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PAPR Analysis and Mitigation Algorithms for
Beamforming MIMO OFDM Systems
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Abstract—Beamforming (or precoding) techniques have been
widely adopted in modern MIMO OFDM systems. Using
beamforming can significantly improve the receive SNR of
OFDM systems. However, the combination of transmit signals
after beamforming deteriorates the peak-to-average power ratio
(PAPR), which has long been considered a major issue of OFDM
systems. High PAPR not only complicates the design of the
power amplifier, but also increases power consumption. In this
paper, we theoretically analyze the PAPR performance of MIMO
OFDM systems that adopt either one of the two popular beam-
forming schemes, i.e. MRT (maximum ratio transmission) and
EGT (equal gain transmission). The analysis considers different
numbers of channel taps after sampling. The results may provide
important reference for practical designs when evaluating the
required power amplifiers and power consumption. Moreover,
the theoretical results show that MRT OFDM systems generally
perform much worse than EGT OFDM systems in terms of
PAPR. Furthermore, motivated from the derived results, PAPR
reduction algorithms are proposed for both MRT OFDM and
EGT OFDM systems. It is worth to mention that for MRT OFDM
systems, the proposed algorithm can improve both PAPR and
bit error rate; for EGT OFDM systems, the proposed algorithm
improves PAPR while it only slightly degrades bit error rate.

Index Terms—MIMO OFDM, beamforming, precoding, peak-
to-average power ratio, PAPR, low power, maximum ratio
transmission, MRT, equal gain transmission, EGT, extreme value
theory, beta distribution.

I. INTRODUCTION

MULTIPLE-INPUT Multiple-output orthogonal fre-
quency division multiplexing (MIMO OFDM) is

widely used in current and next generation broadband wire-
less communications, because it can provide high data rate
transmission over multipath fading channels [1],[2]. Among
the MIMO techniques, beamforming (or precoding) has been
widely adopted in communication standards, e.g., LTE, Wi-
MAX and Wi-Fi applications, because it can achieve full
diversity, which results in a reliable transmission. It is known
that OFDM systems suffer from high peak-to-average power
ratio (PAPR). High PAPR leads to high effort in designing the
power amplifier (PA) in order to maintain a wide linear region
for preventing signal clipping, which therefore increases not
only hardware complexity but also power consumption. The
PAPR issue is worse when beamforming is applied in OFDM
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systems, because the dynamic range of the signals increases
after beamforming [3].

Many methods have been proposed for reducing the PAPR
including deliberate clipping, companding, probabilistic meth-
ods, and coding, see e.g., [4]-[11]. These methods may more or
less distort signals and decrease the data rate. For example, the
most straightforward PAPR reduction method is via clipping
peak signals before passing them to the PA [5]. However, clip-
ping signals induces in-band and out-of-band distortion and
requires additional signal processing techniques to reconstruct
the received signals. Another category of methods to reduce
the PAPR is through probabilistic schemes such as partial
transmit sequence (PTS) [6],[7], selected mapping (SLM) [8]
and sign adjustment [9],[10]. The objective of probabilistic
methods is to reduce the probability that peak power exceeds
a certain PAPR threshold. These methods demand that the
transmitter sends side information to the receiver. Conse-
quently, the data rate decreases due to the side information,
and the transmitted signals cannot be correctly reconstructed
if the transmitted side information is polluted. Moreover, al-
though there has been extensive research for PAPR on OFDM
systems, to the best of the authors knowledge, few studies
have been conducted in analyzing the PAPR for beamforming
MIMO OFDM systems and developing corresponding PAPR
reduction methods [11], which are especially important in
practice, since most modern communication systems adopt
beamforming MIMO OFDM techniques and Green commu-
nications is a worldwide trend to save power consumption.
The discussion above motivates us to explore how PAPR
increases if beamforming is adopted in OFDM systems, and
then propose the corresponding PAPR mitigation methods.

In this paper, we analyze the PAPR performance for single-
user MIMO OFDM systems adopting either one of the two
most commonly used beamforming schemes, i.e., maximum
ratio transmission (MRT) [12] and equal gain transmission
(EGT) [13]-[15]. MRT is the optimal beamforming scheme in
terms of receive SNR, but the PA design for MRT is more
complicated than EGT. It has been shown that the maximum
SNR loss between MRT and EGT is only 1.05 dB under
Rayleigh fading channels (see [16] and [17]). Here we use
the Extreme Value Theory [18],[19] and order statistics [20]
to derive the CCDF (complementary cumulative distribution
function) of PAPR for EGT and MRT OFDM systems, and
make some insightful observations. First, we found that EGT
OFDM systems have constant power property for different
OFDM blocks and different RF transmit branches. Thus
the PAPR characteristic can be approximately obtained by
simultaneously considering Mt unprecoded OFDM systems,
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where Mt is the number of transmit antennas. In other words,
the PAPR for EGT OFDM systems is the same as that of an
unprecoded OFDM systems simultaneously transmitting Mt

data streams. On the other hand, the PAPR performance of
MRT OFDM systems is deeply affected by the number L
of channel taps after sampling. MRT OFDM systems have
the worst PAPR performance when L = 1, i.e., flat fading,
and achieve comparable PAPR as EGT OFDM systems when
L = N , where N is the number of subcarriers. Since the
case L = N rarely occurs in practice, MRT OFDM systems
in general have much worse PAPR performance than EGT
OFDM systems; taking L = 1 for instance, the performance
gap can be up to 5.3 dB when the CCDF is at 10−3. Note
that the maximum SNR loss of 1.05 dB between MRT and
EGT derived in [16] and [17] can be easily extended to
MRT OFDM and EGT OFDM systems. Hence, without proper
PAPR reduction algorithms, designers may be in a dilemma to
determine which performance index to pursuit, receive SNR
or PAPR? Therefore, based on the derived results, we further
propose PAPR reduction methods for both MRT OFDM and
EGT OFDM systems. It is worth to emphasize that, unlike
conventional PAPR reduction methods, there is no need to
send side information from the transmitter to the receiver
in the proposed algorithms. In addition, for MRT OFDM
systems, the proposed algorithm not only can reduce the
PAPR but also can improve the bit error rate performance.
This satisfying result is obtained thanks to the motivation
from the derived results. The proposed algorithm attempts to
adjust the power at some subcarriers after beamforming as
closely as possible. Since the subcarrier power is equalized
in a certain level, both the PAPR and the bit error rate
performance are improved simultaneously. For EGT OFDM
systems, the proposed algorithm can reduce the PAPR, while
at the same time it only slightly degrades bit error rate
performance. Finally, simulation results are provided to show
the accuracy of the derived theoretical PAPR results and the
performance improvement achieved when using the proposed
PAPR mitigation algorithms.

The rest of this paper is organized as follows: The system
model and the problem formulation are given in Section
II. We analyze the PAPR distribution for EGT and MRT
OFDM systems in Section III. The proposed PAPR reduction
algorithms are introduced in Section IV. Simulation results and
conclusions are provided in Section V and VI, respectively.

Notations. All vectors are in lowercase boldface and ma-
trices are in uppercase boldface. (·)T and (·)† denote the
transpose and the conjugate transpose of a vector. E[·] and
var[·] denote expectation and variance respectively. (·)∗ de-
notes the complex conjugate of (·). || · ||2 is the vector 2
norm. Beta(α, β) and B(α, β) represent the beta distribution
and beta function with parameters α and β, respectively. log
represents the natural log operation.

II. SYSTEM MODEL AND PROBLEM FORMULATION

The block diagram of a MIMO OFDM system with trans-
mit beamforming and receive combining, using Mt transmit
antennas, Mr receive antennas and N subcarriers, is shown
in Fig. 1. Assuming that the number L of channel taps
after sampling is shorter than the length of the cyclic prefix

(CP), the channel gain of the kth subcarrier after the discrete
Fourier transform (DFT) can be represented by a Mr-by-
Mt channel matrix, denoted by Hk. At the transmitter, the
kth symbol xk is multiplied by a beamforming vector gk =[
g
(0)
k g

(1)
k . . . g

(Mt−1)
k

]T
, where g

(i)
k is the ith element of the

beamforming vector at the kth subcarrier. At the receiver, the
combined signal of the kth subcarrier after multiplying by

the combining vector zk =
[
z
(0)
k z

(1)
k . . . z

(Mr−1)
k

]T
can be

expressed as

rk = z†kHkgkxk + z†knk, 0 ≤ k ≤ N − 1, (1)

where nk ∈ CMr×1 is the noise vector after the DFT whose
entries are independent and identically distributed (i.i.d.) com-
plex Gaussian random variable with zero mean and variance
N0.

In the beamforming OFDM system, gk and zk are designed
according to Hk to maximize the effective channel gain γk.
That is,

γk = max
{gk,zk}

|z†kHkgk|2. (2)

In this paper we analyze the PAPR performance for MRT and
EGT, the two most commonly used beamforming schemes.
The complex baseband signal at the ith transmit branch after
inverse-DFT (IDFT) can be expressed as

s(i)(t) =
1√
N

N−1∑
k=0

xkg
(i)
k ejωkt, (3)

where ωk = 2π
NTc

(k − N−1
2 ), and Tc ∈ (0,∞) is the

subcarrier interval. The interval of an OFDM block is defined
as T = NTc. {xk, k = 0, . . .N − 1} is the modulated OFDM
symbol with independent real part xR

k and imaginary part
xI
k , which satisfy E[xR

k ] = E[xI
k] = 0, and E[(xR

k )
2] =

E[(xI
k)

2] = εs/2. Without loss of generality, εs is assumed
to be 1. For description convenience, we define two types of
average power: one is block average power Pav and the other
is long-term average power P av. Referring to (3), the block
average power is the average power of an OFDM block at a
specific transmit branch, i.e., Pav = 1

T

∫ T

0 |s(i)(t)|2dt; while
the long-term average power is the expectation of the block
average power, i.e., P av = E[Pav]. The baseband PAPR of
the beamforming OFDM system is defined as

max
0≤i≤Mt−1

{PAPR(i)} = max
0≤i≤Mt−1

{
max
0≤t≤T

|s(i)(t)|2
P av

}
. (4)

High PAPR is a main disadvantage of OFDM systems. The
design effort of power amplifiers (PA) increases as PAPR
increases. Moreover, high PAPR also leads to high power con-
sumption because more complicated PA needs to be used. In
beamforming OFDM systems, the PAPR becomes higher than
the OFDM systems without beamforming. As a result, using
beamforming in OFDM systems complicates the PA design
and increases power consumption. In the following sections
we analyze the PAPR performance of both MRT OFDM and
EGT OFDM systems, and then propose corresponding PAPR
reduction algorithms.
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Fig. 1. A MIMO OFDM system with transmit beamforming and receive combining.

III. ANALYSIS OF PEAK-TO-AVERAGE POWER RATIO

The distribution of the PAPR bears statistical characteris-
tics in OFDM systems and is often expressed in terms of
the complementary cumulative distribution function (CCDF).
Recently, several analytical approaches to obtain the statistical
distribution of the PAPR in OFDM systems have been pro-
posed, such as empirical approximation and level-crossing rate
approximation of the peak distribution [21]-[23]. In this paper,
we analyze the PAPR by using the Extreme Value Theory [18],
which can provide a simple, accurate, and rigorous expression
of PAPR performance for beamforming OFDM systems. We
briefly introduce the Extreme Value Theory below.

Extreme Value Theory: Let ζ(t) and η(t) (t > 0) be two
independent stationary Gaussian processes with zero mean,
unit variance and identical covariance function

r(t) = Cov(ζ(s), ζ(s + t)) = Cov(η(s), η(s+ t)),

where r(t) can be expressed by the expansion

r(t) = 1− λ
t2

2
+ o(t2) as t → 0. (5)

Suppose that ζ(t) and η(t) have continuous differentiable
sample paths, with var(ζ′(t)) = var(η′(t)) = λ = −r′′(0).
Then χ2(t) = ζ2(t)+η2(t) is a stationary χ2(2)-process with
continuously differentiable sample paths. Suppose further that

r(t) log(t) → 0, as t → ∞. (6)

Then we have

Pr

{
max
0≤t≤T

χ2(t) ≤ d

}
→ e−τ , (7)

if

Tμ(d) = T

√
λd

2π
e−

d
2 → τ, T → ∞. (8)

It is easy to show, based on (7) and (8), that as T → ∞,

Pr

{
aT

(
max
0≤t≤T

χ2(t)− bT

)
≤ x

}
→ exp

(−e−x
)
, (9)

where aT = 1/2 , and bT = 2 logT + log logT + log(λ/π).
Applying the Extreme Value Theory, we first derive the

PAPR at a specific transmit branch for both MRT and EGT
OFDM systems, and then extend the results to the case where

all transmit branches are considered. We assume that the
transmit branches are uncorrelated†.

A. PAPR analysis for EGT OFDM systems

EGT is a supoptimal beamforming scheme compared to
MRT. In MISO channels, an EGT vector that can most closely
achieve the performance of the MRT is gk = e−j∠h∗

k/
√
Mt,

where ∠h∗
k is the phase of h∗

k. For MIMO systems, however,
there is no closed-form solution available for such EGT vector.
Thus the authors in [15] and [17] have proposed the EGT
solutions for MIMO channels.

Now let us first consider the PAPR at a specific transmit
branch for EGT OFDM systems, and then extend the results to
all transmit branches. Since the elements of gk have constant
amplitude 1/

√
Mt, the power of the signal s(i)(t) in (3) is

1/Mt and the block average power Pav is thus 1/Mt.

Lemma 1 Consider EGT OFDM systems with constant-
magnitude modulation, the block average power Pav is con-
stant for all transmit branches and equal to the long-term
average power P av .

Proof: Please see Appendix A.
It is worth to point out that even if x does not have constant

magnitude, 1
N x†x tends to a constant when N is sufficiently

large, due to the Law of Large Numbers (LLN). Because Pav

and P av are constant, the PAPR analysis for EGT OFDM
systems is much simpler than that for MRT OFDM systems
as we will see later.

Lemma 2 Consider the complex baseband signal XN(t) =
1√
N

∑N−1
k=0 Ake

jωkt, where ωk = 2π
NTc

(
k − N−1

2

)
, and

{Ak, k = 0, . . . , N − 1} is an i.i.d. complex random sequence
with bounded real part AR

k and imaginary part AI
k; in addi-

tion, E
[
AR

k

]
= E

[
AI

k

]
= 0, E

[
(AR

k )
2
]
= E

[
(AI

k)
2
]
= σ2,

and E
[
AR

k A
I
k

]
= 0. Then for any closed and finite interval

T ⊆ R, as N → ∞, XN (t) converges in distribution to a
zero-mean stationary complex Gaussian random process X(t)

†In fact, the transmit branches are correlated because the beamforming
vector is from the singular vector, and the elements of the singular vector
have correlation. Nevertheless, the theoretical results obtained by assuming
uncorrelation among transmit antennas are still quite consistent with the
simulation results in most of the interested PAPR regime.
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whose real and imaginary parts are independent and each part
has autocorrelation function r(τ) = σ2sinc

(
τ
Tc

)
.

Proof: Please see [24] for details.

Lemma 3 The CCDF of the PAPR at the ith transmit branch
for EGT OFDM systems can be approximated as

Pr
{

PAPR(i) > ξ
}
≈ 1− exp

{
−e−ξN

√
π

3
logN

}
. (10)

Proof: Please see Appendix B.
Note that the result in (10) is the same with that for unpre-

coded OFDM systems (see [21]). That is, the PAPR obtained
by only considering a specific transmit branch of EGT OFDM
systems is the same as that for unprecoded OFDM systems.
This is not surprising because the average power (denominator
of the PAPR term) is approximately constant for sufficiently
large N as mentioned in Lemma 1; also, the signal power of
each subcarrier (numerator of the PAPR term) is only scaled
down by 1/Mt. These lead to the same result as unprecoded
OFDM systems. Moreover, the PAPR of EGT MISO OFDM
has the same characteristic as that of EGT MIMO OFDM
because the magnitude of both generated beamforming vectors
is equal to 1/

√
Mt and therefore contribute the same analytical

results. It is worth to point out that although the theoretical
results obtained by applying the Extreme Value Theory use
the condition that N → ∞, the derived results match the
simulation results very well when N ≥ 256.

Theorem 1 Considering all transmit branches, the CCDF of
the PAPR for EGT OFDM systems can be approximated as

Pr {PAPREGT > ξ} ≈ 1−
{
exp

{
−e−ξN

√
π

3
logN

}}Mt

.

(11)

Proof: Considering all transmit branches, the PAPR can
be expressed as

Pr {PAPREGT > ξ} = 1− Pr

{
max

0≤i≤Mt−1
PAPR(i) < ξ

}
.

(12)
Since the transmit branches from different antennas are as-
sumed to be mutually independent, utilizing the results of
order statistics yields (11).

B. PAPR analysis for MRT OFDM systems

MRT is the optimal beamforming scheme, and can achieve
1.05 dB better receive SNR than EGT [17]. Unlike the
aforementioned desirable property of EGT in Lemma 1, MRT
has different average power for different transmit branches and
different OFDM blocks because (G(i))†G(i) 
= 1

Mt
I. Hence

MRT does not have constant block average power and the
long-term average is needed to identify the operation region
of power amplifier. The power variation of MRT unavoidably
increases the PAPR. As a result, it complicates the design of
the PA and increases power consumption. Moreover, the PAPR
analysis for MRT OFDM systems is more complicated than
that for EGT OFDM systems because 1 ) Pav is no longer
a constant, and 2 ) different numbers of channel taps after
sampling L lead to different MRT vectors and consequently
different PAPR values.

To obtain the PAPR of MRT OFDM systems, again, we
first focus on a specific transmit branch, and then extend the
results to all transmit branches. The MRT beamforming vector
can be obtained from the right singular vector corresponding
to the maximum singular value in MIMO/MISO channels.
The PAPR statistics for MIMO and MISO channels should
be the same, because their right singular vectors are both
with the conditional Haar distribution [25]. Since the statistical
characteristic of the term Pav = 1

N

∑N−1
k=0 |g(i)k |2 is used to

derive the PAPR, the resulting PAPR statistics for MRT MISO
OFDM and MRT MIMO OFDM are the same. Therefore we
derive the PAPR results of MRT OFDM systems via MISO
channels below.

The complex baseband signal after the IDFT at the ith
transmit branch is given by (3). Since the amplitude of the
MRT vector is different for different OFDM blocks, the block
average power of a specific transmit branch changes and its
distribution is related to the power of MRT element, i.e. |g(i)k |2.
Moreover, the value of L affects the correlation of g(i)k between
different subcarriers. Therefore, we first consider two extreme
scenarios, i.e., L = 1 and L = N . More specifically, we
show that the correlation coefficient of g(i)k between different
subcarriers is equal to 1 as L = 1; while that approaches to
0 when L = N → ∞. For L = 1 and L = N , the Extreme
Value Theorem can be applied to obtain the PAPR of MRT
OFDM systems. For other values of L that are not equal to 1 or
N , it is complicated to analyze the corresponding correlation
coefficient of g(i)k between different subcarriers. To overcome
this, some assumptions and approximations are needed for
obtaining insightful results for the PAPR of MRT OFDM
systems. Let us discuss these cases separately as follows:

1) L = 1 (flat fading channel): For L = 1 and the same
transmit branch index i, |g(i)k |2 for different subcarriers k is
equal to a constant c. Moreover, for description convenience,
let us temporarily ignore the index i of the transmit branch.
Hence |gk|2 = c for 0 ≤ k ≤ N − 1. From Lemma 2, we
know that the real part sR(t) and the imaginary part sI(t) of
s(t) are independent Gaussian processes with autocorrealtion
function

r(τ) = E
[
sR(t)sR(t+ τ)

]
= E

[
sI(t)sI(t+ τ)

]
=

c

2
sinc(

π

Tc
).

It is clear that the block average power Pav = c and therefore√
2sR(t)/

√
Pav and

√
2sI(t)/

√
Pav also satisfy conditions

(5) and (6) with λ = 1
3 (

π
Tc
)2. Since Pav varies for different

OFDM blocks, the PAPR characteristic is related to the
distribution of Pav .

From the Extreme Value Theory, the CDF of the baseband
PAPR for a specific transmit branch can be approximated to

Pr

{
max
0≤t≤T

1

Pav

[
(sR(t))2 + (sI(t))2

] ≤ ξ

}

=

∫
C

Pr

{
max
0≤t≤T

χ2(t) ≤ 2P avξ

c

∣∣∣∣∣c
}
fC(c)dc

→
∫
C

exp
(−e−y

)
fC(c)dc, (13)
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where y = aT (
2ξP av

c − bT ). Let q = Pav

c . Since T = NTc,
the CCDF of the PAPR can be approximated to

Pr
{

PAPR(i) > ξ
}

≈ 1−
∫
Q

exp

{
−e−qξN

√
π

3
logN

}
fQ(q)dq. (14)

From (14), the PAPR of MRT OFDM systems can be theoret-
ically evaluated if we know the probability density function
(PDF) of q, which is given by the following lemma.

Lemma 4 Under Rayleigh fading channels, the power of the
MRT element |g(i)k |2 follows a beta distribution with parameter
(α, β) = (1,Mt − 1), i.e., |g(i)k |2 ∼ Beta(1,Mt − 1).

Proof: |g(i)k |2 =
|h(i)

k |2
||hk||22 . Since h

(i)
k is the DFT of the

multipath channel, h(i)
k ∼ CN (0, L

2N ) and |h(i)
k |2 ∼ Γ(1, L

2N ).
Assume that |h(i)

k |2 and |h(j)
k |2 are independent for 0 ≤ i, j ≤

Mt−1, i 
= j. Then the distribution of |g(i)k |2 can be obtained
as follows [19]

|h(i)
k |2

||hk||22
=

|h(i)
k |2

|h(0)
k |2 + · · ·+ |h(Mt−1)

k |2

=
Γ(1, L

2N )

Γ(1, L
2N ) + Γ(Mt − 1, L

2N )
∼ Beta(1,Mt − 1).

Using Lemma 4, the PDF of q = Pav

c can be and expressed
as [19]

fQ(q) =
1

B(1,Mt − 1)q2P av

(
1− 1

qP av

)Mt−2

, (15)

where P av

Mt
≤ q ≤ ∞. From the above discussion, we have

the following theorem:

Theorem 2 For MRT OFDM systems in flat fading channels,
when N → ∞, the CCDF of PAPR can be approximated by

Pr {PAPRMRT > ξ} ≈ 1−
(
Pr
{

PAPR(i) < ξ
})Mt

, (16)

where Pr
{

PAPR(i) < ξ
}

can be obtained by (14) and (15).

2) L = N : If L equals to the number N of subcar-
riers and N → ∞, the equivalent channel coefficient at
the ith transmit branch

{
h
(i)
k , 0 ≤ k ≤ N − 1

}
is an i.i.d.

complex Gaussian random variable due to the LLN. Therefore{
|g(i)k |2, 0 ≤ k ≤ N − 1

}
are i.i.d. Beta(1,Mt − 1). Note

that generally L is much smaller than N in practice. However,
discussing this case helps gain more insight into the PAPR
relationship between MRT and EGT.

Lemma 5 If the number of subcarriers N → ∞, the block
average power Pav is 1/Mt and is equal to the long-term
average power P av.

Proof: Since |g(i)k |2 is i.i.d. Beta(1,Mt − 1), the block
average power at the ith transmit branch is given by

Pav = lim
N→∞

1

N

N−1∑
k=0

|g(i)k |2 = E[|g(i)k |2] = 1

Mt
.

Since the block average power of different OFDM blocks is
equal to 1/Mt, the long-term average power P av is equal to
1/Mt as well.

Lemma 6 Consider the complex baseband signal XN(t) =
1√
N

∑N−1
k=0 Ake

jωkt, where ωk = 2π
NTc

(
k − N−1

2

)
, and

{Ak, k = 0, . . . , N − 1} is an i.i.d. complex random sequence
with bounded real part AR

k and imaginary part AI
k; in addi-

tion, E
[
AR

k

]
= E

[
AI

k

]
= 0, E

[
(AR

k )
2
]
= E

[
(AI

k)
2
]
= εk,

and E
[
AR

k A
I
k

]
= 0. Then for N → ∞ and any closed and

finite interval T ⊆ R, XN (t) converges in distribution to a
zero-mean stationary complex Gaussian random process X(t)
whose real part XR(t) and imaginary part XI(t) satisfy

E
[
XR(t)XR(t+ τ)

]
= E

[
XI(t)XI(t+ τ)

]
=

1

N

N−1∑
k=0

εk cos(ωkτ)

E
[
XR(t)XI(t+ τ)

]
=

1

N

N−1∑
k=0

εk sin(ωkτ). (17)

Proof: Please see [22] and [24].
From Lemma 6, the real and imaginary parts of the output

baseband signal converge to a Gaussian process with correla-
tion functions

E
[
sR(t)sR(t+ τ)

]
= E

[
sI(t)sI(t+ τ)

]
=

1

2N

N−1∑
k=0

|g(i)k |2 cosωkτ, (18)

and

E
[
sR(t)sI(t+ τ)

]
=

1

2N

N−1∑
k=0

|g(i)k |2 sinωkτ. (19)

From (19), sR(t) and sI(t) are independent at each time index
t (τ = 0). Therefore

√
2sR(t)/

√
Pav and

√
2sI(t)/

√
Pav

satisfy (5) and (6) with

λ =

(
2π

NTc

)2 ∑N−1
k=0 |g(i)k |2 (k − N−1

2

)2
∑N−1

k=0 |g(i)k |2
,

and the Extreme Value Theory can be applied to approximate
the PAPR value.

From Lemma 5, the CDF of PAPR at the ith transmit branch
Pr
{

PAPR(i) ≤ ξ
}

can be expressed as

Pr

{
max
0≤t≤T

1

Pav

[
(sR(t))2 + (sI(t))2

] ≤ ξ

}

= Pr

{
max
0≤t≤T

χ2(t) ≤ 2ξ

}
→ exp

{−e−y
}
, as T → ∞,

(20)

where y = aT (2ξ − bT ) = ξ − logT − (1/2) log logT −
(1/2) log(λ/π). Since T = NTc, the CCDF of baseband
PAPR has the following approximation:

Pr
{

PAPR(i) > ξ
}
≈ 1− exp

{
−e−ξN

√
λ

π
logN

}
, (21)
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with

λ =

(
2π

N

)2 ∑N−1
k=0 |g(i)k |2 (k − N−1

2

)2
∑N−1

k=0 |g(i)k |2
. (22)

From (21), to evaluate the PAPR, λ needs to be calculated for
every OFDM block and this increases computational complex-
ity. To reduce the computational complexity, we prove that as
N → ∞ and sufficiently large Mt, λ converges to a constant
no matter what the value |g(i)k |2 is at each OFDM block.
Before completing the proof, let us introduce the following
lemma.

Lemma 7
∑N−1

k=0 |g(i)
k |2(k−N−1

2 )
2

∑N−1
k=0 (k−N−1

2 )
2 converges in mean square

to E

[
|g(i)k |2

]
when N → ∞ and Mt is sufficiently large.

Proof: Please see Appendix C.

Theorem 3 For MRT OFDM systems with L = N , when
N → ∞ and Mt is sufficiently large, the CCDF of the PAPR
is the same as that of EGT or unprecoded OFDM systems;
that is, (21) tends to approach the same value as (12), and
the CCDF of PAPR can be expressed by (11)

Proof: When N → ∞ and Mt is sufficiently large, λ in
(22) can be rewritten as

λ =

(
2π

N

)2

∑N−1
k=0

|g(i)
k

|2(k−N−1
2 )2

∑N−1
k=0 (k−N−1

2 )
2

NPav∑N−1
k=0 (k−N−1

2 )2
. (23)

From Lemma 7, (23) can be approximated as

λ ≈
(
2π

N

)2 N3

12 E

[
|g(i)k |2

]
NPav

. (24)

According to Lemmas 4 and 5, λ in (24) is equal to π2/3 and
this completes the proof.

Note that although we assume that Mt is sufficiently large
to obtain the result in (24), later simulation results show that
the approximation in (24) is satisfactorily accurate for Mt ≥ 4.

3) Arbitrary L but L 
= 1 or L 
= N : For an arbitrary
L = L0, where L0 
= 1 or N , the PAPR is difficult to
obtain as explained below. In this case, the MRT vectors
for different subcarriers at a specific transmit branch are
correlated. The derivation for L = L0 is analogous to that
for L = N , but we need to consider the distribution of
Pav = 1

N

∑N−1
k=0 |g(i)k |2, where |g(i)k |2 ∼ Beta(1,Mt − 1).

The statistic distribution of Pav is difficult to obtain because
now the |g(i)k |2 are correlated between subcarriers. As shown
in [19], obtaining the distribution of the summation of corre-
lated random variables involves the joint probability density
function (PDF) of |g(i)k |2. However, it is hard to obtain the
joint PDF because the correlation of |g(i)k |2 varies according
to L and is difficult to formulate. Therefore, obtaining the
PDF of Pav directly is difficult and the resulting form may be
cumbersome. Instead, we make the following conjecture for
obtaining an approximate analytical result, which can help us
gain more insight into how L0 affects PAPR. Moreover, it is
shown later that the analytical result matches the simulated
result quite well.

Conjecture 1 Let |g(i)k |2 be the power of the MRT element
at the kth subcarrier and the ith transmit branch and let
Pav = 1

N

∑N−1
k=0 |g(i)k |2. Then Pav may be approximated by a

beta distribution if |g(i)k |2 are identically beta distributed; the
parameters α and β of the beta distribution can be obtained
via the mean and variance of Pav , i.e.,

E[Pav] =
α

α+ β
,

var[Pav] =
αβ

(α+ β)2(α+ β + 1)
. (25)

Explanation: The motivation of this conjecture is from the
corollary in [26]. The authors have shown that the summation
of i.i.d. beta random variables is still beta distributed and
(α, β) can be obtained by (25). Here we make this conjecture
by utilizing the results to correlated but identical beta random
variables. �

In the following we use Conjecture 1 to obtain the
distribution of Pav. Since |g(i)k |2 are i.i.d., E[Pav ] =

E

[
1
N

∑N−1
k=0 |g(i)k |2

]
= E[|g(i)k |2] = 1/Mt. To compute

var[Pav], we need to know the correlation coefficient of
|g(i)k |2. However, the correlation coefficient of |g(i)k |2 is too
complicated to obtain. Fortunately observe that |g(i)k |2 =

|h(i)
k |2

|h(0)
k |2+···+|h(Mt−1)

k |2 . Hence the correlation coefficient of

|g(i)k |2 should strongly depend on |h(i)
k |2. Therefore we first

calculate the correlation coefficient of |h(i)
k |2 and then find the

relation between |h(i)
k |2 and |g(i)k |2. The correlation coefficient

of |h(i)
k |2 and |h(i)

k+K |2 can be shown to be

ρ|h(i)
k |2|h(i)

k+K|2 =
E[|h(i)

k |2|h(i)
k+K |2 − E[|h(i)

k |2]E[|h(i)
k+K |2]

σ|h(i)
k |2σ|h(i)

k+K |2

=

(
2L0 + L0(L0 − 1) + 2

∑L0−1
n=1 (L0 − n) cos 2π

N nK
)
− L2

0

L2
0

=
L0 + 2

∑L0−1
n=1 (L0 − n) cos 2π

N nK

L2
0

. (26)

Lemma 8 When Mt is sufficiently large, the correlation
coefficient of |g(i)k |2 may be approximated by |h(i)

k |2, i.e.,

ρ|g(i)
k |2|g(i)

k+K |2 ≈ ρ|h(i)
k |2|h(i)

k+K |2 .

Proof: Please see Appendix D.
Fig. 2 shows the correlation coefficients ρ|h(i)

0 |2|h(i)
K |2 and

ρ|g(i)
0 |2|g(i)

K |2 for L0 = 4, where ρ|h(i)
0 |2|h(i)

K |2 is obtained
by evaluating (26), and ρ|g(i)

0 |2|g(i)
K |2 is obtained by Monte

Carlo simulation. Observe that when Mt ≥ 4, ρ|g(i)
0 |2|g(i)

K |2
is very close to ρ|h(i)

0 |2|h(i)
K |2 . This shows that (26) may be

used to approximate ρ|g(i)
k |2|g(i)

k+K |2 when Mt ≥ 4. According

to Lemma 8, var[Pav] can be obtained by (27), shown at
the bottom of the next page. From (26) and (27), var[Pav]
can be analytically evaluated. Therefore the distribution of
Pav is obtained from Conjecture 1 and the corresponding
parameters α and β can be calculated by applying (25)-
(27). For presentation convenience, let the random variable
Pav = s. Fig. 3 shows the CDF of s for different numbers of
transmit antennas for L0 = 4. Observe that when Mt ≥ 4 the
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approximate results are consistent with the simulation results.

Therefore, when N → ∞ and Mt is sufficiently large, the
CCDF of the PAPR at the ith transmit branch can be obtained
by the Extreme Value Theory and approximated to

Pr
{

PAPR(i) > ξ
}

≈ 1−
∫ 1

0

exp

{
−e−

Pavξ
s N

√
π

3
logN

}
fS(s)ds, (28)

where fS(s) is obtained using the following procedure:

• E[Pav] = E

[
1
N

∑N−1
k=0 |g(i)k |2

]
= E[|g(i)k |2] = 1/Mt.

• Obtain var[Pav] using (26), (27) and Lemma 8.
• Assume fS(s) ∼ Beta(α, β) and use (25) to obtain α

and β.

From the above discussion, we have the following theorem:

Theorem 4 For MRT OFDM systems with arbitrary L,
where L 
= 1 and N , when Mt is sufficiently large and
N → ∞, the CCDF of the PAPR can be approximated by

Pr {PAPRMRT > ξ} ≈ 1−
(
Pr
{

PAPR(i) < ξ
})Mt

, (29)

where Pr
{

PAPR(i) < ξ
}

can be obtained by (28).

IV. PROPOSED ALGORITHMS FOR PAPR REDUCTION

Based on the derived results in Section III, PAPR reduction
algorithms for MRT and EGT OFDM systems are proposed in
this section. It is worth to point out that unlike the conventional
PAPR reduction methods, e.g., partial transmit sequence (PTS)
and selected mapping (SLM), where the side information of
rotated phases are required to be sent from the transmitter
to the receiver [6],[8], the proposed PAPR algorithms do not
require sending side information because the PAPR is reduced
by adjusting the beamforming vectors. Therefore, redundancy
is not added in the transmitted data. Moreover, for MRT
OFDM systems, the proposed PAPR reduction algorithm not
only can reduce the PAPR but also can improve the bit error
rate. We introduce the proposed PAPR reduction algorithms
for MRT and EGT OFDM separately as follows:

A. Proposed PAPR reduction algorithm for MRT OFDM
systems

From Thms. 2, 3 and 4, for MRT OFDM, the PAPR
decreases as L increases. It is shown that increasing L would
decrease the correlation of subcarriers. This result gives us
an intuition that the PAPR may reduce if the correlation of
subcarriers decreases. On the other hand, it is known that
the bit error rate for MRT OFDM systems is dominated by
those subcarriers with low effective channel gain. From [28]
and [29], the overall BER is minimized when all subcarriers
have equal BER. Moreover, the BER of individual subcarriers
can be adjusted by modifying the corresponding magnitude of
beamforming vector in MIMO OFDM systems. Therefore, the
proposed algorithm attempts to increase the amplitude of those
subcarriers with low effective channel gain, while at the same
time decrease the amplitude of those subcarriers with large
one at each OFDM block transmission. By performing the
proposed algorithm, we noticed that the overall beamforming

var[Pav] = var

[
1

N

N−1∑
k=0

|g(i)k |2
]
=

1

N2

⎧⎨
⎩

N−1∑
k=0

var
[
|g(i)k |2

]
+ 2

N−1∑
k=0

N−1∑
k′=0,k′ �=k

√
var[|g(i)k |2]

√
var[|g(i)k′ |2]ρ|g(i)

k |2|g(i)

k′ |2

⎫⎬
⎭

≈ 1

N
σ2

|g(i)
k |2 +

2

N2
σ|g(i)

0 |2σ|g(i)
1 |2

N−1∑
k=1

[
(N − k)ρ|h(i)

0 |2|h(i)
k |2
]
. (27)
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gain of individual subcarriers is more or less ‘equalized’ This
modification not only decreases the correlation of subcarriers
and thus reduces the PAPR, but also increases the gain of the
subcarriers with low effective channel gain and thus improves
the bit error rate. That is, the proposed algorithm may more or
less destroy the correlation among subcarriers and improve the
PAPR performance. However, PAPR reduction via modifying
the amplitude may increase the long-term average power
and affect the operation region of the PA. To maintain a
nearly unchanged long-term average power and yet mitigate
the PAPR, we propose to scale down the subcarrier power
corresponding to the M largest channel gains and scale up
the subcarrier power corresponding to the M smallest channel
gains, where the scaling down and scaling up are performed
in pairs. That is, we first sort γk in descending order so that
the maximum sorted gain γk0 = max0≤k≤N−1{γk}, and ki
represents the ith ordered subcarrier index. Then if the signal
of subcarrier ki is multiplied by a real constant δ, where
0 < δ < 1, subcarrier kN−i should also be multiplied by 1/δ.
By properly determining M and δ, and using the proposed
algorithm, the PAPR can be considerably reduced. We also
apply a greedy optimization approach to decide whether the
power of the M paired subcarriers should be scaled or not.
The proposed PAPR reduction algorithm is summarized in
Algorithm 1.

Algorithm 1: Proposed PAPR reduction algorithm for
MRT OFDM systems.

1: Initialization: Determine M and δ. Let Ψ be system
PAPR for current OFDM block.

2: Sort γk in descending order and obtain ordered effective
gains γki .

3: Let Λ(ki, kN−i) be the system PAPR obtained by
multiplying gki by δ, and gkN−i by 1/δ.

4: for i = 0 : M − 1 do
5: if Λ(ki, N − ki) > Ψ then
6: gki = δgki , gkN−i = gkN−i/δ,

Ψ = Λ(ki, N − ki).
7: end if
8: end for

B. Proposed PAPR reduction algorithm for EGT OFDM sys-
tems

From Thms. 1, the PAPR of one specific transmit branch
for EGT OFDM systems is the same as that for unprecoded
OFDM systems. Hence, the PAPR reduction algorithms for
unprecoded OFDM systems can be applied to EGT OFDM
systems. EGT already has constant power for different OFDM
blocks and transmit branches; also it is known that changing
subcarrier phases can reduce the PAPR of OFDM systems (see
[10]). Therefore, we change the subcarrier phases correspond-
ing to the largest effective channel gains, because the error rate
performance is dominated by the subcarriers corresponding to
the smallest effective channel gains. By doing this, we can
effectively reduce the PAPR, yet the error rate performance
is only slightly degraded. In the proposed algorithm, we first
sort the effective channel gain, γk, in descending order so that

the maximum sorted gain γk0 = max0≤k≤N−1{γk}, and ki
represents the ith ordered subcarrier index. The EGT vectors
corresponding to the largest M gains are identified. Then we
use a greedy algorithm to decide whether each individual
of the M EGT vectors should keep its phases unchanged,
or if it should be multiplied by a phase shift, either ejφ or
e−jφ, where 0 < φ < π, so that system PAPR be reduced.
Therefore, by properly choosing M and φ, the PAPR can be
effectively reduced without sending side information to the
receiver, because we only modify the phase of beamforming
vectors gk not the transmit signals xk. At the same time the
error rate performance can still be maintained at a satisfactory
level. The algorithm is summarized in Algorithm 2.

Algorithm 2: Proposed PAPR reduction algorithm for
EGT OFDM system.

1: Initialization: Determine M and φ. Let Ψ be system
PAPR for the current OFDM block.

2: Sort γk in descending order and obtain ordered effective
gains γki .

3: Let Λ(ki, φ) be the system PAPR obtained by
multiplying gki by ejφ.

4: for i = 0 : M − 1 do
5: φ̂ = arg min

φ∈{−φ,0,φ}
Λ(ki, φ), Ψ = Λ(ki, φ̂).

6: end for

V. SIMULATION RESULTS

In this section several examples are provided to demonstrate
that the derived analytical results are verified by simulation
results. Also, the simulation results show that the proposed
PAPR reduction algorithms can effectively reduce the PAPR
for both MRT and EGT OFDM systems. At the same time the
performance is improved for MRT OFDM systems and is only
slightly degraded for EGT OFDM systems. The simulations
were conducted using the following settings. The number N
of subcarriers is 256. The MIMO channel coefficients are
assumed to be i.i.d. complex Gaussian distributed with zero
mean and unit variance. The oversampling factor 4 is applied
to coincide the PAPR distribution of continuous and discrete
signals (see [27]). 4-QAM is used for the transmit symbol x.
The notation mTnR corresponds to Mt = m and Mr = n.
PAPR0 in the y-axis is used to represent ξ mentioned in the
previous sessions.
Example 1. PAPR in EGT OFDM systems: The PAPR for
EGT OFDM systems with Mt = 4 is shown in Fig. 4. The
derived PAPR expression for EGT OFDM systems considering
all transmit branches, i.e. Thm. 1, approximate the simulation
results quite well. It is worth to point out that there exists a
small gap between the theoretical and the simulation results for
L = 4. The reason is explained below: For small L, the power
of the transmit signals after multiplying beamforming vectors
may be negatively associated (NA) [30]. Since we assume that
the transmit signals are independent for all possible values of
L, the theoretical results can be regarded as an upper bound,
and the bound is tighter for large PAPR0 than small one.
Example 2. PAPR for a specific transmit branch in beam-
forming MIMO OFDM systems: The PAPR considering
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Fig. 4. PAPR for EGT OFDM systems.
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Fig. 5. PAPR considering only one transmit branch for different L in
beamforming OFDM systems with Mt = 4.

only one transmit branch for different L in MISO OFDM
systems with Mt = 4 and Mt = 8 are shown in Figs. 5 and 6,
respectively. The two figures show that our derived results in
(14), (21) and (28) are consistent with the simulation results.
Note that we have mentioned, when L = N → ∞, the PAPR
of the MRT OFDM systems considering only one transmit
branch is the same as that for unprecoded OFDM systems, and
this is observed in the solid and dash-dot curves. Moreover,
we mentioned in (10) that the PAPR of EGT OFDM systems
considering only one specific transmit branch is the same as
unprecoded OFDM systems, and this is also observed from
the square curve.
Example 3. PAPR for MRT OFDM systems: The PAPR
of MRT OFDM systems considering all transmit branches are
shown in Fig. 7 for Mt = 4, and Fig. 8 for Mt = 8. Different
values of L = 1, 4, and N are considered in this example.
From the figures, we observe the derived results in Thms.
2, 3 and 4 approximate the simulation results very well. In
addition, the gap between the theoretical and the simulation
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Fig. 6. PAPR considering only one transmit branch for different L in
beamforming OFDM systems with Mt = 8.

results for L = 1 is due to the negatively associated property
for different transmit branches. Hence the derived result can be
regarded as an upper bound. Moreover, the theoretical result
for L = 4 is based on Thm. 4. Although we made some
assumptions and approximations to derive the theorem, the
theoretical result still matches the simulation result quite well
(see dash and diamond curves). Note that without making
the assumptions and approximations, the results in Thm. 4
would be cumbersome and may not be able to provide any
insight into how L affects the PAPR. For example, we see
from the figures that the CCDF of the PAPR in MRT OFDM
systems decreases when L increases. This can be deduced
from Lemma 8 and the derived result in (26), since as L
increases, the correlation between the |g(i)k | decreases and the
CCDF of the PAPR approaches to Thm. 3. In addition, from
Figs. 7 and 8, the performance gap between L = 1 and L = N
increases when Mt increases from 4 to 8. This is reasonable
because as Nt increases, the elements of the beamforming
vector also increases and this leads to a wide dynamic range
of signals after beamforming.

Finally Fig. 7 also compares the PAPR of 4T2R MRT
OFDM and 4T1R MRT OFDM systems. Since the MRT vec-
tors for MISO and MIMO systems both follow a conditional
Haar distribution, the PAPR characteristics of the two systems
are identical.
Example 4. Proposed PAPR reduction algorithm for MRT
OFDM systems: For L = 4 in a 4T2R MRT OFDM system,
the PAPR applying Algorithm 1 for δ = 0.5 and 0.8 is shown
in Fig. 9. Here the number of subcarriers for greedy optimiza-
tion is determined off-line to be M = N/8. The corresponding
bit error rate (BER) is shown in Fig. 10. For δ = 0.8, the BER
as well as the PAPR is improved. More specifically, the PAPR
improves around 0.5 dB at PAPR0 = 10−3 observed from
Fig. 9, and the BER improves around 0.4 dB at BER= 10−5

observed from Fig. 10. These observations show that the
proposed algorithm not only can reduce the PAPR for MRT
OFDM systems but also can improve the BER performance. It
is worth to mention that if a slight degradation of the bit error
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Fig. 7. PAPR for different L for MRT OFDM systems with Mt = 4 and
Mr = 1 and 2.
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Fig. 8. PAPR for different L for MRT OFDM systems with Mt = 8 and
Mr = 1.

rate performance, i.e., 0.3 dB in this example, is allowable,
the PAPR performance can be improved by up to 1.5 dB by
letting δ = 0.5.
Example 5. Proposed PAPR reduction algorithm for EGT
OFDM systems: For L = 4 in a 4T2R EGT OFDM system,
the PAPR applying Algorithm 2 with different shift angles φ
is shown in Fig. 11. The EGT vectors are generated by the
algorithm proposed in [15]. Here the number of subcarriers for
greedy optimization is determined off-line to be M = N/8.
The CCDF of PAPR can be reduced by around 1 and 1.5 dB
when φ = π/8 and φ = π/4, respectively. As can be observed
from Fig. 11, the PAPR has better CCDF distribution than
those depicted in the figure if the set size and shift angle are
enlarged. However, these modifications would also degrade the
system error rate performance and increase the computational
complexity, as observed from the error performance shown in
Fig. 12. Therefore, M and φ should be carefully determined to
keep error performance slightly degraded and the complexity
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Fig. 9. Comparison of PAPR with and without the proposed algorithm for
MRT OFDM systems.
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low. Finally, from Fig. 12, the performance gap between
MRT OFDM and EGT OFDM systems (without the proposed
algorithms) is less than 0.8 dB, which is consistent with the
results in [17].

VI. CONCLUSION

In this paper we investigate the PAPR performance and
corresponding mitigation algorithms for beamforming OFDM
systems. We analytically derive the PAPR distribution for EGT
OFDM and MRT OFDM systems. The theoretical results show
that generally MRT OFDM systems perform much worse than
EGT OFDM systems in terms of PAPR. Therefore, although
MRT is the optimal beamforming scheme, which can achieve
1.05 dB more receive SNR than EGT, when the cost of the PA
and the better power consumption are of concern, EGT may
be a preferred solution due to its superior PAPR performance
in OFDM systems. Moreover, we propose PAPR reduction
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algorithms for both MRT OFDM and EGT OFDM systems.
The performance improvement using the proposed algorithm
is more pronounced in MRT OFDM systems; that is, both the
PAPR and the bit error rate performance can be improved
simultaneously. If a more aggressive PAPR improvement
is needed, by carefully determining the design parameters,
the proposed algorithms can greatly improve PAPR perfor-
mance, yet the bit error rate performance is slightly degraded.
Simulation results show that the proposed PAPR mitigation
algorithms indeed significantly boost the PAPR performance.
Also, the analytical results for the PAPR match simulation
results well. Consequently, the derived outcomes could be
used to evaluate the required PA specification and the power
consumption for beamforming OFDM systems in practical
designs. An interesting extension of this work is to analyze the
PAPR for multi-stream and SDMA systems, and this question
is still open.

APPENDIX

A. Proof of Lemma 1

The discrete time-domain baseband signal at the ith branch
s(i) can be expressed as

s(i) = F†G(i)x,

where x ∈ C
N×1 is the transmitted data vector,

F ∈ CN×N and [F]kn = 1√
N
e−j 2π

N (k−N−1
2 )n, G(i) =

diag([g(i)0 g
(i)
1 , . . . , g

(i)
N−1]). The block average power Pav at

the ith transmit branch can be expressed as

Pav =
1

N
(s(i))†s(i) =

1

N
x†(G(i))†FF†G(i)x

=
1

N
x†(G(i))†G(i)x =

1

NMt
x†x,

(30)

where we have used the fact that (G(i))†Gi =
1
Mt

I for EGT
beamforming. From (30), we see that if constant amplitude
modulation is used for x, e.g. BPSK or QPSK, x†x is constant,
and Pav is therefore constant and independent of the index i of
transmit branch. Since Pav is constant, the long-term average
power P av = E[Pav] = 1/Mt. �

B. Proof of Lemma 3

From Lemma 2, the complex signal s(i)(t) in (3) converges
to zero-mean stationary complex Gaussian random process
with real part sR(t) and imaginary part sI(t) such that

r(τ) = E
[
sR(t)sR(t+ τ)

]
= E

[
sI(t)sI(t+ τ)

]
=

1

2Mt
sinc

(
τ

Tc

)

and

E
[
sR(t1)s

I(t2)
]
= 0, ∀ t1 and t2.

Therefore,
√
2sR(t)/

√
Pav and

√
2sI(t)/

√
Pav satisfy (5) and

(6) with λ = 1
3 (

π
Tc
)2. By applying Lemma 1 and the Extreme

Value Theory, the cumulative distribution function (CDF)
of the PAPR at the ith transmit branch Pr

{
PAPR(i) ≤ ξ

}
follows the asymptotic characteristic

Pr

{
max
0≤t≤T

1

P av

[
(sR(t))2 + (sI(t))2

] ≤ ξ

}

= Pr

{
max
0≤t≤T

χ2(t) ≤ 2ξ

}
→ exp(−e−y), as T → ∞,

(31)

where y = aT (2ξ − bT ) = ξ − logT − (1/2) log logT −
(1/2) log(λ/π).

Let the time interval of output baseband signal be sampled
with Tc, i.e., T = NTc and λ = π2

3 . Therefore the CCDF of
the PAPR at the ith transmit branch can be approximated as
that in (10), where the approximation is due to the Extreme
Value Theory. �
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C. Proof of Lemma 7

Proving Lemma 7 is equivalent to proving that when Mt is
sufficiently large, the following equality holds

lim
N→∞

E

[∣∣∣u(i) − E

[
|g(i)k |2

] ∣∣∣2] = 0, (32)

where

u(i) =

∑N−1
k=0 |g(i)k |2 (k − N−1

2

)2
∑N−1

k=0

(
k − N−1

2

)2 .

The left side term of (32) can be rewritten as

lim
N→∞

E

[(
u(i)
)2]

− 2E
[
|g(i)k |2

]
E

[
u(i)
]
+
(
E

[
|g(i)k |2

])2
.

(33)

Since
{
|g(i)k |2, 0 ≤ k ≤ N − 1

}
is i.i.d. when L = N → ∞,

g
(i)
k is independent of k and we denote E[|g(i)k |2] = E[|g(i)|2]

for simplicity. Therefore the second term of (33) can be written
to (2E[|g(i)|2])2. We expand the first term of (33) and it
yields (34), shown at the top of the next page. Since |g(i)k |2 ∼

Beta(1,Mt − 1), var[|g(i)k |2] = Mt−1
M2

t (Mt+1)
→ 0 when Mt is

sufficiently large. Thus we have E[(|g(i)k |2)2] =
(
E[|g(i)k |2]

)2
and (34) can be rewritten as(

E[|g(i)|2])2∑N−1
k=0

(
k − N−1

2

)2∑N−1
k′=0

(
k′ − N−1

2

)2(∑N−1
k=0

(
k − N−1

2

)2)2
=
(
E[|g(i)|2]

)2
. (35)

Therefore, we have

lim
N→∞

E

[∣∣∣u(i) − E

[
|g(i)k |2

] ∣∣∣2]

=
(
E[|g(i)|2]

)2
− 2
(
E[|g(i)|2]

)2
+
(
E[|g(i)|2]

)2
= 0.

(36)

�

D. Proof of Lemma 8

The correlation coefficient of |h(i)
k |2 and |g(i)k |2 can be

respectively expressed as

ρ|h(i)
k |2|h(i)

k+K |2 =
E[|h(i)

k |2|h(i)
k+K |2]− E[|h(i)

k |2]E[|h(i)
k+K |2]

σ|h(i)
k |2σ|h(i)

k+K |2
,

ρ|g(i)
k |2|g(i)

k+K |2 =
E[|g(i)k |2|g(i)k+K |2]− E[|g(i)k |2]E[|g(i)k+K |2]

σ|g(i)
k |2σ|g(i)

k+K |2
.

(37)

Since |h(i)
k |2 ∼ Γ(1, L/2N) and |g(i)k |2 ∼ Beta(1,Mt − 1),

(37) can be rewritten as

ρ|h(i)
k

|2|h(i)
k+K

|2 =
E[|h(i)

k |2|h(i)
k+K |2]− ( L

2N

)2
(

L
2N

)2 ,

ρ|g(i)
k |2|g(i)

k+K |2 =
E[|g(i)k |2|g(i)k+K |2]−

(
1
Mt

)2
Mt−1

M2
t (Mt+1)

. (38)

Notice that E[|g(i)k |2|g(i)k+K |2] =

E

[
|h(i)

k |2
|h(0)

k
|2+···+|h(Mt−1)

k
|2 · |h(i)

k+K|2
|h(0)

k+K
|2+···+|h(Mt−1)

k+K
|2

]
, and |h(i)

k |2

is correlated to itself and |h(i)
k+K |2. When Mt is sufficiently

large, |h(i)
k+K |2 and |h(0)

k |2 + · · · + |h(Mt−1)
k |2 are nearly

uncorrelated because |h(i)
k+K |2 is only correlated with the term

|h(i)
k+K |2 in the sum. Similarly, (|h(0)

k |2 + · · · + |h(Mt−1)
k |2)

and (|h(0)
k+K |2+ · · ·+ |h(Mt−1)

k+K |2) are also nearly uncorrelated
when Mt is sufficiently large, because there are Mt correlated
terms, but the remaining Mt(Mt − 1) terms are uncorrelated.
Therefore,

E[|g(i)k |2|g(i)k+K |2]

=E

[
|h(i)

k |2
|h(0)

k |2 + · · ·+ |h(Mt−1)
k |2

· |h(i)
k+K |2

|h(0)
k+K |2 + · · ·+ |h(Mt−1)

k+K |2

]

≈E

[
|h(i)

k |2|h(i)
k+K |2

]
· E

[
1

|h(0)
k |2 + · · ·+ |h(Mt−1)

k |2

]

· E
[

1

|h(0)
k+K |2 + · · ·+ |h(Mt−1)

k+K |2

]

=E

[
|h(i)

k |2|h(i)
k+K |2

]
·
(

1

Mt − 1

)2 (
2N

L

)2

. (39)

From (39), we can approximate ρ|g(i)
k |2|g(i)

k+K |2 in (38) by

E

[
|h(i)

k |2|h(i)
k+K |2

]
·
(

1
Mt−1

)2 (
2N
L

)2 − ( 1
Mt

)2
Mt−1

M2
t (Mt+1)

≈
E

[
|h(i)

k |2|h(i)
k+K |2

]
− ( L

2N

)2
(

L
2N

)2 = ρ|h(i)
k |2|h(i)

k+K|2 . (40)

�

ACKNOWLEDGMENT

The authors would like to thank all the anonymous review-
ers for their constructive suggestions, which have significantly
improved the quality of this work.

REFERENCES

[1] A. J. Paulraj, D. A. Gore, R. U. Nabar, and H. Bölcskei, “An overview
of MIMO communications—a key to gigabit wireless,” Proc. IEEE, vol.
92, no. 2, pp. 198–218, Feb. 2004.

[2] K. F. Lee and D. B. Williams, “A space-frequency transmitter diversity
technique for OFDM systems,” in Proc. 2000 IEEE GLOBECOM, pp.
1473–1477.

[3] S. Khademi, A.-J. van der Veen, and T. Svantesson, “Precoding
technique for peak-to-average-power-ratio (PAPR) reduction in MIMO
OFDM/A systems,” in Proc. 2012 IEEE ICASSP, vol. 20, pp. 3005–
3008.

[4] S. H. Han and J. H. Lee, “An overview of peak-to-average power
ratio reduction techniques for multicarrier transmission,” IEEE Wireless
Commun., vol. 12, no. 2, pp. 56–65, Apr. 2005.

[5] U.-K. Kwon, D. Kim, and G.-H. Im, “Amplitude clipping and iterative
reconstruction of MIMO-OFDM signals with optimum equalization,”
IEEE Trans. Wireless Commun., vol. 8, no. 1, pp. 268–277, Jan. 2009.

[6] S. H. Müller and J. B. Huber, “OFDM with reduced peak-to-average
power ratio by optimum combination of partial transmit sequences,”
Electron. Lett., vol. 33, no. 5, pp. 368–369, Feb. 1997.

[7] L. Wang and J. Liu, “Cooperative PTS for PAPR reduction in MIMO-
OFDM,” Electron. Lett., vol. 47, no. 5, pp. 351–352, Mar. 2011.

[8] R. W. Bäuml, R. F. H. Fischer, and J. B. Huber, “Reducting the peak-to-
average power ratio of multicarrier modulation by selected mapping,”
Electron. Lett., vol. 32, no. 22, pp. 2056–2057, Oct. 1996.



2600 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 13, NO. 5, MAY 2014

E

[(
u(i)
)2]

=
E

[(∑N−1
k=0 |g(i)k |2 (k − N−1

2

)2)(∑N−1
k′=0 |g(i)k′ |2

(
k′ − N−1

2

)2)]
(∑N−1

k=0

(
k − N−1

2

)2)2

=

E

[∑N−1
k=0

(
|g(i)k |2

)2 (
k − N−1

2

)4
+
∑N−1

k=0 |g(i)k |2 (k − N−1
2

)2∑N−1
k′=0,k′ �=k |g(i)k′ |2

(
k − N−1

2

)2]
(∑N−1

k=0

(
k − N−1

2

)2)2 . (34)

[9] M. Sharif and B. Hassibi, “Existence of codes with constant PMEPR
and related design,” IEEE Trans. Signal Process., vol. 52, no. 10, pp.
2836–2846, Oct. 2004.

[10] M. Sharif, V. Tarokh, and B. Hassibi, “Peak power reduction of OFDM
signals with sign adjustment,” IEEE Trans. Commun., vol. 57, no. 7, pp.
2160–2166, July 2009.

[11] J. Joung, E.-R. Jeong, and Y. H. Lee, “Beamforming and PAPR reduction
for MISO-OFDM systems,” in Proc. 2007 IEEE ICASSP, vol. 3, pp.
377–380.

[12] J. B. Andersen, “Array gain and capacity for known random channels
with multiple element arrays at both ends,” IEEE J. Sel. Areas Commun.,
vol. 18, no. 11, pp. 2172–2178, Nov. 2000.

[13] D. J. Love and R. W. Heath, “Equal gain transmission in multiple-input
multiple-out wireless systems,” IEEE Trans. Commun., vol. 51, no. 7,
pp. 1102–1110, July 2003.

[14] C. R. Murthy and B. D. Rao, “Quantization methods for equal gain
transmission with finite rate feedback,” IEEE Trans. Signal Process.,
vol. 55, no. 1, pp. 233–245, Jan. 2007.

[15] X. Zheng, Y. Xie, J. Li, and P. Stoica, “MIMO transmit beamforming
under uniform elemental power constraint,” IEEE Trans. Signal Process.,
vol. 55, no. 11, pp. 5395–5406, Nov. 2007.

[16] S.-H. Tsai, “Transmit equal gain precoder in Rayleigh fading channels,”
IEEE Trans. Signal Process., vol. 57, no. 9, pp. 3717–3721, Sept. 2009.

[17] S.-H. Tsai, “Equal gain transmission with antenna selection in MIMO
communications,” IEEE Trans. Wireless Commun., vol. 10, no. 5, pp.
1470–1479, May 2011.

[18] M. R. Leadbetter and H. Rootzen, “An extremal theory for stochasic
processes,” Annals Probability, vol. 16, pp. 431–478, Apr. 1988.

[19] A. Papoulis and S. U. Pillai, Probability, Random Variables and Stoch-
asitic Process. McGraw-Hill, 2002.

[20] H. A. David and H. N. Nagaraja, Order Statistics, 3rd ed. John Wiley
& Sons, Inc., 2003.

[21] S. Wei, D. Goeckel, and P. Kelly, “A modern extreme value theory
approach to calculating the distribution of the peak-to-average power
ratio in OFDM Systems,” in Proc. 2002 IEEE ICC, vol. 3, pp. 1686–
1690.

[22] T. Jiang, M. Guizani, H.-H. Chen, W. Xiang, and Y. Wu, “Derivation of
PAPR distribution for OFDM wireless systems based on extreme value
theory,” IEEE Trans. Wireless Commun., vol. 7, no. 4, pp. 1298–1305,
Apr. 2008.

[23] H. Ochiai and H. Imai, “On the distribution of the peak-to-average power
ratio in OFDM signals,” IEEE Trans. Commun., vol. 49, no. 2, pp. 282–
289, Feb. 2001.

[24] S. Wei, D. Goeckel, and P. Kelly, “Convergence of the complex envelope
of bandlimited OFDM signals,” IEEE Trans. Inf. Theory, vol. 56, no.
10, pp. 4893–4904, Oct. 2010.

[25] T. W. Anderson, An Introduction to Multivariate Statistical Analysis,
2nd ed. John Wiley & Sons, Inc., 1984.

[26] T. G. Pham and N. Turkkan, “Reliability of a standby system with beta-
distributed component lives,” IEEE Trans. Reliability, vol. 43, no. 1, pp.
71–75, Mar. 1994.

[27] C. Tellambura, “Computation of the continuous time PAR of an OFDM
signal with BPSK subcarriers,” IEEE Commun. Lett., vol. 5, no. 5, pp.
185–187, May 2001.

[28] Y.-P. Lin, S.-M. Phoong, and P. P. Vaidyanathan, Filter Bank
Transceivers for OFDM and DMT Systems. Cambridge University Press,
2011.

[29] Y.-P. Lin and S.-M. Phoong, “Statistical bit allocation and statistical
precoding for correlated MIMO channels with decision feedback,” IEEE
Signal Process. Lett., vol. 19, no. 11, pp. 761–764, Nov. 2012.

[30] T. Hu and J. Hu, “Comparison of order statistics between dependent
and independent random variables,” Statist. Probab. Lett., vol. 37, pp.
1–6, Jan. 1998.

Ying-Che Hung was born in Taichung, Taiwan, in
1983. He received the B.S. degree in Power Mechan-
ical Engineering from the National Tsing-Hua Uni-
versity, Taiwan, in 2006. He is currently pursuing the
Ph.D. degree with the Department of Electrical En-
gineering, National Chiao-Tung University, Taiwan.
His research interests mainly include digital signal
processing, multiple-input-multiple-output (MIMO)
wireless communications, and compressive sensing.

Shang-Ho (Lawrence) Tsai (SM’12) was born in
Kaohsiung, Taiwan, 1973. He received the Ph.D.
degree in Electrical Engineering from the Univer-
sity of Southern California (USC), USA, in Aug.
2005. From June 1999 to July 2002, he was with
the Silicon Integrated Systems Corp. (SiS), where
he participated the VLSI design for DMT-ADSL
systems. From Sep. 2005 to Jan. 2007, he was
with the MediaTek Inc. (MTK) and participated the
VLSI design for MIMO-OFDM systems. From Jun.
2013 to Dec. 2013, he was a visiting fellow in

the department of Electrical Engineering at the Princeton University. Since
Feb. 2007, he joined the Department of Electrical and Control Engineering
(now Department of Electrical Engineering) at the National Chiao Tung
University where he is now an associate professor. His research interests
include signal processing for communications, statistical signal processing,
and signal processing for VLSI designs. He was awarded a government
scholarship for overseas study from the Ministry of Education, Taiwan, in
2002-2005.


