yi  is rejected. If y i  is not rejected, the distortion 
d2(x, yi) is calculated. If d2(x, yi)  < d i i n ,  the current 
minimum distortion df, is replaced by d2(x, yi)  and mmin 
and mmx are also updated. 

Note that, in the ENNS algorithm, for any codeword 
y i  with myi between mmin and mmxr the distortion d2(x, yi)  
is always evaluated. In contrast, the proposed algorithm 
will calculate d2(x, yJ only when (V, - V,J2 < This 
will avoid those codewords with mean values similar to 
m,, but with variances very different from V s  being con- 
sidered to be the closest codeword of x .  Hence, the pro- 
posed algorithm can reduce the search area and speed up 
the search process than the ENNS algorithm. Fig. 2 
depicts the geometric interpretation of the proposed 
method for a two-dimensional case. Comparing Fig. 1 
and Fig. 2, we can see that the search area, which is 
originally an area bounded by two lines I ,  and I, perpen- 
dicular to the central line l, has been reduced to be the 
two shaded squares. 

A detailed description of how to apply the proposed 
algorithm to design a codebook is given below. 

Step  0: Initialisation: Given N = codebook size, 
n = the number of training vectors, k = the vector 
dimension, Yo = initial codebook, E = distortion thresh- 
old. Set iteration counter c = 0, initial total distortion 

Step 1 ;  Compute the mean value of each codeword in 
the codebook x ,  and sort according to increasing 
order of the codeword means, i.e. the sorted codebook Y, 

D - ,  = CO. 
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is 

y, = {y i  I myi < my(i+ 
Step 2: Compute the squared root of the variance V,;, 

1 < i < N - I} 

of each codeword y i  . 

. 
. Y \". 

/ ' 2 v -  

central line 1 

V - 
Fig. 2 
0 input vector x 
8 ccdewords 

Example to illustrate proposed methodfor 2-dimensional case 

Step 3: For each training vector x,, find the closest 
codeword yict) in the codebook Y,, and assign x, to class 
i(t). The procedure includes the following substeps : 

Step 3.1: Input a training vector x, = (xfl, xrZ,  _ _ _ ,  
x,J, compute its mean value m,, and its square root of 
variance V,, . 

Step  3.2: Find the codeword y, which has the 
minimum mean difference to x, (using binary search), 
i.e. 

I m,, - myp I < I m,, - myi I for all i # p 

Set 

and 

Step 3.3: Find the closest codeword yi(,) in E, and 
assign x, to class i(t). The search procedure is as 
follows 

Set d = 1 
while(m,+, < m,,, or mp-d  > m,,,)begin 

if(d2(x,, y p + d )  < d2,)begin 

if(m,+, < m,,,)begin 
if((Kt - < ( p + d ) ) 2  < dihlbegin 

dk = d2(xf, Y p + d )  

dmin 
mmor = mx, + - 

J(k) 
d m i n  m .  = m  -- 

m'n xr J(k) 
i(t) = p + d 

end 
end 

Table 1 : Comparison of execution time (in seconds) for codebook design. Values 
in parentheses denote the ratio of execution time of the current algorithm to  that 
of the LEG alaorithm 

Codebook Method Design image 
size 

Lena Peppers Jet Baboon 

128 LBG 
ENNS 
our method 

ENNS 
our method 

256 LBG 

512 LEG 
ENNS 
our method 

1024 LBG 
ENNS 
our method 

281 5 
305 (01 08) 
266 (0.094) 

1 

5608 
509 (0.091) 
383 (0.068) 

865 (0.077) 
576 (0.051) 

1263 

22732 
1525 (0.067) 
925 (0.041) 

281 4 
284 (0.101) 
242 (0.086) 

472 (0.084) 
347 (0.062) 

81 2 (0.072) 
525 (0.047) 

1464 (0.065) 
866 (0.038) 

5622 

11 263 

22589 

2668 
320 (0.1 20) 
269 (0,101) 

5334 
535 (0.1 00) 
392 (0.073) 

921 (0.086) 
602 (0.056) 

1596 (0.074) 
960 (0.044) 

10709 

21 679 

2793 
847 (0.303) 
771 (0.276) 

5583 
1529 (0.274) 
131 3 (0.235) 

2798 (0.250) 
2292 (0.204) 

11212 

2261 0 
51 48 (0.228) 
4001 (0.177) 

Table 2: ComDarison of execution time fin seconds) for imaae encoding 

Codebook Method Encoded image 
size 

Lena Peppers Jet Baboon 

128 Full search 
ENNS 
our method 

ENNS 
out method 

ENNS 
our method 

ENNS 
our method 

256 LBG 

512 LBG 

1024 LBG 

140.9 
14.1 (0.100) 
11.5 (0.082) 

23.6 (0.085) 
17.2 (0.062) 

40.8 (0.073) 
26.7 (0.048) 

278.6 

557.6 

11 08.5 
71.4 (0.064) 
40.7 (0.037) 

140.1 
15.0 (0.107) 
11.9 (0.082) 

27.4 (0.098) 
18.8 (0.067) 

47.9 (0.086) 
30.2 (0.054) 

89.3 (0.081) 
51.1 ((0.046) 

279.5 

558.1 

11 08.5 

125.1 
14.3 (0.114) 
11.4 (0.091) 

23.9 (0.096) 
17.4 (0.070) 

43.4 (0.087) 
26.7 (0.053) 

79.2 (0.080) 
43.6 (0.044) 

249.7 

499.3 

992.7 

137.5 
37.1 (0.270) 
32.2 (0.233) 

275.0 
69.4 (0.252) 
54.1 (0.197) 

547.8 
130.9 (0.239) 
96.2 (0.176) 

249.2 (0.229) 
174.6 (0.1 60) 

1087.9 
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end 
end 

end{of while} 
end 

Step  4 :  Compute the total distortion for the cth iter- 
ation D, . Here D, is defined to be 

Step  5:  If (Dc- - D,)/D, < E, halt with final codebook 
being Y,, . Otherwise, go to Step 6. 

Step  6 :  Compute the centroid of each class. The cen- 
troids are regarded as the codewords of a new codebook. 
Set c = c + 1 and to to Step 1 for next iteration. 

To speed up the codebook design procedure, the pro- 
posed algorithm needs two tables. One stores the mean 
values of all codewords, its size is N .  The other stores the 
squared root of the variances, its size is also N .  The total 
table size is 2N, which is smaller than the FNNS algo- 

a 

C 

Fig. 3 Fout test images 
a Lena b Peppers c let d Baboon 
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rithm. Note that the proposed algorithm does not 
produce any extra error than the LBG algorithm. 

The encoder finds the closest codeword from a pre- 
designed codebook for each input vector and then uses 
the codeword to represent the corresponding input 
vector. Therefore, the proposed algorithm can be used to 
find the closest codeword for each input vector to speed 
up the encoding process. The detail of the encoding pro- 
cedure is similar to those in Step 3 of the codebook 
design algorithm described above. 

4 Simulation results 

To examine the efficiency of the proposed algorithm, we 
performed some experiments on a Sun SPARC-station- 
IPC using several 512 x 512 monochrome images with 
256 grey levels. Each image is divided into 4 x 4 blocks, 
so that the training sequence contains 16384 16- 
dimensional vectors. The proposed algorithm was com- 
pared with the ENNS algorithm and the LBG algorithm 
in terms of the execution time required in codebook 
design and image encoding. 

Table 1 shows the execution time required to design a 
codebook. The different images shown in Fig. 3 were 
used to design several different codebooks. Table 2 shows 
the time needed to encode an image given a predesigned 
codebook. In this simulation, the image Lena shown in 
Fig. 3a was used to design the codebook. The resulting 
codebook was then used to encode the four images (Lena, 
Peppers, Jet, and Baboon) shown in Fig. 3. From these 
two tables, we see that the proposed algorithm out- 

b 

d 
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performs the ENNS algorithm in both codebook design 
and image encoding. 

5 Conclusions 

A fast closest codeword search algorithm for vector 
quantisation has been proposed in this paper. This algo- 
rithm uses two significant features of a vector, mean 
value and variance, to reject a lot of unlikely codewords. 
It can speed up the search process in conventional VQ 
codebook design and encoding. The performance of the 
proposed algorithm has been evaluated in both code- 
book design and image encoding. The results obtained 
show that the proposed algorithm outperforms the 
ENNS algorithm and reduces a great deal of computa- 
tion time required by the LBG algorithm. Furthermore, 
it is worth mentioning that the proposed algorithm does 
not introduce any extra error other than the LBG algo- 
rithm. 
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7 Appendix 

7.1 Proof of Theorem 1 
By definition 1, we have V’ = d(x,  L,) and 
By the triangle inequality, we can obtain 

= d(yi ,  Lyi). 

d (x ,  ~ i )  k d(x,  L,i) - d b i ,  L,i) (6) 
Since L, is the projection point of x on the central line I ,  
thus 

d(X, L,;) k d(x,  LJ (7) 
By inequality eqn. 7, inequality eqn. 6 can be reduced to 
be 

Similarly, we can obtain 

d(x,  ~ i )  3 d b i ,  L,) - d(x,  L,) 
2 d(Yi,  L,i) - d(x,  LA 
= v,; - V, 

Combining inequalities eqn. 8 
Theorem 1. 

(9) 
and eqn. 9, we prove 
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