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Abstract This study develops a mathematical model for simulating the hydraulic head distribution in
response to pumping in a sloping fault zone aquifer under a water table boundary condition. A two-
dimensional equation with a sink term representing the pumping is used for describing the head distribu-
tion in the aquifer. In addition, a first-order free surface equation is adopted to represent the change in
water table at the outcrop. The analytical solution of the model, derived by the Laplace and finite Fourier
cosine transforms, is expressed in terms of a double series. A finite difference solution within a deformable
grid framework is developed to assess the solution obtained by specifying the free surface equation at the
outcrop. Based on the analytical solution, we have found that the model’s prediction tends to overestimate
drawdown in a late pumping period. The temporal head distribution is independent of the aquifer slope if
the water table change is small, and exhibits a double-humped shape due to the effect of the free surface.
The temporal drawdown predicted from the analytical solution is further compared with those measured
from a pumping test conducted in northern Portugal.

1. Introduction

There are two primary types of sloping unconfined aquifers: one is an aquifer with the water table as the
upper boundary and a sloping impervious bed at the bottom, while the other is a sloping fault zone aquifer
with the water table at the outcrop. The former involves water table change when subject to rainfall
recharge. Chapuis [2011] reviewed analytical solutions for the problem involving steady state groundwater
seepage due to recharge. He assessed the validation of those solutions using a finite element solution con-
sidering both saturated and unsaturated flows. On the other hand, the second type of aquifer, also called a
sloping fracture, represents an aquifer in a rock fracture or a fault that connects the atmosphere with the
free surface at the outcrop. The permeability of the surrounding rock in that case is generally much lower
than that of the aquifer.

Analytical solutions which may be applicable to the sloping fault zone aquifer are reviewed as follows. Han-
tush [1962] considered a wedge-shaped aquifer connected to an external reservoir, where the water level
varies temporally. He presented an analytical solution describing hydraulic head in the aquifer and indicated
that the wedge-shaped aquifer cannot be approximated by a uniform one. Latinopoulos [1985] considered
a rectangular aquifer where each side can be subject to either the Dirichlet, no-flow, or Robin boundary con-
dition. He developed analytical solutions describing hydraulic head in the aquifer with different combina-
tions of the boundary conditions. Pacheco [2002] considered a sloping fault zone aquifer extending semi-
infinitely from the free surface at the outcrop. He used Cooper and Jacob [1946] solution to describe draw-
down in the aquifer before the drawdown cone reaches the free surface. Free surface movement is approxi-
mated as a known function of time [Pacheco, 2002, Equation (7), p. 119] once the drawdown cone reaches
the free surface. Nevertheless, such an approximation neglects the effect of gravity drainage from the free
surface decline.

This current paper develops a mathematical model for describing two-dimensional (2-D) groundwater flow
induced by pumping in a sloping fault zone aquifer with the water table at the outcrop. A first-order free
surface equation is employed to describe a water table decline. A sink term in the 2-D flow equation repre-
sents a constant pumping rate for a vertical well. The analytical solution of the model, expressed in terms of
a double series, is developed by applying the Laplace transform and finite Fourier cosine transform. The
finite difference solution of the model within a deformable grid framework is also developed for
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comparison with the analytical solution. The effect of the aquifer slope on temporal and spatial head distri-
butions is investigated. Additionally, the temporal drawdown predicted by the analytical solution is com-
pared with the field drawdown data observed in a pumping test by Pacheco [2002].

2. Mathematical Development

2.1. Conceptual Model
Rocks surrounding a sloping fault zone unconfined aquifer are regarded as an impermeable stratum when
the ratio of the rock’s hydraulic conductivity to that of the aquifer is less than 1029 [Huang et al., 2012]. Fig-
ure 1 illustrates the schematic diagram of such a sloping fault zone unconfined aquifer with a pumping
well. This aquifer extends finitely from the ground, outcrops with a free surface, slants with an angle h, and
has a thickness B as shown in Figure 1a. The x and y axes are horizontal, and the z axis is vertical in the Car-
tesian coordinate system. The x0 and z0 axes are parallel and perpendicular to the aquifer, respectively, in
the sloping coordinate system. The well position is (0, y0) as shown in Figure 1b. The aquifer has finite Wx

and Wy in width in the x0-direction and y-direction, respectively. The distance between the well and the free
surface is W1 in the x0-direction and W1cos h in the x-direction.

Consider 2-D groundwater flow in the sloping aquifer. The flow equation describing transient hydraulic
head hðx; y; tÞ in response to constant pumping can be expressed as

T
@2h

@x 0 2
1T

@2h
@y2

5S
@h
@t

1Qd x
0

� �
d y2y0ð Þ (1)

where T is the aquifer transmissivity, S is the aquifer storage coefficient, Q is a pumping rate, and d() is the
Dirac delta function. Equation (1) is applicable to 2-D flow in the sloping aquifer except in the case that the
aquifer is horizontal or vertical. The case of the horizontal aquifer is trivial. For the vertical aquifer, one may
refer to Anderson [2006].

The Dirac delta functions in equation (1) represent an infinitesimal well radius with negligible effects of a
finite well radius and wellbore storage on the head. Papadopulos and Cooper [1967] mentioned that those
effects greatly diminish when t > 2:53102r2

c =T , where rc is the inner radius of a well. In addition, Yeh and

Figure 1. Schematic diagram of a sloping fault zone unconfined aquifer outcropping with the water table.
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Chang [2013] also stated that the effects are negligible for a small-diameter well with a finite radius varying
between 0.05 and 0.25 m.

The flow is static prior to pumping, and the hydraulic head is uniform over the whole domain. With the ref-
erence datum chosen at the free surface, the initial condition is therefore expressed as

h50 at t50 (2)

That is, the atmospheric pressure is set to zero. Based on equation (2), the hydraulic head h is negative for
pumping, and its absolute value represents drawdown.

The first-order free surface equation describing vertical water table movement induced by pumping is writ-
ten as

K
@h
@z

52Sy
@h
@t

at z5W1sin h1h and xo � x � xf (3)

where K5T/B is the aquifer hydraulic conductivity, Sy is the specific yield, xo5W1cos h2B=ð2sin hÞ, and
xf 5W1cos h1B=ð2sin hÞ. Introduce the relation between the Cartesian and sloping coordinate systems as

x
0
5xcos h1zsin h

y05y

z052xsin h1zcos h

(4)

Based on equation (4), equation (3) can be written as

K
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(5)

where @x
0
=@z5sin h. The derivative term @h=@z0 approaches zero since the groundwater moves along the

x0-direction. Under this condition, equation (5) reduces to

Ksin h
@h
@x0

52Sy
@h
@t

at x
0
5W11h=sin h (6)

Note that W11h=sin h represents a water table position in x0-direction and makes equation (6) nonlinear
due to the presence of the unknown water table position. Equation (6) can be linearized by neglecting the
last term h=sin h as

Ksin h
@h
@x0

52Sy
@h
@t

at x
0
5W1 (7)

which implies that the boundary condition is fixed at x
0
5W1. This treatment is similar to the one taken by

Neuman [1972] in developing an analytical solution for a horizontal unconfined aquifer.

The edges of the aquifer are considered under the no-flow condition as

@h=@x
0
50 at x

0
52W2 (8)

@h=@y50 at y56Wy=2 (9)

where W2 is the distance between the well and the bottom edge shown in Figure 1a. The beginning time
accounting for the boundary effect on the head can be estimated by R2S=ð16TÞ where R represents a short-
est distance measured from the well to the boundaries of the aquifer [Wang and Yeh, 2008, Table II]. In
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addition, each series of the model’s solution, equations (14) and (15), converges faster when setting smaller
widths of Wx and Wy.

Define dimensionless variables and parameters below

hD5
Th
Q
; tD5

Tt
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2
; x

0
D5

x
0
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; xD5

x
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(10)

where the subscript D is used to denote the dimensionless variables. Based on equation (10), equations (1)
and (2) and (6)–(9) can be written, respectively, as
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hD50 at tD50 (11a)

@hD

@x0D
52r

@hD

@tD
at x

0
D511shD (11b)
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0
D51 (11c)

@hD=@x
0
D50 at x

0
D52v (11d)

@hD=@yD50 at yD56n=2 (11e)

2.2. Analytical Solution
Applying the finite Fourier cosine transform to yD and the Laplace transform to tD in equations (11) and
(11a) and (11c)-11e) results in an ordinary differential equation (ODE) in terms of x

0
D. Solving the ODE simul-

taneously with the transformed boundary conditions yields the head solution in the Laplace and Fourier
domain as

hD1ðx
0
D;wm; pÞ5uðv; 12x

0
DÞ for 0 � x

0
D � 1 (12)

hD2ðx
0
D;wm; pÞ5uðv1x

0
D; 1Þ for 2v � x

0
D � 0 (13)

with

uða; bÞ52
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n
2
Þ� (13a)
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2

m1p=#
q

(13b)

wm5pm=n (13c)

where p is the Laplace transform parameter, and m � 1, 2, . . .1 is the finite Fourier cosine transform
parameter. A detailed derivation of equations (12) and (13) is given in Appendix A. Application of complex
analysis to the inverse Laplace transform leads to the head solution in the Fourier domain illustrated in
Appendix B. Introducing the formula, equation (A3), for the inverse finite Fourier cosine transform to the
Fourier-domain solution yields the head solution as

hD1ðx
0
D; yD; tDÞ5Uðv; 12x

0
DÞ for 0 � x

0
D � 1 (14)
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hD2ðx
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D � 0 (15)

with
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utða; bÞ52½3l1ða21b2Þ16l1ðtD1rbÞ2l3�=ð6l2
1Þ (15b)

usða; b;wÞ52cosh ðawÞcosh ðbwÞ=½#wsinh ðawÞ� (15c)

u0ða; b;wÞ52cosh ðab0Þexp ½2k0ðwÞtD�½b0cosh ðbb0Þ2rk0ðwÞsinh ðbb0Þ�=g0ðwÞ (15d)

unða; b;wÞ52cos ðabnÞexp ½2knðwÞtD�½bncos ðbbnÞ2rknðwÞsin ðbbnÞ�=gnðwÞ (15e)

YðmÞ5cos ½pmð0:51yD=nÞ�cos ½pmð0:51y0D=nÞ� (15f)

g0ðwÞ5k0ðwÞfl2b0cosh ðab0Þ1½12rak0ðwÞ�sinh ðab0Þg (15g)

gnðwÞ5knðwÞfl2bncos ðabnÞ1½12raknðwÞ�sin ðabnÞg (15h)

k0ðwÞ5w22b2
0; knðwÞ5w21b2

n (15i)

l15a1r; l25a12r; l35a2ða13rÞ (15j)

where wm is defined in equation (13c) and b0 and bn are the roots of equations denoted, respectively, as

exp ð2ab0Þ5
2rb2

01b01rw2
m

rb2
01b02rw2

m

(16)

and

tan ðabnÞ52rðb2
n1w2

mÞ=bn (17)

Notice that equation (16) has only one positive root, whereas equation (17) has infinite positive roots
caused by the periodic function of tan ðabnÞ. Estimates for b0 and bn are given in section 2.3. The solution,
equations (14) and (15), is composed of four terms. The first term is the closed form expression for /t; the
second and third terms contain the simple series expanded in terms of bn and m, respectively; the last term
is the double series expanded in terms of m and bn. Equation (15b) is a first-order polynomial in time, indi-
cating that there is no steady state head distribution.

The water table position can be approximated as

x0Dapprox:511shD1 (18)

where hD1, a function of yD and tD, is the head predicted from equation (14) with x
0
D51. The absolute value

of hD1 represents drawdown. The term hD1=sin h reflects water table movement along the negative direc-
tion of x

0
D-axis. Thus, the problem domain falls in the range of x

0
D � x

0
Dapprox:. The x

0
Dapprox: will be com-

pared with 11shD where hD is predicted by the finite difference solution developed based on equation
(11b) in section 2.4. This comparison will be illustrated in section 3.3.

2.3. Calculation of b0 and bn

The roots in equations (16) and (17), b0 and bn, can be found by Newton’s method with appropriate initial
guess values. The roots are the intersection points of the left-hand side (LHS) and right-hand side (RHS)
functions of equation (16) for b0 and (17) for bn. The root b0 is very close to the vertical asymptote of the
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RHS function of equation (16). The initial guess for b0 is chosen as the position of the asymptote derived by
setting the denominator of the RHS function to zero, and in turn expressed as

b0initial5d1ð211

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
114ðrwmÞ2

q
Þ=ð2rÞ (19)

where d is a small positive value, say d51028, to prevent the denominator from being zero in the iteration
process. Similarly, the roots bn are also close to the vertical asymptotes of the LHS function, tan ðabnÞ. The
initial guesses for bn are therefore chosen as

bninitial5d1ð2n21Þp=ð2aÞ (20)

where n � 1, 2, . . .1.

2.4. Finite Difference Solution
An implicit finite difference method is applied to approximate equations (11)–(11b) and (11d) and (11e) for
comparison with the present analytical solution developed based on equation (11c). A nonuniform finite
difference grid is used to discretize the problem domain, and its nodal points are shown in Figure 2.
Assume that the aquifer has a dimensionless width of 10 in the x

0
D-direction and yD-direction, and the

problem domain falls in the range of 29 � x
0
D � 1 and 25 � yD � 5. The pumping well is located at the

origin (x
0
D50 and yD50). The region near the well has small grid sizes and away from the well has large

grid sizes.

Figure 2. Schematic diagram of nodal points for the finite difference solution.
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Equation (11) is approximated as

hD
n11
i11;j22hD

n11
i;j 1hD

n11
i21;j

ðDx 0Dk;jÞ2
1

hD
n11
i;j1122hD

n11
i;j 1hD

n11
i;j21

ðDyDi;kÞ2

5
hD

n11
i;j 2hD

n
i;j

DtD
1
½ðDx

0
D1;jÞðDyDi;1Þ�21at well position

0 else where

8<
:

(21)

where DtD is a dimensionless time step, tD5DtD3n is the present time, hD
n11
i;j is the hydraulic head at nodal

point (i, j), and time tD, hD
n
i;j is the head at one step earlier than hD

n11
i;j , and k � 1, 2, and 3. The integer pair

(i, j) is ordered from the LHS boundary in the x
0
D-direction and from the lower boundary in the yD-direction.

The grid sizes Dx
0
D1;j , Dx

0
D2;j , and Dx

0
D3;j in the x

0
D-direction are 0:02 for 20:2 � x

0
D � 0:2; 0:1 for 21

� x
0
D � 20:2 and 0:2 � x

0
D � 1, and 0:4 for 29 � x

0
D � 21, respectively, as shown in Figure 2. Similarly,

the grid sizes DyDi;1, DyDi;2, and DyDi;3 in yD-direction are 0:02 for 20:2 � yD � 0:2; 0:1 for 21 � yD � 2

0:2 and 0:2 � yD � 1, and 0:4 for 25 � yD � 21 and 1 � yD � 5, respectively.

The initial condition of equation (11a) can be denoted as

hD
1
i;j50 at each ði; jÞ (22)

Equation (11d) representing the no-flow boundary at the first i is approximated as

hD
n11
i21;j5hD

n11
i11;j at i51 (23)

Similarly, equation (11e) representing the no-flow boundaries for the first and last j is approximated, respec-
tively, as

hD
n11
i;j215hD

n11
i;j11 at j51 (24)

hD
n11
i;j215hD

n11
i;j11 at j5ny (25)

where ny denotes the total number of nodes in yD-direction, and (0, j), (i, 0), and (i, ny11) are the positions
of fictitious nodes outside the no-flow boundaries.

Consider a deformable grid framework in the region of 0:2 � x
0
D � 1 as shown in Figure 2, where water

table movement is described by equation (11b). In this region, the grid size remains constant before the
movement. The grid sizes DyDi;1, DyDi;2, and DyDi;3 remain constant while the grid size Dx

0
D2;j decreases to

match a new location of the water table. The deformable grid size Dx
0
D

n11
j is then adjusted according to

the water table location at the previous time step as

Dx
0
D

n11
j 5

Wd1shD
n
i;j

nd
at i5nx (26)

where nx is the total number of the grids in x
0
D-direction, Wd (the region width) is 0.8, and nd (the number

of the grids inside the region) is 8. Note that the grid size Dx
0
D

n11
j will be changed at each time step, and

the nx and nd maintain constant during the entire simulation time. Equation (11b), which describes the
water table movement, can be approximated as

hD
n11
i;j 2hD

n11
i21;j

Dx 0Dn11
j

52r
hD

n11
i;j 2hD

n
i;j

DtD
at i5nx (27)

where Dx
0
D

n11
j has been defined by equation (26). In the numerical simulation, the time increment DtD is

set to 1, and the simulation period is 0 � tD � 1460 (365 day).
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3. Results and Discussion

This section analyzes hydraulic head predicted by the analytical solution and the finite difference solution.
In section 3.1, the influence of the aquifer slope on temporal and spatial head distributions is assessed. In
section 3.2, the effects of the no-flow and water table boundaries on a temporal head distribution is investi-
gated. In section 3.3, the use of equation (11c) to develop the analytical solution is evaluated and discussed.
In these three sections, default values of variables and hydraulic parameters are given in the second column
of Table 1. In section 3.4, the application of the present solution to a real-world case is presented.

3.1. Effect of Aquifer Slope on Head
The aquifer slope affects late parts of a temporal head distribution. Figure 3 illustrates the temporal distribu-
tions of hydraulic head hD2(20.2, 0, tD) and hD2(21, 0, tD) predicted by equation (15) when h 5 20�, 45�, and
60�. The hydraulic head hD1(1, 0, tD) predicted by equation (14) is also considered, and its absolute value j
hD1j is used to approximate a water table decline as illustrated in Figure 3. When tD < 6, there is no differ-
ence in predicted head hD2 for various h. When tD � 6, the water table represented by jhD1j declines signifi-
cantly, and a larger h leads to a smaller head hD2 at a specific time. It seems reasonable to conclude that the
change in the aquifer slope does not affect the temporal head distributions before the occurrence of a sig-
nificant water table decline.

Figure 4 shows the spatial head distribution predicted by equation (14) for h 5 0, 20�, 45�, and 60�. We con-
sider tD 5 0.04 for avoiding the boundary effect. The Theis [1935] solution for a horizontal confined aquifer
is taken for comparison. The figure indicates that the spatial head distributions plotted in the horizontal
coordinate system for varied h are different. The reason for difference from them is because the varying
value of h causes different x

0
D by the relationship x

0
D5xD=cos h for a fixed xD. Accordingly, the Theis [1935]

solution for a horizontal confined aquifer can be used to account for the slope effect prior to the boundary
effect when replacing the radial variable r by r=cos h. The Theis [1935] solution gives the same predicted
result as the present analytical solution for each h.

3.2. Boundary Effect on Temporal Head
The free surface, described by equation (11c), causes temporally varied flow in a double-humped shape,
which exhibits unconfined behavior. Figure 5 demonstrates the temporal head distributions of hD1(1, 0, tD)
predicted by equation (14) and hD2(21, 0, tD) predicted by equation (15) for r 5 40 (Sy 5 0.1) and 80
(Sy 5 0.2). The absolute value of the head jhD1j denotes a vertical water table decline, as illustrated in Figure
5. That figure shows that the temporal head distribution of hD2 reaches its flat stage in the period of
4 � tD � 10, when r540 or 4 � tD � 20 when r580. The flat stage is due to gravity drainage at x

0
D51, and

Table 1. Default Values to Variables and Hydraulic Parameters

Notation Default Value (unit)

Field Data (unit)

DescriptionE3 E5

h none none none Hydraulic head
(x0 , y, t) (250 m, 0, 0.01 day) (0.07m, 0, 280 min) (0.07m, 0, 110 min) Variables of sloping Cartesian coordinate,

and time variable
y0 0 0 0 Well position in y-direction
B 30 m 35 m 35 m Aquifer thickness in z0-direction
T 30 m2/d 1.2 3 1023 m2/min 3.5 3 1024 m2/min Transmissivity
S 3 3 1023 6.1 3 1024 6.1 3 1024 Storage coefficient
Q 100 m3/d 0.0342 m3/min 0.0354 m3/min Pumping rate
K 1 m/d 3.4 3 1025 m/min 1.0 3 1025 m/min Hydraulic conductivity defined as K 5 T/B
(Sy, h) (0.2, p/6) (0.01, p/4) (0.01, p/4) Aquifer specific yield and slope, respectively
(W1, W2) (50 m, 450 m) (178 m, 322 m) (184 m, 316 m) Distance measured from the well to the top and

bottom boundaries, respectively, in x0-direction
(Wx, Wy) (500 m, 500 m) (500 m, 500 m) (500 m, 500 m) Aquifer widths in x0-direction and y-direction,

respectively, and Wx5W11W2

(hD1, hD2) none none none Th/Q for 0 � x
0

D � 1 and 2v � x
0

D � 0, respectively
ðx 0 D; yD; tDÞ (21, 0, 0.04) (3.9 3 1024, 0, 0.017) (3.8 3 1024, 0, 1.9 3 1023) ðx 0=W1; y=W1; T t=ðSW2

1 ÞÞ
y0D 0 0 0 y0/W1

(r, s) (80, 0.133) (4.56, 0.226) (4.41, 0.777) ðSy B=ðSW1sin hÞ;Q=ðTW1sin hÞÞ
(v, a, n) (9, 10, 10) (1.81, 2.81, 2.81) (1.72, 2.72, 2.71) (W2/W1, Wx/W1, Wy/W1)
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a larger r leads to a longer flat stage. The flat stage occurs at tD 5 4, with a significant water table decline
represented by jhD1j. On the other hand, the no-flow boundary at the edges of the aquifer makes the tem-
poral head distribution decrease dramatically. Figure 6 shows the temporal distributions of hD2(21, 0, tD) for
the aquifer widths of a 5 n 5 10 (500 m) and 20 (1000 m). Both curves deviate at tD 5 20, indicating the
boundary effect on the head distribution in the case of a 5 n 5 10. Note that the effect of the no-flow
boundary is more apparent at the later period than that of the water table boundary because the pumping
well is closer to the outcrop, as shown in Figure 6.

3.3. Free Surface Equation
The finite difference solution is used to assess a water table decline predicted based on equation (11c),
which is commonly used to develop analytical solutions [e.g., Neuman, 1972; Zhan and Zlotnik, 2002; Huang
et al., 2012]. Figure 7 illustrates the spatial head distributions predicted by the analytical solution and finite
difference solution at times of 4 (1 day), 400 (100 day), and 1460 (365 day). The numerical solution considers
the free surface boundary, described by equation (11b) specified at the dynamic water table. On the other
hand, the analytical solution is developed based on the free surface equation fixed at the outcrop (i.e.,
x
0
D51). Consequently, the location of the water table can be approximated by equation (18). The water

table declines predicted by both solutions are along the aquifer slope, as shown in the figure. When tD 5 4,
the predicted head distributions from both solutions agree well and are near symmetrical to the well
because of the insignificant water table decline at xD50:86. The figure however indicates that the analytical
solution overestimates the drawdown at the late pumping times of tD 5 400 and 1460. Furthermore, the
temporal head distributions at the locations of (26.6, 0) and (23, 0) and at the outcrop of (1, 0) predicted
by both solutions are drawn in Figure 8. The results predicted by the analytical solution are valid before

Figure 3. Temporal distributions of hydraulic head at the observation wells of (21, 0) and (20.2, 0) and at the outcrop of (1, 0) predicted by the analytical solution for various aquifer
slopes.
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tD 5 10 that is 2.5 day calculated based on t5ðSW1
2ÞtD=T for the values of T, S, and W1 (550 m) given in

Table 1. After tD 5 10, the analytical solution underestimates the hydraulic head (or overestimates the draw-
down) because of the simplification of equation (11b) to (11c) by specifying the free surface equation at the
outcrop (i.e., x

0
D51). However, the location to specify this equation should follow the water table, which

moves toward the well as time increases. In engineering practice, a large distance between a pumping well
and the outcrop should be seriously considered for much groundwater exploitation. Accordingly, the ana-
lytical solution can give fairly good prediction before t 5 100 day for the given default values except that
W1 5 320 m.

3.4. Comparison With Field Data
Pacheco [2002] reported a pumping test conducted in a geologic formation consisting mostly of serpentine
rocks splitting with several fractures in the study region. Crushed materials with clay minerals fill these frac-
tures. The fractures distribute anomalously and crisscross with each other. Eleven pumping wells were
installed and named as serial numbers from E1 to E11. One fracture with E3 and E5 wells corresponds with
the present model considering a single fracture with a pumping well [Pacheco, 2002, FZ3 in Figure 5, p.
124]. The pumping rates at E3 and E5 wells are 0.0342 and 0.0354 m3/min, respectively. The radius for both
wells is 0.07 m. The drawdown data observed from E3 and E5 wells are shown in Figure 9a. The fracture
inclines approximately 45� toward the southwest, and its average thickness is 35 m. A schematic diagram of
the fracture with the wells is shown in Figure 9b.

Pacheco [2002] indicated that the values of T and S range from 8.4 3 1025 to 1.2 3 1022 m2/min and from
2 3 1025 to 6.1 3 1022, respectively. Accounting for the aquifer heterogeneity, the values of T are chosen
as 1.2 3 1023 and 3.5 3 1024 m2/min, and the values of K are 3.4 3 1025 and 1.0 3 1025 m/min for the
local aquifer near E3 and E5 wells, respectively. The S is set as 6.1 3 1024 and Sy is set as 0.01 because of
the presence of the clay formation. The hydraulic parameters mentioned above are shown in Table 1.

Figure 4. Spatial distributions of hydraulic head at yD 5 0 predicted by the analytical solution and the Theis [1935] solution for various aquifer slopes when tD 5 0.04.
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The time-drawdown curves predicted by equation (14) are compared with those predicted by the Pacheco
[2002] solution and the field data observed at E3 and E5 wells [Pacheco, 2002] shown in Figure 9a. The E3
and E5 wells operated for 280 and 110 min, respectively. The drawdown cones induced by E3 and E5 wells
have not reached the outcrop at t 5 280 and 110 min, respectively, as illustrated in Figure 9b, implying that
the flow is still under the confined condition. Figure 9a reveals that both solutions overestimate the draw-
down over the whole pumping period. This discrepancy may be attributed to water recharge from adjacent
small fractures and a nearby fault zone [Pacheco, 2002, FZ4 in Figure 5, p. 124] mentioned in Pacheco and
Van der Weijden [2012]. In addition, the difference in the predicted drawdown curves is mainly because the
Pacheco solution is developed based on the Cooper-Jacob formula.

4. Concluding Remarks

A mathematical model has been developed for simulating groundwater flow due to pumping in a sloping
fault zone unconfined aquifer outcropping with a free surface. A 2-D equation with a sink term representing
a pumping well is used for describing the flow in the sloping aquifer. A first-order free surface equation
specified at the outcrop describes water table movement while the no-flow boundary is imposed for the
other edges of the aquifer. The analytical solution of the model, derived by the Laplace transform and finite
Fourier cosine transform, is expressed as a double series expanded in terms of integers as well as roots b0

and bn. The roots are determined by Newton’s method with the initial guesses represented by analytical
expressions. Furthermore, the finite difference solution of the model is developed within a deformable grid
framework to simulate the position of the dynamic water table at the outcrop. Additionally, the drawdown
distribution predicted by the analytical solution is compared with field data observed from a pumping test
reported in Pacheco [2002]. Main conclusions providing new physical insights can be drawn below:

1. The aquifer slope does not affect a temporal head distribution before a significant water table decline tak-
ing place.

Figure 5. Temporal distributions of hydraulic head at the observation well of (21, 0) and at the outcrop of (1, 0), as predicted by the analytical solution for different specific yields.

Water Resources Research 10.1002/2013WR014212

HUANG ET AL. VC 2014. American Geophysical Union. All Rights Reserved. 4089



Figure 6. Temporal distributions of hydraulic head at the observation well of (21, 0) predicted by the analytical solution for different aquifer widths.

Figure 7. Spatial distributions of hydraulic head at yD 5 0 predicted by the analytical solution and finite difference solution for different times.
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2. The spatial head distribution in the horizontal coordinate system depends on the aquifer slope because
of the relationship of x

0
D5xD=cos h.

3. The Theis [1935] solution, replacing r by r=cos h, is applicable to evaluating the effect of the slope on a
spatial head distribution before a significant water table decline taking place.

Figure 8. Temporal distributions of hydraulic head at the observation wells of (26.6, 0) and (23, 0) and at the outcrop of (1, 0) predicted by the analytical solution and finite difference
solution.

Figure 9. Comparison of the temporal drawdown distributions predicted by the analytical solution and Pacheco [2002] solution with the field drawdown data reported by Pacheco
[2002].
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4. The time-drawdown curve for a sloping fault zone unconfined aquifer exhibits a double-humped shape
due to gravity drainage once the water table declines.

5. The predicted head distribution obtained based on the assumption that the free surface equation is fixed
at the outcrop is valid for a short dimensionless pumping period and tends to overestimate drawdown for a
long one.

Appendix A: Derivation of Equations (12) and (13)

The definition of the finite Fourier cosine transform is expressed as

�hDðmÞ5
ðn=2

2n=2
hDcos wmðyD1

n
2
Þ

� �
dyD (A1)

where wm is defined by equation (13c). The transform has the property of

ðn

0

@2hD

@y2
D

cos ðwmyDÞdyD5ð21Þm @hD

@yD

���
yD5n=2

2
@hD

@yD

���
yD52n=2

2w2
m

�hDðmÞ (A2)

The first and second RHS terms equal zero due to equation (11e). The formula for the inverse finite Fourier
cosine transform can be written as

hD5
1
n

�hDð0Þ1
2
n

X1
m51

�hDðmÞcos wmðyD1
n
2
Þ

� �
(A3)

On the other hand, the definition of the Laplace transform is expressed as

hDðpÞ5
ð1

0

�hDexp ð2ptDÞdtD (A4)

It has the property of

ð1
0

@�hD

@tD
exp ð2ptDÞdtD5phD2�hDj tD50 (A5)

where �hD is the head transformed by the finite Fourier cosine transform. The second RHS term equals zero
because of equation (11a).

After applying these two transforms to equations (11), (11a), and (11c)-11e), the resultant ODE and trans-
formed boundary conditions in terms of x

0
D are rewritten as

@2��hD

@x 0 2D
2ðp1w2

mÞhD5
1
p

cos wmðy0D1
n
2
Þ

� �
d x

0
D

� �
(A6)

@2��hD

@x 0D
52rphD at x

0
D51 (A7)

@hD=@x
0
D50 at x

0
D52v (A8)

where p is the Laplace transform parameter. Equation (A6) can be separated according to the Dirac delta
function d x

0
D

� 	
into two homogeneous ODEs as
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@2��hD

@x 0 2D
2ðp1w2

mÞhD150 for 0 � x
0
D � 1 (A9)

@2��hD

@x 0 2D
2ðp1w2

mÞhD250 for 2v � x
0
D � 0 (A10)

Two requirements at x
0
D50 are needed to solve the ODEs. One is the continuity of the transformed hydrau-

lic head denoted as

hD15hD2 at x
0
D50 (A11)

The other can be obtained by integrating equation (A6) to x
0
D from x

0
D502 to x

0
D501 as

@2��hD1

@x 0D
2
@2��hD2

@x 0D
5

1
p

cos wmðy0D1
n
2
Þ

� �
at x

0
D50 (A12)

which reflects the discontinuity of the flux at x
0
D50 due to d x

0
D

� 	
. Note that the integration of the second

LHS term in equation (A6) equals zero because of equation (A11). Solving equations (A9) and (A10) simulta-
neously with equations (A7), (A8), (A11), and (A12) leads to equations (12) and (13).

Appendix B: Inverse Laplace Transform of Equation (13a)

The function / defined by equation (13a) is a single-value function of p in a complex plane. The single-
value function gives the only result to a specific p and has no branch cut that reflects spatial discontinuity
between p1 and p2. Therefore, uðp1Þ equals uðp2Þ for any complex number p. One can confirm uðp1Þ5u
ðp2Þ in the following way. Let p1 and p2 be in terms of the polar coordinate with the origin at p52w2

m

obtained from the root of kðpÞ50 as

p15rexp ðidÞ2w2
m (B1)

p25rexp ½iðd22pÞ�2w2
m (B2)

where r is a radius from the origin, d is an argument between 0 and 2p, and i is the imaginary unit. Note
that equations (B1) and (B(2)) have the same result in terms of a complex number. Substituting equations
(B1) and (B2) into equation (13b), respectively, yields

k5
ffiffi
r
p

exp ðid=2Þ5
ffiffi
r
p
½cos ðd=2Þ1isin ðd=2Þ� (B3)

k5
ffiffi
r
p

exp ½iðd22pÞ=2�52
ffiffi
r
p
½cos ðd=2Þ1isin ðd=2Þ� (B4)

Notably, equations (B3) and (B4) differ in the negative sign. The results of substituting equations (B3) and
(B4) separately into equation (13a) are the same, indicating uðp1Þ5uðp2Þ and no branch cut.

Since / is a single-value function, an integral contour for its inverse Laplace transform consists of a straight
line and a semicircle. The straight line extends from p5r2i1 to p5r1i1 where r herein represents a posi-
tive value to contain all of the poles of the function /. The semicircle has an infinite radius and connects
the straight line to enclose those poles. The integral along the semicircle is zero because of the infinite
radius. According to the residue theory, the time domain inversion equals the sum of the residues of the
inside poles. Each residue can be estimated by the following formula

Res5
1

ðm21Þ! lim
p!}

dm21

dpm21
uðpÞ3ðp2}Þm½ �


 �
(B5)

where } represents the location of the pole of the function /, and m is the order of the pole.

The locations of the poles are determined by setting the denominator of equation (13a) to be zero as
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pk½rpcosh ðakÞ1ksinh ðakÞ�50 (B6)

where k5
ffiffiffiffiffiffiffiffiffiffiffiffiffi
w2

m1p
p

. The roots of the equation represent the locations of the poles in a complex plane and
appear only at the negative part of the real axis. Note that p52w2

m derived from k50 is not a pole because
the power of

ffiffiffiffiffiffiffiffiffiffiffiffiffi
w2

m1p
p

is 1/2 rather than an integer. Equation (B6) will be analyzed according to the value of
wm.

When wm > 0, equation (B6) obviously has one simple pole at p 5 0. According to equation (B5), the residue
equals the product of cos ½wmðy0D1n=2Þ� and /s defined by equation (15c). In addition, other poles can be
obtained numerically by

rp cosh ðakÞ1k sinh ðakÞ50 (B7)

which is derived from setting the term in the bracket of equation (B6) to be zero. One simple pole is located
at p 5 p0 between p 5 0 and p52w2

m. Let k5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2

m1p0
p

5b0 for conciseness, and thus one obtains
p05b2

02w2
m. Substituting k5b0 and p5p0 into equation (B7) and rearranging the result yields equation (16).

With the value of b0, the location of the simple pole can be obtained by p05b2
02w2

m. Its residue is derived
by applying equation (B5) as the product of cos ½wmðy0D1n=2Þ� and /0 defined by equation (15d). On the
other hand, behind p52w2

m, there are infinite simple poles at p5pn where n � 1, 2, 3, . . .1. For preventing
the residues of these poles from the imagery unit i, we let k5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2

m1pn

p
5ibn and have pn52b2

n2w2
m. Substi-

tuting k5ibn and p5pn into equation (B7) and rearranging the result leads to equation (17). With the values of
bn, the locations of those simple poles can be estimated by pn52b2

n2w2
m. The residues are expressed by

applying equation (B5) as the product of cos ½wmðy0D1n=2Þ� and /n defined by equation (15e).

When wm50, equation (B6) reduces to

p2½rkcosh ðakÞ1sinh ðakÞ�50 (B8)

where k5
ffiffiffi
p
p

. Apparently, one second-order pole is at p 5 0. Applying equation (B5) results in its residue as
/t defined by equation (15b). Furthermore, infinite simple poles are at p 5 pn behind p 5 0. The residues
can be obtained directly by substituting wm 5 0 into equation (15e).
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