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PushPull: Short-Path Padding for
Timing Error Resilient Circuits

Yu-Ming Yang, Iris Hui-Ru Jiang, Member, IEEE, and Sung-Ting Ho

Abstract—Modern IC designs are exposed to a wide range of
dynamic variations. Traditionally, a conservative timing guard-
band is required to guarantee correct operations under the
worst-case variation, thus leading to performance degradation. To
remove the guardband, resilient circuits are proposed. However,
the short-path padding (hold time fixing) problem in resilient
circuits is far severer than conventional IC design. Therefore, in
this paper, we focus on the short-path padding problem to enable
the timing error detection and correction mechanism of resilient
circuits. Unlike recent prior work adopts greedy heuristics with
a local view, we determine the padding values and locations with
a global view. Moreover, we utilize spare cells and a dummy
metal to further achieve the derived padding values at physical
implementation. Experimental results show that our method is
promising to validate timing error-resilient circuits.

Index Terms—Delay padding, engineering change order,
hold time fixing, linear programming, resilient circuits,
timing analysis.

I. INTRODUCTION

UE TO a wide range of dynamic variations, e.g., supply

voltage droops, process variations, temperature fluctua-
tions, soft errors, and transistor aging degradation, the timing
characterization is extremely difficult in modern IC designs.
Therefore, in conventional design, designers conservatively
(pessimistically) reserve a timing guardband to ensure correct
functionality even under the (rare) worst-case circumstance.
However, this reserved guardband may severely degrade circuit
performance, i.e., limiting the clock frequency.

Recently, several resilient circuits have been proposed to
eliminate the guardband by error detection and correction
[1]-[5]. For example, Fig. 1 illustrates one error-detection
circuit, the Razor flip—flop proposed in [1]. One extra storage
element, the shadow latch, is augmented to sample the output
of a combinational logic by a delayed clock. The main

Manuscript received June 24, 2013; revised October 1, 2013 and November
26, 2013; accepted January 15, 2014. Date of current version March 17,
2014. This work was supported by the NSC of Taiwan under Grant NSC
101-2628-E-009-012-MY?2, Grant NSC-101-2220-E-009-044, and Grant NSC
102-2220-E-009-028. An earlier version of this paper was published at ACM
International Symposium on Physical Design 2013 [17]. This paper was
recommended by Associate Editor C. Sze.

Y.-M. Yang and I. H.-R. Jiang are with the Department of Electronics Engi-
neering and Institute of Electronics, National Chiao Tung University, Hsinchu
30010, Taiwan (e-mail: yuming.yyang @gmail.com; huiru.jiang @ gmail.com).

S.-T. Ho was with the Department of Electronics Engineering and Institute
of Electronics, National Chiao Tung University, Hsinchu 30010, Taiwan. He
is currently with CMSC, Inc (e-mail: gsy2i7y14@hotmail.com).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2014.2304681

i D
Com::ungnonal Main FE Q
ogic |
rat
Comparator
Shadow )Df—rError
laich :
[®]
dk | | ¢ I
clk_del 1] \ y
a Short path
w

Fig. 1. Error-detection part of a Razor flip—flop proposed in [1].

flip—flop and shadow latch outputs are compared to generate
a timing-error signal. If the output of the combinational logic
transitions is late, a timing error (discrepancy) is detected.
Error correction is then performed through instruction replay.

However, these resilient circuits require a significant hold
time margin for short paths. The resilient circuit may detect
a false timing error if the result of the next computation is
propagated through a short path and sampled by the delayed
clock. To avoid false error detection, short paths should exceed
the error detection window, i.e., the phase difference between
the delayed clock and the normal clock (w in Fig. 1). The
error detection window induces an extra hold time margin
requirement. This issue also exists in new forms of resilient
circuits [2]-[5]. In fact, short-path padding (hold time fixing)
is an inevitable and essential task in conventional IC design. A
circuit with hold violations cannot operate correctly. This short
path issue becomes even more challenging in resilient circuits
due to this extra hold time margin, typically, approximately
20% of the clock period. In order to validate the error detection
and correction mechanism of resilient circuits, we focus on
short-path padding in this paper.

To resolve this padding problem, prior works typically insert
buffers to lengthen short paths, see [6]-[13]. Among them,
the conventional delay padding is combined with clock skew
scheduling to minimize the clock period at the logic resynthe-
sis stage [7]-[9]. Their goal is to determine the padding delay
for each path rather than to decide where to insert the delay.
In contrast, several short-path padding methods determine the
positions to insert the delay [6], [10]-[13]. Shenoy er al. [6]
solve this problem by linear programming. Lin and Zhou [10]
transform this problem into a network flow problem (but
resulting in larger padding delay). Liu ef al. [13] reveal that
linear programming is time consuming and not applicable to
large-scale circuits by empirical data in [12]. Hence, recently,
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two greedy heuristics are proposed in [11]-[13]. One greedy
rule is to pad the gate with the largest setup slack, trying not
to hurt the longest path delay. The other is to pad at the gate
passed by most hold violating paths, trying to reduce the total
padding delay.

However, we observe that these greedy heuristics based on
local views may not pad short paths well. Fig. 2(a) gives an
input design, where gates g;, g», and g3 incur hold violations.
After iteratively padding delay on the gate either with the
largest setup slack [Fig. 2(b)] or with most hold violating
paths [Fig. 2(c)], we still have an unresolved hold violation
at gate g,. In fact, all hold violations can be cleaned as
shown in Fig. 2(d). It can be seen that padding with local
views may consume all setup slacks thus leaving some hold
violations unfixed [Fig. 2(b) and (c)]. Moreover, even if we
find an optimal padding solution [6], we may still fail at
physical implementation because the available buffer delays
are discrete.

Based on the above observations, we develop a three-stage
short-path padding algorithm, named PushPull, to overcome
these difficulties: Stage 1 decides a feasible clock period;
Stage 2 tries to minimize the total padding delay with a global
view and determines padding locations; Stage 3 allocates
load/buffers to attain the padding at postlayout to handle the
discrete cell library. Our features include the following.

1) Adjusting the target clock period dynamically: In some
resilient circuit design flow [4], designers verify whether
the target clock period is feasible after short paths are
padded. Unlike them, we check the feasibility of a
specific clock period at the early stage and adjust the
target clock period dynamically.

2) Finding the padding values with a global view: The
greedy heuristics proposed by prior works may fail to fix
all hold violations due to local views. Instead, in Stage 2,
we compute the padding flexibility of the fanout cone
of each gate. With this global view, we determine the
padding value for each gate accordingly.

3) Delay padding at postlayout: As the available resource
of padding is uncertain at early stages, unlike prior work
determines the padding values at logic resynthesis, we
further realize delay padding at the postlayout stage. As
the amount of delay offered by a cell library is discrete,
and the dummy metal offers an abundant and tunable
resource of capacitance [14], we simultaneously allocate
spare cells and the dummy metal to match the delay
padding determined in Stage 2.

Experiments are conducted on the IWLS 2005 benchmark
circuits [20] through the resilient circuit design flow. Our
results show that we can clean all hold violations with the
shortest runtime, while prior work may either fail to clean all
violations or incur long runtime. In addition, the spare cell
and dummy metal coallocation can successfully achieve the
derived padding values at postlayout.

The remainder of this paper is organized as follows.
Section II briefly introduces the resilient circuit design flow,
describes the timing model and gives the problem formulation.
Section IIT presents the overview of our short-path padding
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Fig. 2. Short-path padding. (a) Input design. (R/A/S, r/a/H) indicates setup
required time (R), setup arrival time (A), setup slack (S), hold required time
(r), hold arrival time (a), and hold slack (H) of a gate. (b) Padding from
gates with largest setup slacks: g3 (+0.3) — g1 (+0.3) — g2 (+0.1), total
padding delay = +0.7, unfixed. (c) Padding from gates with most hold time
violating paths: g; (+0.3) — g2 (+0.1), total padding delay = + 0.4, unfixed.
(d) Optimal short-path padding: g; (+0.2), g2 (+0.2), and g3 (+0.1), total
padding delay = +0.5.

framework, PushPull. Section IV describes Sy/Hy, decision
and derives setup/hold slack properties. Section V details
padding value determination. Section VI presents load/buffer
allocation. Section VII extends PushPull to adopt composite
current source (CCS) timing model. Section VIII shows ex-
perimental results. Finally, Section IX concludes this paper.

II. PRELIMINARIES AND PROBLEM FORMULATION

In this section, we briefly introduce the design flow for
resilient circuits, describe the timing model, and give the
problem formulation.

A. Resilient Circuit Design Flow

Fig. 3 shows a sample design flow to integrate timing error-
resilient circuits into a design. After logic synthesis and timing
analysis based on a conservative clock period (determined by
the worst case delay), the target clock period and the error
detection window w are determined. Sy, (respectively, Hy,)
means the ratio of the target clock period (respectively, the er-
ror detection window) over the conservative clock period. The
timing suspicious flip—flops, whose longest path delays exceed
the target clock period, are replaced by resilient circuits. After
the replacement, placement and routing are applied. Because
of the significant hold time margin, hold violations may still
exist in a placed and routed resilient design. Finally, short-
path padding is performed. The target clock period is adjusted
according to how many hold violations remain.

The short-path issue is not only inevitable for conventional
IC design but also more challenging in resilient circuits due to
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Fig. 3. Design flow of resilient circuits.

this extra hold time margin. Therefore, the short-path padding
is a must to validate timing error-resilient circuits.

B. Timing Model

The cell timing model used in this paper is based on
Synopsys’ Liberty library [15]. The calibrated delay values of
each library cell are stored in the lookup tables and indexed
by its input slew and output capacitance. The wire delay of
each net is lumped into the delay of its driving gate. The
output capacitance of a gate includes wire loading, the input
capacitance of its fanout gates, and its output pin capacitance.
In addition, the output capacitance of each cell is bounded
by the maximum load capacitance defined in the cell library.
Chen et al. [16] observe loading dominance phenomenon: The
change on the gate delay is dominated by output capacitance.
Later, the experimental results also show that the impact of
input slew on the gate delay is quite small. In Section VI-B,
we shall discuss how to handle CCS timing model.

C. Problem Formulation

In order to validate the error detection and correction
mechanism of resilient circuits, we focus on the short-path
padding problem which is formulated as follows.

The Short Path Padding Problem: Given a placed and routed
resilient design, the cell library, spare cells, and dummy metal
information, our goal is to determine the target clock period
and pad all short paths such that the target clock period is
minimized, the padding overhead is minimized, and setup/hold
timing constraints are satisfied.

As the reported timing is somewhat inaccurate and the
available resource for padding is uncertain at early stages, we
perform the short-path padding (hold time fixing) at the post-
layout stage. To lengthen short paths, we may insert buffers
[Fig. 4(a)] or introduce extra load capacitance [Fig. 4(b)]. The
inserted delay can be provided by cells and metal. A design
is usually sprinkled with the spare cells (redundant cells) at
placement. In addition, the dummy metal offers an abundant
resource of capacitance [14] and can be tuned. Hence, padding
at the postlayout stage can then be done by rewiring spare
cells and dummy metal. Because of loading dominance, the
amount of delay increment and the corresponding amount of
load/buffers inserted can be directly converted to each other
by the lookup table. Later, the experimental results show that

~ any type of cells
(a) (b)

Fig. 4. Delay padding. (a) Buffer insertion (padding wire between gates g
and g»). (b) Extra load hook-up (padding gate g;).

the impact of input slew on the padding delay capacitance
conversion is quite small.

III. PUSHPULL: DELAY PADDING FRAMEWORK

In this section, we present the overview of our
short-path padding framework, PushPull, as shown in Fig. 5.
Our framework consists of three stages: Sy/Hy, decision;
padding value determination; and load/buffer allocation.
Finally, the timing analysis is applied to verify our framework.

At the Sy,/Hy, decision stage, we first select a target clock
period and define Sy /Hy, accordingly. Then, we collect the
available padding resource, including spare cells and dummy
metal. With the physical information, we check the feasibility
of selected Sy/H .

At the padding value determination stage, the calculated
fanout padding flexibility estimates the padding delay that
could be applied on its whole fanout cone, and thus a hold
violating gate is padded to fix the remaining negative hold
slack (push). The fanout padding flexibility calculation and
padding value decision steps are repeated until all hold vio-
lations are resolved or no more violations can be eliminated.
Then, we further reduce the total padding delay on gates (pull)
and resolve unfixed hold violations by padding wires. If still
there are unfixed hold violations, we return to Stage 1 to adjust
the padding resource of unfixed gates and the selected Sy, / Hy.

At the load/buffer allocation stage, the padding values on
gates/wires are realized by introducing extra load, inserting
buffers, as well as allocating the dummy metal. To achieve
the assigned padding values, we first give a mixed integer
linear programming (MILP) formulation and then propose a
network-flow-based heuristic to allocate the spare cells and the
dummy metal simultaneously. The network-flow-based heuris-
tic starts from a maximum flow solution (initial allocation).
We further propose spare cell allocation refinement to fix
the infeasible spare cell assignment. If the flow network is
unsolved or has unfixed infeasible flow, we return to the
Sin/Hyp decision stage and adjust the Sy/Hy, and padding
resources of unfixed gates.

The major challenges of the short-path padding problem are
determining the padding delay and finding padding resource at
the postlayout stage. For the former, the padding overhead is
the total padding delay. For the latter, the padding overhead is
the used padding resource. The more padding delay, the more
padding capacitance. In our framework, the padding value
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determined at Stage 2 will be transformed to the corresponding
padding capacitance at Stage 3.

IV. Sw/Hy DECISION

In this stage, we select Sy,/Hy dynamically and check the
feasibility based on the fanout padding flexibility.

A. Sw/Hy Selection

As mentioned in Section II-A, Sy, is defined as the ratio
of the target clock period over the conservative clock period,
while Hy, is defined as the ratio of the error detection window
over the conservative clock period. There is a tradeoff between
Sw and Hy,. At the first short-path padding iteration, we set
St/H based on the user-defined target clock period (from the
St/ Hm selection step in Fig. 3). When the selected Sy, (Hi)
is flagged as infeasible later, we increase (decrease) Sy (Hy)
and apply our short path padding again.

B. Padding Resource Collection

As our short-path padding method is applied at the post-
layout stage, first of all, the available padding resource is
collected. The available resource to pad each gate (wire)
includes the spare cells and dummy metal located within the
bounding box of its fanout net (the investigated wire). We have
the following definition to constrain the maximum padding
capacitance.

Definition 1: The maximum padding capacitance C,(i) of
gate g; is the minimum of the maximum output capacitance
defined in the cell library and its available padding resource.
Cmax (i) is O for a primary output or a flip—flop input.

The maximum padding capacitance Cp.x(i, j) of the wire
between gates g; and g; is defined similarly. Cpa(i) and

Cmax (i, j) give upper bounds but still preserve flexibilities to set
padding values. In some cases, the bounding boxes of padding
gates/wires heavily overlap, or the padding value cannot be
fulfilled at Stage 3, Cyax(i) and Cax(i, j) can be adjusted.

C. Fanout Padding Flexibility Calculation and Feasibility
Checking

To check the feasibility of selected Sy/H,, we first calculate
the padding flexibility of the whole fanout cone of each hold
violating gate.

A design is represented by a directed graph K =(G, E),
where each node g; € G represents a gate associated with
gate delay D(i), and each edge e(i, j) € E represents the wire
between gates g;, g; € G. In the following, we derive the slack
properties used in this paper. The setup constraints indicate the
timing requirement on long paths, while the hold constraints
indicate that for short paths.

The notations used in the slack properties include:

1) D(i): Gate delay;

2) A(i): Setup arrival time;

3) a(i): Hold arrival time;

4) R(, j): Setup edge required time;

5) r(i, j): Hold edge required time;

6) R(i): Setup node required time;

7) r(i): Hold node required time;

8) S(, j): Setup edge slack;

9) H(i, j): Hold edge slack;

10) S(i): Setup node slack;
11) H(i): Hold node slack.

Based on the above notations, we have the following
properties.

Definition 2: In [18], the setup arrival time A(i) of the
output signal of node g; € G is computed as

A () =max;{A(j)le(j.i) € E}+ D () ey
while the setup required time R(i) of g; is computed as

R (i) = ming {R (i, k) R (i, k) = R (k) — D (k) e (i, k) € E}.
2

Definition 3: In [18], the hold arrival time a(7) of the output
signal of node g; € G is computed as

a(i)=min;{a(j)le(j, i) € E}+ D (i) 3)

while the hold required time r(i) of node g; is computed as

r(i)=max, {r (i, k)|r(i,k)=r(k)—D(k),e(i,k) € E}. (4)

Definition 4: In [18], the setup edge slack S(i, j) is the slack
of edge e(i, j) € E contributed from node g; back to node g;

SG j)=RG J)—AG). &)

The setup node slack S(i) of node g; € G is the slack of
node g;

S@) =min; {SG el j)e E}=R@O—-AG. (6)
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Definition 5: In [18], the hold edge slack H(, j) is the slack
of edge e(i, j) € E contributed from node g; back to node g;

H@, jy=a@)—ra)). (N

The hold node slack H(i) of node g; € G is the slack of
node g;

H@)=min; {HG, j)lel j)e E}y=a@) —r@. (©8)

For example, as shown in Fig. 2(a), H(2, 1)=0.1 — 04
=—0.3, H2, 01)=0.1 - 0.3=-0.2, and H(2)=—-0.3.

Definition 6: The maximum padding delay Py, (i) of gate
gi 1s the padding delay converted from Ciax (7). Pmax(?) is O for
a primary output or a flip—flop input. The safe padding value
Py r(i) of gate g; is computed as

Py () = min {S (1), jmin {0, H (D}, Puax (D} (9)

Lemma 1: The setup constraint is satisfied when the delay
of a node g; on a short path is increased by ¢, t < P,i).

We define the fanout padding flexibility Pg(i) for each
gate to estimate the padding delay that can be applied on its
whole fanout cone without violating setup constraints. For a
hold satisfying gate or a primary output (a flip—flop input is
considered as a pseudo primary output), the flexibility is zero.
For a hold violating gate g;, the fanout padding flexibility P z(i)
is the hold slack difference between hold node slack H(i) and
the minimum updated hold edge slack H(i, j) over all fanout
edges if each gate in its fanout cone is padded with its safe
padding value.

Definition 7: The fanout padding flexibility Pr(i) of node
gi € G is computed as

Pr(i) = { 0, g; € PO or H (i) >0;

ming, j)ek {H’ @, j)} — H (i), otherwise (10)

where
H (i, j) = H (. )+ Pr () + Par (J).
H'(i) and S’(i) represent the updated slacks if each gate in
g’s fanout cone is padded with its safe padding value. Py,f(i)
is dynamically updated accordingly

H' (i) = min; {H/ G, ) e, j) € E} (11)

S (y=min; {S G, )= (S (D=5 D) ~Pur (DIe . )) € E}.

12)

By definition, the fanout padding flexibility is thus cal-
culated from primary outputs (and flip—flop inputs) toward
primary inputs (and flip—flop outputs). Consider the case
shown in Fig. 2(a). Assume Px(2)=0.5, Pnax(3)=0.4, and
Pax(1)=0.4, respectively. According to (10)—(12), we have

Pr(01)=0.0,

Pr(FF,)=0.0,

Pr(1)=min{(—0.3+0.0+0.0)} - (—0.3)=0.0,

H'(1)=-0.3,

S§'(1)=04,

Pr(2)=min{(—0.2+0.0+0.0), (—0.3+0.0+0.3)}

—(—0.3)=0.1,

(0.9/0.9/0.0,
0.3/0.3/0.0)

(0.9/0.910.0,
0.3/0.3/0.0)

(0.8/0.1/0.8, (1.2M1.2/0.0, (0.9/0.2/0.7, (1.21.2/0.0,
0.2/0.1/-0.1) 0.5/0.4/-0.1) 0.2/0.2/0.0) 0.5/0.5/0.0)
(a) (b)

Fig. 6. Padding values of gates in Fig. 2. (a) Padding value P(i) of node
gi € G after the first iteration of padding value decision: g3 (+0.0) — g2
(+0.2) = g1 (+0.2). (b) Padding value P(i) of node g; € G after the second
iteration of padding value decision: g3 (+0.1).

H'(2)=min{(—0.3+0.0+0.3), (—0.2+0.0+0.0)} =—0.2,
$’(2)=min{(0.4 — 0.0 — 0.3), (0.3 — 0.0 — 0.0)} =0.1,
Pr(3)=min{(—0.3+0.0+0.3)} - (—0.3)=0.3,
H’(3)=min{(—=0.3+0.0+0.3)} =0.0,

$’(3)=min{(1.0 — 0.0 — 0.3)} =0.7.

Moreover, we have the following lemma to check the
padding feasibility.

Lemma 2: If |min{0, H (i)}| >Pr (i), g € PI, the hold
violations cannot be resolved by padding on gates. If
S, j)<min{0, H (i, j)}|,e(i, j) € E, the hold violations
cannot be resolved by padding on wires.

V. PADDING VALUE DETERMINATION

We propose a padding value determination algorithm to
determine the padding values and locations with a global view
in this section.

Basically, the more total padding delay, the more total
padding overhead. Hence, we first target to minimize the total
padding delay and then convert the padding delay of each
gate/wire to padding load/buffers. However, the challenges are
twofold: One is to find good locations to pad delay; the other
is not to hurt the setup time.

Conceptually, padding on gates close to primary inputs can
easily satisfy the timing constraints, but may increase the total
padding values. Padding on gates shared by many short paths
can lower total padding values, but may violate the timing
constraints. As shown in Fig. 2, if we individually pad gates g,
and g3 with 0.3-unit delay, the timing constraints are satisfied,
but the total padding value is somewhat large (+0.6). If we
pad 0.3-unit delay on gate g; first, the short path through g,
to primary output o; is unresolved [Fig. 2(b) and (c)]. Thus, to
tackle these challenges, we shall determine the padding values
and locations with a global view. Our idea is first to push the
padding values toward the gates as close to outputs as possible
and then to pull the values back to the gates with forked paths.

A. Padding Value Decision

After the fanout padding flexibility is calculated with a
global view in Section IV-C, the padding value is decided
accordingly. The padding value of each hold violating gate is
derived in the topological order [19]. For each hold violating
gate, the fanout padding flexibility is an estimated padding de-
lay applied on its whole fanout cone. Then, the hold violating
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gate only needs to be padded to fix the remaining negative
hold slack, i.e., the difference between the safe padding value
and the fanout padding flexibility

P (i) = max { Py (i) — Pr (), 0}

where Py, (i) represents the safe padding value after gate g;’s
fanin gates are padded. When the padding value of a gate
is decided, the increased delay affects the arrival time of its
fanout gates. The fanout edge slack of the padding gate should
be updated accordingly

SG j)=R3> j)— AW — P>)
H@G, j)=P@+a(@)—r(j).

After updating the fanout edge slacks of each padding gate,
the setup and hold node slacks of its fanout gates are also
updated by (6) and (8).

Fig. 6(a) gives an example of padding value decision.
Assume Pp,x(2) =0.5, Prax(3) =0.4, and Ppax(1)=0.4, respec-
tively. Based on the fanout padding flexibilities, we have

Pyqr(2)=min{0.3, [-0.3], 0.5} =0.3,

P(2)=0.3-0.1=0.2,

S2,1)=1.1-0.7-0.2=0.2,

H(2,1)=02+0.1 - 04=-0.1,

Pyqr(3)=min{0.3, |-0.3], 0.4} =0.3,

P3)=0.3 - 0.3=0.0,

S3,1)=1.1 - 0.1 - 0.0=1.0,

H@3,1)=0.0+0.1 - 04=-0.3,

S(1)=min{1.0, 0.2} =0.2,

H(1)=min{-0.3, —0.1}=-0.3,

Pqr(1)=min{0.2, [-0.3], 0.4} =0.2,

P(1)=0.2-0.0=0.2.

13)

(14)
15)

After the above padding value decision, the short path from
g3 to g still has a negative hold slack, —0.1, because of the
overestimated fanout padding flexibility. This short path can be
resolved by applying another iteration of fanout padding value
calculation plus padding value decision. The fanout padding
flexibility calculation step and the padding value decision step
are repeated until all hold violations are resolved or no more
violations can be eliminated. With the iterative procedure, this
procedure can determine the padding values and locations
with a global view. As shown in Fig. 6(b), all short paths
are resolved, and the result is same as the optimal solution
[Fig. 2(d)].

B. Padding Value Refinement

Now, we further reduce the total padding delay on gates and
resolve unfixed hold violations by padding wires.

In the padding value decision step, the padding locations
are decided as close to primary outputs as possible (push).
For a circuit with forked short paths, the total padding value
is increased if the padding location is not determined on the
gate where two or more short paths fork. Fig. 7(a) gives an
example; gate g4 has forked paths. After our padding value
decision (Section IV-C), the padding values and locations are
indicated beside each gate, and the total padding delay is 0.5.
In fact, the total padding delay can be further reduced to 0.4

by changing the padding values and locations as shown in
Fig. 7(b).

At refinement, we further reduce the padding values by
pulling the padding values backward the gates where two or
more short paths fork. To accomplish this task, we define the
reverse padding value, the added safe padding value, and the
refined padding value as follows.

Definition 8: The reverse padding value P, (i) of gate g;
is computed as

P (i) = P (i), if gihasonlyonehold violating fanin;
revil) = 0, other wise.

(16)

The reverse padding value of each gate g; is to record how
much padding can be propagated backward to its fanin gate. To
avoid propagating padding values to joined paths, we consider
the case that g; has only one fanin with a hold violation. A
fanin of g; has a hold violation if the hold edge slack is smaller
than the padding value of g;. Furthermore, the padding value
can be fully propagated in this case. The refined padding value
of gate g; is constrained by its setup slack and its maximum
padding delay Ppax (7).

Definition 9: The added safe padding value P,4;(i) of gate
g; is computed as

Paaa (i) = min {S (i), Prax () — P ()} . 7

Definition 10: The refined padding value P, (i) of gate g;
is computed as

Pref(i) = P(l) + min{Padd(i)v minj{Prev(jNH(iv ])<P(1)}}
(18)

For each of g;’s fanout gate g;, we have

Prep(J) = P(j) — min{ Pugq(i), min{ Proy () H(, j)<P(0)}}.
19)

Based on the above definitions, the refined padding values
are calculated in the reverse topological order, and thus the
total padding delay can be reduced.

Sometimes, the hold violations cannot be fully cleaned by
padding on gates (extra load hook-up) due to insufficient setup
slacks or maximum output capacitance constraints. In this
case, we may further apply padding on wires (buffer insertion)
after the above refinement.

Definition 11: The wire padding value P(i, j) of e(i, j) is

P (i, j)=min{S (G, j), [min {0, H (i, H}I}. (20)

The wire padding value is determined in the topological
order. According to the timing library, the final padding delay
of each gate/wire is then converted to an amount of padding
load/buffers.

In some critical cases, the fanout padding flexibility may be
overestimated. These cases may pass the feasibility checking
by Lemma 2, but the hold violations cannot be completely
resolved by padding gates/wires. In these cases, we return to
Stage 1 to adjust the selected Sy/H .
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C. Time Complexity

For each step in the padding value determination stage,
the algorithm takes O(G) time to visit all gates in forward
or backward topological order. When setup and hold slacks
are changed, the algorithm takes O(E) time to update timing.
Thus, the padding value determination stage can be done in
O(GE) time.

VI. LOAD/BUFFER ALLOCATION

In this section, we realize the padding delay of each padding
gate/wire at physical implementation. Because the available
cell capacitances/delays are discrete for a given cell library;
spare cells may not match the required padding load/buffer
for a padding gate/wire. On the other hand, the dummy
metal accommodates an abundant resource of capacitance [14]
and can be tuned. The required padding is converted to an
amount of capacitance and fixed by spare cell allocation and
dummy metal insertion. For example, if spare cells offer either
0.15-unit or 0.25-unit delay, a 0.2-unit padding delay can be
done by a spare cell of 0.15-unit delay plus a dummy metal
of 0.05-unit delay.

To simultaneously allocate spare cells and dummy metal,
we first give a mixed integer linear programming (MILP)
formulation (see Section VI-A) and then propose a network-
flow-based heuristic. The network-flow-based heuristic starts
from a maximum flow solution (see Section VI-B). Then,
infeasible spare cell assignments of the initial allocation are
fixed (see Section VI-C). If the flow network is unsolved or
has unfixed infeasible flow, we return to Stage 1 to adjust the
padding resources of unfixed gates and selected Sy,/H.

A. Mixed Integer Linear Programming Formulation

First of all, we collect available spare cells and the amount
of available dummy metal resource for each padding gate/wire.
For each padding gate (respectively, wire), the available spare
cells located within the bounding box of its fanout net (re-
spectively, the investigated wire) are extracted. If there is no
spare cell located in the bounding box of its fanout net, we
expand the bounding box with a user-defined row height. As
shown in Fig. 8(a), s; and s, are the available spare cells of
padding gate g, while s, is available for gate g,. The amount
of available dummy metal of each padding gate (respectively,
wire) is the unoccupied routing resource upon the bounding
box of its fanout net (respectively, the investigated wire).
Different padding gates/wires may compete for the same metal
resource if their corresponding bounding boxes overlap. For
example, as shown in Fig. 8(b), the amount of dummy metal
within independent bounding boxes of g; and g, is 0.1 and
0.15, respectively, and the amount of dummy metal within the
overlapping region is 0.1.

The notations used in the MILP formulation are listed as
follows.

1) G: Set of padding gates.

2) W: Set of padding wires.

3) S: Set of spare cells.

4) M: Set of dummy metal regions.

(1.0/0.7/0.3,
0.5/0.5/0.0)

(1.0/0.7/0.3,
0.5/0.5/0.0)

(0.5/0.4/0.1,
0.1/0.1/0.0)

(0.5/0.5/0.0,
0.210.2/0.0)

(1.010.7/0.3,
0.5/0.5/0.0)

(1.000.7/0.3,
0.5/0.50.0)

(a) (b)

Fig. 7. Padding refinement. (a) Padding delay after padding value decision:
g7 (+0.2), gg (+0.3). Total padding delay is 0.5. (b) Ideal padding value:
g4 (+0.1), g7 (+0.1), g8 (+0.2). Total padding delay is 0.4.

5) c¢; j: Rewiring capacitance and the input capacitance if
spare cell s; is assigned to gate/wire g; /w;.

6) d;: Capacitance of independent/overlapping dummy
metal region m;.

7) xi j: 0-1 integer variable that denotes if spare cell s; is
assigned to padding gate/wire g; /w;.

8) i j: Floating variable that denotes the amount of dummy
metal u; assigned to padding gate/wire g; /w;.

9) C;: The required padding capacitance of gate gate/wire
g Iwi.

Based on the above notation, we formulate the MILP as

follows:

minimize Z C@)— Z X, jCij — Z Vi j

ieG+W jes jeM

subject tOZx,',jfl, VjesS (21)
ieG
> vij<dj¥jeM (22)
ieG
D xijeij+ Y yij=C@).YieM  (23)
jes JEM
xi,; €{0.1},VjeS (24)
yij>0,Vj e M. (25)

The objective function is to minimize the total difference
between the padding values and padded capacitance. Con-
straint (20) ensures each spare cell input is assigned to at most
one padding gate. Constraint (21) guarantees that the assigned
amount of dummy metal does not exceed the available capac-
itance. Constraint (22) states that the total padded capacitance
should not exceed the padding value of each padding gate.

In addition to the MILP formulation given here, we further
propose a network-flow-based heuristic in Sections VI-B and
VI-C. Later, our results show that compared with MILP, the
network-flow-based heuristic is very efficient and effective.

B. Initial Allocation

The initial allocation of the network-flow-based heuristic
is done by maximum network flow [19]. The flow network
is composed of a node set and an edge set. The node set
contains a source node s, a sink node ¢, node g; represents
a padding gate/wire, node s; represents a spare cell within
the bounding box of some padding gate/wire, and node m;
represents a dummy metal of some divided region. Similar to



YANG et al.: PUSHPULL: SHORT-PATH PADDING FOR TIMING ERROR RESILIENT CIRCUITS 565

bounding box

(a) (b)

Fig. 8. Available space cell and dummy metal. (a) For padding gates g; and
g2, spare cells inside the bounding boxes of their fanout nets are extracted.
(b) Available dummy metal of g; and g, are divided into three regions.

Section VI-A, if there is no spare cell located in the bounding
box of its fanout net, we expand the bounding box with a
user-defined row height. The edge set N is defined as follows.
An edge connects s to each spare cell s;, and its capacity
c(s, s;) is the capacitance offered by s;. An edge connects
s to each dummy metal region m;, and its capacity c(s, m;)
is the capacitance offered by m;. An edge connects s; and
gi if g;’s bounding box covers s;, and its capacity c(s;, g;) is
infinite. Similarly, an edge connects m; and g; if g;’s bounding
box covers m;, and its capacity c(m;, g;) is infinite. An edge
connects g; and ¢, and its capacity c(g;, t) is the corresponding
padding capacitance. Fig. 9(a) shows the corresponding flow
network and the maximum flow of Fig. 8.

Based on maximum network flow, we can assign spare
cells and dummy metal simultaneously to fix the required
padding capacitance. If the obtained flow does not match the
required padding values (i.e., the flow of the edge between
gi and ¢ is unequal to its capacity), the padding resource
is insufficient and we return to the Sy/Hy decision stage
to adjust Cpax(1)/Cnax(ij). Moreover, the obtained flow may
contain infeasible assignments even when the maximum flow
is achieved. The flow through a spare cell may be split to more
than one gate [see s, in Fig. 9(b)], or the flow through a spare
cell is less than its capacity [see s; in Fig. 9(b)]. For these
cases, we propose a spare cell allocation refinement to fix the
infeasible assignment (see Section VI-C).

C. Spare Cell Allocation Refinement

In this section, we refine the flow to fix infeasible spare cell
assignments.

1) Types of spare cell assignment: One spare cell can
be assigned to at most one padding gate/wire, and the cor-
responding flow is with full capacity. Due to the unsplit
flow requirement of spare cells, we categorize the spare cell
assignments into four types.

Type 1: The flow f(s, s;) from source s to a spare cell
s; 1s equal to its capacity c(s, s;), and s; is assigned to
exactly one padding gate/wire.

Type 2: The flow f(s, s;) from source s to a spare cell
s; is less than its capacity c(s, s;), and s; is assigned to
exactly one padding gate/wire.

Type 3: The flow f(s, s;) from source s to a spare cell
s; is equal to its capacity c(s, s;), and s; is assigned to
two or more padding gates/wires.

-10.25

capacity

0.05/0.1

(©)

Fig. 9. Network-flow-based heuristic. (a) Flow network. (b) Initial allocation
of Fig. 8. (c) Flow network after spare cell allocation refinement.

Type 4: The flow f(s, s;) from source s to a spare cell
s; 1s less than its capacity c(s, s;), and s; is assigned to
two or more padding gates/wires.

Only type 1 assignment is feasible. Fig. 9(b) has two infea-
sible assignments. Spare cell s; belongs to type 2 assignment:
The flow from source s to spare cell s; is less than to its
capacity, and spare cell s; is assigned to only padding gate
g1. Spare cell s, belongs to type 3 assignment: The flow from
source s to spare cell s, is equal to its capacity, but spare cell
s, 1s assigned to padding gates g; and g,. We shall fix type
2, 3, and 4 infeasible assignments.

2) Fill and Return Operations: We introduce two basic
operations, fill and return, to fix an infeasible assignment. Fill
operation tries to fill padding gate/wire g; with an extra flow
F iy, and return operation tries to take off flow F gy from
padding gate/wire g;.
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Definition 12: For a padding gate/wire g; connected with
an infeasibly assigned spare cell s;, the amount of dummy
metal used M ,4(g;) are defined as

Musea(8) = > {f(mi, g)|(mi, g:) € Nomy € MY, (26)

Definition 13: For a padding gate/wire g; connected with an
infeasibly assigned spare cell s;, the amount of free dummy
metal M p..(g;) are defined as

Miree(8) = > _fe(s, mi) — f(s, mo)l(my, i) € N, my € M).
27
Definition 14: For a padding gate/wire g; connected with
an infeasibly assigned spare cell s;, the amount of spare cells
used S,;.4(g;) are defined as

Sused(8i) = Z{f(Sk, gil(sk, &) € N, sy # 5,51 € S} (28)

Definition 15: For a padding gate/wire g; connected with
an infeasibly assigned spare cell s, the amount of free spare
cells § e (gi) are defined as

Sree(8i) = Y _{c(s, sl £ (s, 5) = 0, (si &) € N, ¢ € S}
(29)
For example, as shown in Fig. 9(b), M,sq(g1)=0.1,
Mfree(gl) =0.05, Sused(gl )=0.1 and Sfree(gl )=0.0.
Definition 16: For a padding gate/wire g; connected to an
infeasibly assigned spare cell s;, flow Fpy is defined as

Fru=c (s, s;) — f (s}, &)

For fill operation, we cannot find another augmenting path
to fill flow F g because the flow is already maximum in this
flow network. Alternatively, we collect other used resources
of padding gate/wire g; with flow Fpgy; and return them.
Then, the flow is still maximum after flow F gy is filled to
the edge between the infeasibly assigned spare cell s; and
padding gate/wire g;, successfully. As the capacitances offered
by spare cells are discrete, fill operation collects used spare
cells followed by the dummy metal.

Lemma 3: If a set of used spare cells s; € S of padding
gate/wire g; and the related capacitances satisfy

(30)

FFiIZ - Mused (gz) = Sused (gl)

= FFill+Mfree (gi)+Sfree (gl) (31)

Flow F gy can be filled to padding gate/wire g; successfully.
Definition 17: For a padding gate/wire g; connected with
an infeasibly assigned spare cell s;, flow F ey is defined as

Freturm = f (sj’ gl) .

For return operation, we find other free resources of padding
gate/wire g; with flow F ey, and take Fgey, off the edge
between the infeasiblely assigned spare cell s; and padding
gate/wire g;. Then, the flow is still maximum after flow F gesm
is taken off from the edge between spare cell s; and padding
gate/wire g;. Similarly, the return operation collects free spare
cells followed by free dummy metal.

(32)

FixType2Infeasible( F, s;, g;)

I (s,g ) e Nand fis, 5;) = fls;, g) = 0

1. fill g; with remaining flow ¢(s, 5;) — f{s, ;)
2. if ( fill operation fails on edge (s;, ;) )

3. return existing flow fs;, g;) from g;

4. if ( return operation fails on edge (s, g;) )
5. go to the Sy/Hy, decision stage

(a)

FixType3and4Infeasible( F, s;)
1. for each edge (s;, g;) and fls;, g)# 0
2. return existing flow f{s;, g;) from g;
3. if( return operation fails on edge (s;, /) )
4. add g; to fail list
5. if ( only one gate fails to return flow )
6. fill g; with remaining flow e(s, s,) — f{(s. 5;)
7. if ( fill operation fails on edge (s;, g;) )
8. go to the S/Hy, decision stage
9. else if ( more than one gate fails to return flow )
10.  go to the Sy/Hy, decision stage
(b)

Fig. 10. Spare cell allocation refinement. (a) Algorithm for fixing type 2
infeasible flow. (b) Algorithm for fixing type 3 and 4 infeasible flow.

Lemma 4: If a set of free spare cells s; € S of padding
gate/wire g; and the related capacitances satisfy

FRetum - Mfree (gl) = Sfree (gl)
= FRemm + Mused (gt) + Sused (gt) (33)

Flow Fpgewm can be returned from padding gate/wire g;
successfully.

3) Refinement Methods: Using these two operations, fill
and return, we can fix the infeasible flow efficiently.

As type 2 infeasible flow of some spare cell only fills one
padding gate, finding used resources is easier than finding
free resources, i.e., applying fill operation is easier than
applying return operation. The refinement algorithm is listed
in Fig. 10(a). The fill operation fills the remaining capacity
of an infeasible spare cell to the padding gate. When fill
operation fails, we further apply return operation to return the
existing flow. If the infeasibly assigned spare cell cannot be
fixed by neither fill operation nor return operation, we go back
to padding resource collection step to adjust Cpax (1)/Cryax (i)
and redo PushPull algorithm.

For type 3 and type 4 infeasible flows, applying return
operation is more efficient than applying fill operation because
the flow from some spare cell fills to two or more padding
gates. The refinement algorithm is listed in Fig. 10(b). First of
all, we return all existing flow from the padding gates/wires
which are filled by the infeasible spare cell. If all flows through
the infeasible spare cell are returned, the refinement is finished.
If all flows from the spare cell can be returned except only
one padding gate, fill operation is applied to fill all capacity
to this gate. However, if both return and fill operations fail, or
there are two or more unreturned flows, we return to Stage 1
to adjust padding resources of unfixed gates and the selected
Sin/Hpn. Fig. 9(c) shows the flow network after spare cell
allocation refinement.
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CCSDelayLoadTranslator(Sypue. Cioade Craes Diarger)
/Sigpui input slew

//Cioq: present output loading

HIC e maximum output loading

/Dharger: target delay

1. Cuigate = { Cioag + Crnax }/2

PushPull: Stage 2

Greedy 1: \
‘ Largest setup first '
\ Greedy 2:

Most path sharing first

Sy/Hy, Decision PushPull: Stage 3

2. Dyigaie < Get delay from CCS model with S0, Crigate
3. if ( Dyarger > Diigare ) //target load is in upper subset Fig. 12. Experimental flow of evaluating the effect of Sy,/Hn decision.
4. return CCSDelayLoadTranslator(Sispu. Cuigdies Conaxe Diarget)
5. else if ( Dygger < Diigare ) //target load is in lower subset TABLE I
6. return CCSDelayLoadTranslator(Sipu. Cioads Crmiddies Diarger) BENCHMARK STATISTICS
7. else /ltarge load is found
8. return Cpiaae Circuit | #Gate | #FF |#SFF| Conservative clock period (ns) | THS (ps)
s1196 | 301 | 19 | 1 1.0 152.5
. . i L s1423 | 486 | 74 | 45 | 1.0 4916.9
Fig. 11. Algorithm to transform delay and output loading with CCS model. s5378 | 739 | 162 | 37 10 3.852.8
9234 | 555 | 132 | 24 | 1.0 1,929.0
. . s13207 | 748 | 213 | 14 1.0 371.2
D. Time Complexity S et L 22 ]
s15850 | 428 | 128 | 29 | 1.0 2,114.6
The notations used to analyze the time complexity of __(_;_;_;___s_;_;_g_;_f 7,890 |1,159] 194 | f; : 108,759.0
Stage 3 are listed as follows. ' e"?,%er 38
1) Ngw: The number of padding gates and wires.
2) Ngp: The number of padding resources, including spare TABLE II
cells and dummy metal. SELECTED S/ H
3) Ngp': The number of padding resources whose flow will
be filled (returned) during the fill (return) operation. - PushPull Greedy 1 Greedy 2
4) Npg: The number of edges in the flow network. S Hu St Hy, Sin Hy,
5) Ng’: The number of edges whose flow will be changed 51196 70% | 30% | 70% | 30% | 70% | 30%
during the fill (return) operation s1423 70% 30% 87% 13% 81% 19%
g peration. . 5378 | 70% | 30% | 84% | 16% | 85% | 15%
6) T,: The number of type 2 infeasible assignments. $9234 70% | 30% | 77% | 23% | 77% | 23%
7) Ts3: The number of type 3 infeasible assignments. 513207 70% | 30% | 81% | 19% | 81% | 19%
8) T4: The number of type 4 infeasible assignments. sladol | W% | 3006 | 7% | 27% | 78% | 22%
) .. ) 38584 72% 28% 94% 6% 94% 6%
The proposed load/buffer allocation heuristic consists of two des perf | 71% | 29% | 92% | 8% 81% | 19%
steps: Initial allocation and spare cell allocation refinement. b19 75% 25% 93% 7% 92% 8%

The initial allocation step takes O(Ngw + Nsy + Ng) time
to construct the flow network, and we use the improved
shortest augmenting path (ISAP) algorithm [21], [22] to solve
the maximum flow problem. Because of the special structure
of our flow network, ISAP takes only O(NgwNgsy) time to
obtain maximum flow, instead of O((Ngw + Nsy)*Ng) time.
In the spare cell allocation refinement step, the fill/return
operation takes O(Ngy’ +Ng’) to fill/return flow. Type 2
refinement takes O(T>(Nsy '+ Ng’)) time, while types 3 and 4
take O((T'3 + T4)(Nsp 'Ng’)) time. If the number of infeasible
assignments is much smaller than the number of nodes in the
flow network, the proposed load/buffer allocation eventually
takes O(NngSM) time.

VII. EXTENSION TO CCS MODELS

The CCS models may be adopted instead of nonlinear delay
models (NLDMs) for advanced technology.

Unlike NLDMs, the CCS models consist of a driver model
and a receiver model. The driver model is a time and voltage
dependent current source. The receiver model is composed
of two capacitances. The two models are also dependent on
input slew and output loading. The main discrepancy between
NLDMs and CCS models is timing characterization. The CCS
models the cell response as a current waveform, not a specific
delay value.

To replace NLDMs with CCS models in PushPull, we
construct a translator to transform from a specified delay to a
relative output loading. Given the input slew, the present output
loading, the maximum output loading, and a target cell delay,
we can easily find the target padding load by binary search.
The delay-load translator algorithm is listed in Fig. 11.

VIII. EXPERIMENTAL RESULTS

We implemented our algorithm in the C++ programming
language and executed the program on a platform with an Intel
Xeon 3.8 GHz CPU and with 16 GB memory under CentOS
5.5. Experiments are conducted on the IWLS 2005 bench-
mark circuits [20] through the resilient circuit design flow
(Section II-A). Table I lists benchmark statistics, where Circuit
indicates the circuit name, #Gate lists the combinational logic
gate count, #FF means the number of flip—flops, #SFF is the
number of timing suspicious flip—flops, Conservative clock
period means the clock period considering a timing guardband,
and THS represents the total negative hold slack contributed
from suspicious flip-flops. Each circuit is synthesized, placed,
and routed based on 55-nm technology using state-of-the-art
commercial tools [23], [24]. We also use these tools to verify
the circuit timing.
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Used Dummy Metal (%)

100.0%
0.0%
% 80.0%
008 0.0%
0.0 00
® Sequential [17] = Sequential [17]
50.0% =0urs: MILP SuEs = 0urs: MILP
00% ®Ours: Simultancous 2008 mOurs: Simultancous
3008 30.0%
2010%% 2008
10.0% I 10.0%
008 008
51196 514213 s53T8 =154 s13207 515830 538384 des_perl b9 51196 31423 s5378 9234 $13207 515850 338584  des_perf B9
(a) (b)
Fig. 13. Resource usage comparison. (a) Percentage of used spare cells. (b) Percentage of used dummy metal.
TABLE III
STAGE 2: PADDING VALUE DETERMINATION (S¢, = 75%, Hy = 25%)
Greedy 1: Greedy 2: .
— LE o] Largest setup first [12] Most path sharing first [11](12][13] Ons: Pusbull
"W TNS [THS [ Padding RuntimeTNS [ THS, [ Padding |, [Runtime [TNS|[ THS, | Padding |, [Runtime [TNS[THS, Padding |, _TRuntime
(ps) | (ps) delay (ps) _(s) |(ps)| (ps) | delay (ps) | e |(ps)| (ps) | delay(ps)|"" | (s) | (ps)|(ps) delay (ps) | (s)
s1196 | 0.0 0.0, 1525  0.03] 0.0] 0.0 3384 5 0.02 00 0.0 173.8) 3 0.01f 0.0 0.0 1525 1 0.02
s1423 | 0.0 0.0 41268 0.15 00 435 49687 56 045 0.0 435 48028 35 024 0.0 00 47469 2  0.05
55378 | 0.0 0.0 36613 006 0.0 793 46781 60 079 0.0 793 45554 43 058 00 00 37227 2 0.08
59234 | 0.00 0.0 1,459.6 0.05] 0.0 12.0 1,878.3 33 0.30, 0.0 12.0 2,158.5 27 0.26] 0.0 0.0 1,647.5 1 0.05
s13207| 0.0, 0. 371,20 0.03] 0.0 34.5 762.3 22 0.21] 0.0 34.5 621.5 18 021l 0.0 0.0 371.20 21 0.07
s15850| 0.0 0.0 13051 0.03 0.0 0.0, 1.662.8 43 025 00 00 21615 4l 027 00 00 15108 2 0.04
s38584| 0.0 0.0108,476.0  6.96] 0.0 0.0 225,026.0, 780 115.19] 0.0 85.8 130,703.00 512/ 80.37 0.0 0.0 143.764.1 2| 1.04
des perfi 0.0 0.0583,579.0 60.59 0.0 19,270.5 795,022.0 3,414 6,401.86| 0.0 3,864.1 595,088.02,257 4,202.46/ 0.0 0.0 583,579.0 2 946
b19 |NA|[NA| NA [timeout| 0.0108,078.06,128,710.021,90237,473.30] 0.065,746.71,729,230.06,220(10,978.40| 0.0 0.01,675.688.0, 4 21.68

TNSI: Total negative setup slack after padding value determination.

THS1: Total negative hold slack after padding value determination. timeout: Runtime exceeds 12 hours.
#Ite.: Number of iterations. Greedy 1 and Greedy 2 pad one hold violating gate at a time; #Ite. means how many times the greedy method run. For PushPull,
the padding value determination and fanout padding flexibility calculation will be applied iteratively until all hold violations are resolved or no more violations

can be eliminated; #Ite. means how many times these steps are applied.

TABLE IV
RUNTIME BREAKDOWN OF STAGE 2

PushPull Stage 2
Circuit Padding Value Padding Value .
Decisigon (s) Reﬁnerient (s) Total Runtime (5)

51196 0.01 0.01 0.02

s1423 0.02 0.03 0.05

55378 0.03 0.05 0.08

59234 0.02 0.03 0.05

513207 0.02 0.05 0.07
515850 0.02 0.02 0.04
s38584 0.51 0.53 1.04
des_perf 1.90 7.56 9.46
b19 8.76 12.92 21.68

For evaluating the impact of PushPull on dynamic Sy, /Hy
decision, we compare Stage 2 of PushPull with state-of-the-art
work [11]-[13], as shown in Fig. 12. Greedy 1 greedily pads
from the gate with the largest setup slack [12], while Greedy
2 greedily pads from the gate passed by most hold violating
paths [11]-[13]. The initial selected Sy and Hy, are 70%
and 30%, respectively. All methods pad short paths without
hurting setup time. Our load/buffer allocation method realizes
delay padding at postlayout. Table II lists the resulting Sw,/Hin
based on the experimental flow in Fig. 12. It can be seen that

PushPull achieves the minimum clock period (i.e., least Sy
and greatest Hy,) at each case.

Table III compares our padding value determination method
with optimal [6] and two greedy methods. Sy, = 75% and
Hy, = 25%, the values used in this experiments are typical
settings in modern designs. Padding delay indicates the total
assigned padding delay (including gates and wires). LP uses
linear programming (we implemented [6] using CPLEX [25]).
Because of the global view, our method cleans all hold
violations for each case. LP is time consuming for large-scale
circuits, but interestingly LP is efficient for small cases. In
contrast, Greedy 1 and Greedy 2 may either fail to clean all
hold violations or suffer from long runtime. At each iteration,
Greedy 1 and Greedy 2 fix the selected gate and update the
timing for the entire circuit. Thus, two traversals are performed
at each iteration: One traversal updates arrival times (forward),
while the other updates required times (backward). Because of
the local view, Greedy 1 and Greedy 2 may induce inefficient
padding and thus require more iterations (longer runtime). In
some cases, although the two greedy methods clean all hold
violations at the padding value determination stage, they may
still fail in delay padding at the postlayout stage, such as
$38584 for Greedy 1 and s15850 for Greedy 2. In addition,
although not listed here, in our experiments, the refinement in
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TABLE V
STAGE 3: LOAD/BUFFER ALLOCATION

LP+Mapping [6] Sequential [17] Ours: MILP Ours: Simultaneous
Circuit| TNS, | THS, | Paddedarea | Runtime | TNS, | THS, | Runtime | TNS, | THS, | Runtime | TNS, | THS, | Padded area | Runtime
(ps) (ps) (um’) (s) (ps) (ps) (s) (ps) (ps) (s) (ps) (ps) (um®) L (s)
51196 | 0.0 0.3 5.1 0.03 0.0 00 | 033 0.0 0.0 0.30, 0.0 0.0 20.0, 0.02
51423 | 0.0 8264 14528 009 00 | 00 043 00 | 00 041 00 | 00 2,256.9, 0.04
s5378 | 0.0 3023 156.48 0.05 0.0 0.0 054 0.0 0.0 041] 00 0.0 774.4| 0.04
$9234 | 0.0 631.3) 38.72] 0.04 0.0 0.0 041 0.0 0.0 034 0.0 0.0 476.9 0.02
s13207| 0.0 161.2 16.96 0.03| 0.0 0.0 0.61 0.0 0.0 033 0.0 0.0 68.1 0.04
s15850| 0.0 352.0 60.16) 0.02] 0.0 0.0 0.38 0.0 0.0 033 00 0.0 406.7 0.04
$38584| 0.0 |29.970.7 3,175.36 0.58 0.0 0.0 196 0.0 0.0 33.15 0.0 0.0 51,1504 1.14
des perf] 0.0 |51,146.0 19,789.40 4199 0.0 0.0 1236 0.0 0.0 3345 0.0 0.0 151,246.7 8.80
b19 | NA NA | NA | timeout | 0.0 0.0 4333 NA NA | timeout | 0.0 0.0 530,484.6  98.12
TNS2: Total negative setup slack after load/buffer allocation.
THS2: Total negative hold slack after load/buffer allocation.
25 1 dummy metal simultaneously. Because of flexible and tunable
2 . dummy metal, we can successfully achieve the padding values

v = 0.5035% - 3.306;

log(Time)

log(NuNga)

Fig. 14. Log-log graph of the runtime (y-axis) versus NgwNsy (x-axis).
Empirically, PushPull can be done in O(Ngw N sm)°?) time.

the padding value determination step averagely improves the
padding delay by 4.78%.

Furthermore, Table IV lists the runtime breakdown of
Stage 2 (padding value decision and padding value refine-
ment). We also conducted one experiment to test the impact of
input slew on padding delay capacitance conversion. Consider
the error rate of the converted padding capacitance with and
without input slew consideration. For each padding gate/wire,
error rate=|1 — (padding capacitance without slew)/(padding
capacitance with slew)| x 100%. The average error rate over
all cases is quite small, only 0.56%.

Table V compares our load/buffer allocation method with
[6] and [17]. LP+Mapping is the heuristic proposed in [6]
to map the LP results to available cells. As mentioned in
Section I, even Shenoy et al. [6] finds the optimal padding,
the directly mapped results may still incur hold violations.
Sequential is the heuristic proposed in [17], where coarse-
grained delay padding allocates spare cells first and then fine-
grained padding allocates a dummy metal. During coarse-
grained delay padding, spare cells are assigned without dummy
metal consideration. Hence, it consumes more spare cells.
MILP means the results of the MILP formulation given in
Section VI-A. Although it can achieve the padding values
assigned by Stage 2, the runtime might be too long for large
cases. Simultaneous means our network-flow-based heuristic.
Our network-flow-based heuristic assigns spare cells and the

assigned by Stage 2 for all cases. Padded area means the total
area over all layers contributed by selected spare cells and
the dummy metal. The combination of spare cells and the
dummy metal provides the flexibility to allocate load/buffers,
and thus dummy metal can indeed solve the discrete delay
problem well. Fig. 13 shows the resource usage of three
methods. Sequential uses much more spare cells than the other
two methods. Our network-flow-based heuristic obtains similar
results as MILP, but shorter runtimes.

Based on Tables I-V, it can be seen that our short-path
padding framework, PushPull, can select a small target clock
period and solve the short-path padding (hold time fixing)
problem for resilient circuits. Moreover, we reduce 25~30% of
the clock period for all cases with 4.81% and 3.06% increment
on the average HPWL and power, respectively.

The time complexity of PushPull is O(GE +NgwN sy)-
Since the flow network is larger than the timing graph,
PushPull eventually takes O(NgwN sy ) time. After regression
analysis, Fig. 14 shows that empirically, PushPull can be done
in only O((NgwN si)®) time.

With adopting CCS model in PushPull, we resynthesize our
benchmark circuits with the Nangate 45 nm Open Cell Library
[26]. To illustrate the error rate of our proposed delay-load
translator, we compare the path required time with the path
arrival time with hooking up the translated load. For each
hold violating path, the error rate =|1 — (path arrival time with
hooking up the translated load)/(path required time)| x 100%.
Empirically, the average error rate is only 0.36%.

IX. CONCLUSION

Resilient circuits are recently proposed to mitigate dynamic
variations. In this paper, to enable the timing error detection
and correction mechanism of resilient circuits, we focused on
target clock period selection and the severe short-path padding
problem in resilient circuits. Unlike greedy heuristics adopted
by recent prior work, we determined the padding values and
locations with a global view. Moreover, to further realize
the determined padding values at physical implementation,
we proposed an MILP formulation and a network-flow-
based load/buffer allocation heuristic to assign spare cells and
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dummy metal simultaneously. Experimental results showed
the efficiency and effectiveness of our method. Our network-
flow-based allocation method can successfully achieve the
derived padding values which may be infeasible when only
discrete delays/capacitances are used. In addition, we can
extend PushPull to adopt CCS timing model in advanced
technology.
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