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Nitride-based nanopillars were successfully fabricated by nanoimprint lithography. A nanowhisker of indium–tin oxide (ITO) deposited by on
oblique evaporation method was investigated in nitride-based nanopillars and thin ZnO layers grown by atomic layer deposition (ALD). From the
results of field-emission scanning electron microscopy (SEM) measurement, it was found that ITO whiskers grew on nitride-based nanopillars
covered with ZnO. Moreover, from the results of UV–visible spectrophotometry and bidirectional reflectance distribution function (BRDF)
measurements, it was found that this hybrid structure of ITO nanowhiskers above a ZnO medium enhanced the broadband and angle-independent
antireflection in the range between 380 and 600nm. We used the hybrid design of the ITO/ZnO structure to achieve the lowest reflectance value
between 3.8 and 10.9% in a quantum well absorption range. © 2014 The Japan Society of Applied Physics

1. Introduction

Nowadays, the development of high-efficiency optoelectronic
devices is considered as one of the crucial topics in visible
light communication, integration of mobile telecommunica-
tion, human–computer interaction of room lighting1) and
display, and photovoltaic devices.2) Among the materials
adopted for solar cells, III–V alloys (such as GaAs and InP)
are the forerunners at present as they hold the record of
power conversion efficiency (PCE).3) GaN-based p–i–n
diodes with luminescence covering the range from infrared
to ultraviolet (0.7 to 6.2 eV) have been extensively applied in
large full-color displays, short-haul optical communication,
traffic and signal lights, backlight for liquid-crystal displays,
and general-purpose light fixtures.4) Typically, a GaN-based
epilayer is grown on a planar sapphire substrate by hetero-
epitaxial techniques, such as metal–organic chemical vapor
deposition (MOCVD).5,6) Recently, nanoscale epitaxial over-
growth7) has been found to be promising for enhancing the
performance of nitride-based optoelectronic devices. Owing
to the nanoscale pattern process8–13) and epitaxy, overgrowth
of nanostructures not only improves crystal quality14) but also
produces a scattering effect on the emitted photons, leading
to a higher light extraction efficiency (LEE).15)

Recently, indium–tin oxide (ITO) and ZnO have emerged
as promising choices of transparent conductive oxides
(TCOs) for enhancing the external efficiency of devices
owing to their low absorption in the visible spectrum,
intermediate refractive indices, and good electronic conduc-
tion. Although traditional antireflective coating is successful
in photovoltaic devices, the pursuit of a broadband and
angle-independent antireflection remains strong.16–19) Recent
studies have shown that antireflective nanostructures can be
tailored for optimal light harvesting, regardless of photon
wavelength, angle of incidence, and level of polariza-
tion.20–23) The light trapping effect and enhanced conversion
efficiency in nanometer-scaled structures have also been
demonstrated in thin-film and nanowire optoelectronic
devices.24–26) Nevertheless, fabricating nanostructures on

several material templates risk increases in scattering and
surface recombination losses. Moreover, the technologies
required to combine both micro- and nano-scale surface
textures and the associated advantages are very essential. In
addition, several studies have examined the uniformity issue
of the application of nanometer-scaled pillars.27,28) Although
the performance of the devices enhanced significantly, their
pattern shapes were still random around the surface.

Previously, we reported about ITO whiskers and their use
in light harvesting.29) In this study, uniform and periodic
nanometer-scaled GaN-based p–i–n pillars were fabricated
using the nanoimprint lithography (NIL) technique and the
inductively coupled plasma (ICP-RIE) etching process. A
ZnO thin film was grown to cover GaN-based p–i–n
nanopillars and then ITO whiskers were deposited onto it.
The field-emission scanning electron microscopy (SEM)
measurement was accurate in detecting the appearance of this
hybrid nanometer-scaled structure. Furthermore, the photo-
luminescence (PL) and broadband angle-independent reflec-
tion characteristics were measured to assess the optical
impact of the hybrid TCO structure on nanopillars.

2. Experimental procedure

The nitride-based structures were grown on c-plane sapphire
substrates by MOCVD with a rotating disk reactor (Veeco
D180). On the bottom sapphire substrate, the epitaxial layers
consist of a 30-nm-thick GaN nucleation layer grown at
525 °C, a 2-µm-thick undoped GaN layer grown at 1050 °C,
a 2-µm-thick Si-doped n-type GaN layer grown at 1050 °C,
followed by a 70-nm-thick active layer of five pairs of
In0.17Ga0.83N/GaN multiple quantum wells (MQWs) consist-
ing of a 2-nm-thick well and a 12-nm-thick barrier grown at
770 °C, and a 0.2-µm-thick Mg-doped p-type GaN layer
grown at 1025 °C. After standard fabrication steps, we used
NIL to generate nitride-based nanopillars (NPs). Two-dimen-
sional square-lattice air-hole arrays with a lattice constant of
500 nm were formed by NIL techniques. The steps of the NIL
process were described as follows: step 1— generating a
photonic quasi-crystal (PQC) patterned mold of an inter-
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mediate polymer stamp (IPS) from a Ni master stamp. We
chose a 12-fold PQC pattern owing to a more enhanced
surface emission.30) This pattern was obtained from photonic
crystals (PhCs) with a dodecagonal symmetric quasi-crystal
lattice, as opposed to regular PhCs with a triangular lattice and
an 8-fold PQC.31) The NIL system was preheated at a
temperature of 150 °C under a pressure of 30 bar for about
5min. In step 2, a 100-nm-thick polymer layer was spin-
coated on a 200-nm-thick SiO2/GaN LED wafer surface, the
SiO2 layer of which was grown by plasma-enhanced chemi-
cal vapor deposition (PECVD). The temperature and pressure
of the NIL system were then changed to 65 °C and 40 bar to
proceed to step 3. Step 3 was a second imprint using the IPS
as a single useful template to transfer the PQC pattern onto the
dried polymer film in a simultaneous thermal and UV process
(STU). By UV irradiation for 10 s, the PQC pattern was
transferred to the polymer layer on the surface of the LED
wafer. In step 4, the NIL system was cooled to room
temperature to release the IPS from the LED wafer. In step 5,
we use an inductively coupled plasma reactive ion etching
(ICP-RIE) system with CF4 plasma to remove the residual
polymer layer and transfer the pattern onto the SiO2 layer. The
ICP-RIE system used the reactive gas CHF3 and O2 with an
RF power of 250W and a chamber pressure of 4 Pa. After the
NIL process, the atomic layer deposition (ALD) technique
was employed to grow a 120-nm-thick ZnO thin film for
covering nitride-based nanopillars at a temperature of 200 °C.
Finally, ITO nanowhiskers (NWs) were deposited at an
oblique angle by electron beam evaporation. For comparison,
two samples were prepared during the NW deposition: one is
with conventional flat devices and the other is with NPs
covered with ZnO on the surface, as shown in Fig. 1.

To fabricate the novel structure of hybrid ITO NWs/ZnO,
as transparent conductive oxide layers, a higher transparency
and a lower resistivity are crucial to the efficiency of
optoelectronic devices. The resistivity and transparency of
ITO NWs are ³2 © 10¹4³ cm and ³80 to 90%, respectively,
and the average height of NWs on nitride-based structures is
1.2 µm. In addition, the height and diameter of NPs covered
with ZnO are 920 and 550 nm, respectively. The spacing
distance between NPs ranges between 50 and 320 nm. The
SEM images of hybrid ITO NWs/ZnO on NPs are shown
in Fig. 2.

3. Results and discussion

Six different structural combinations were fabricated for
characterization: (1) NPs, (2) NPs covered with ZnO by ALD
(ZnO + NPs), (3) NWs deposited onto NPs (NWs + NPs),
(4) NWs deposited onto NPs covered with ZnO (NWs +
ZnO + NPs), (5) NWs deposited onto conventional devices
(NWs + flat), and (6) conventional devices (flat). Figure 3
shows that the PL spectral peak wavelength of InGaN/GaN
(MQWs) at room temperature is ³455 nm. The photo-
luminescence was measured using the 325 nm line of a
He–Cd laser (2mW) as the excitation source. Four different
samples were measured for their PL characteristics. The
samples with only NPs and NWs + NPs showed a two-peak
profile: one peak is for InGaN MQWs and the other peak
(365 nm) is for bulk GaN. However, the GaN peak
disappeared after ZnO was deposited onto the NPs, which
can be explained by further absorption induced by ZnO.

Figure 4(a) shows the reflectance values of all structural
combinations, namely, NPs, ZnO + NPs, NWs + NPs,
NWs + ZnO + NPs, NWs + flat, and flat. Figure 4(b) shows
the enhanced factor of light harvesting of NWs on different
templates, NPs, and NPs covered with ZnO, compared with
conventional devices. The enhanced factor (Fenhanced) of light
harvesting is defined as

Fenhanced ¼ Rf=Ri; ð1Þ
where Ri is the reflectance of a structure and Rf is the
reflectance of a conventional device. We found that the
reflectance of the NW sample on NPs covered with ZnO is
lower than those of the NP sample and the NP sample
covered with ZnO, the correlated wavelength of which ranges

(a)

(b)

Fig. 1. (Color online) Schematic diagram: (a) NWs on conventional
devices and (b) NWs on NPs covered with ZnO.

(a) (b)

(c) (d)

Fig. 2. SEM images for (a) cross section and (b) tilted image of NPs
covered with ZnO; (c) cross section and (d) tilted image of NWs on NPs
covered with ZnO.
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from 380 to 562 nm. Among the test samples, the hybrid
ITO NW/ZnO structure exhibited the lowest reflectance
values between 3.8 and 10.9% in the wavelength range from
380 to 455 nm. Furthermore, the Fenhanced of the hybrid ITO
NW/ZnO structure is higher than that of NWs on conven-
tional devices. The Fenhanced of the hybrid ITO NW/ZnO
structure reaches high values of 6.3 and 3.4 at wavelengths of

380 and 455 nm, respectively. For wavelengths shorter than
442 nm, the reflectance of NPs + ZnO is lower than that of
NWs + NPs. This is mainly caused by the fact that the
uniform gradual change brought by the ZnO layer can
perform better in terms of lowering the Fresnel reflection,
similarly to that observed in the previously reported work29)

performed using the gradual refractive index theory. In
contrast, all the nanowhiskers are standing on the top of the
nanopillars, leaving some air gaps between the substrate and
the nanopillars, and this may induce further refractive index
disruption and leads to a higher reflectivity.

Figure 5 shows the measured angular reflectance spectra of
NPs, NPs covered with ZnO, and NWs on different
templates. The reflectance of the NPs remained low at small
angles of incidence (AOIs), compared with those of the other
samples. Nevertheless, the ITO NWs and ZnO deposited onto
NPs were both effective in preserving the low reflectance at
large angles of incidence. The low reflectance (3.4% of
reflection or less) can be found from 300 to 1000 nm and
from ¹60 to +60°. Large-area omnidirectional antireflective
structures are very beneficial to photovoltaic devices. We
demonstrated that NWs not only inhibit the broadband
reflectivity at wavelengths up to 1000 nm for normal
incidence but also maintain a low reflectance under various
incident angles up to «60°. In addition to NWs, the ZnO thin
film also restrained the broadband reflectivity at wavelengths
up to 455 nm to improve the absorption of MQWs through
the illustrations in Figs. 5(b) and 5(d). The results reveal that
the NW sample on NPs covered with ZnO showed the best
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Fig. 5. (Color online) Measured angle-resolved reflectance spectra of
(a) NWs on conventional devices, (b) NPs, (c) NWs on NPs, (d) NPs covered
with ZnO, and (e) NWs on NPs covered with ZnO; the dotted line shows the
factor at the wavelength of 455 nm.
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antireflection characteristics over the entire spectrum from
300 to 1000 nm and an AOI up to 60 degrees.

4. Conclusions

We fabricated a hybrid ITO NW structure onto nitride-based
NPs covered with ZnO that enhanced antireflection and
found that the enhanced factor of light harvesting is higher
than that of NWs on conventional devices in the range
between 380 and 600 nm. This reveals that a hybrid ITO
NW/ZnO structure is feasible for improving the light
trapping efficiency of optoelectronic devices.
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