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Abstract—Brain activity associated with attention sustained
on the task of safe driving has received considerable attention
recently in many neurophysiological studies. Those investigations
have also accurately estimated shifts in drivers’ levels of arousal,
fatigue, and vigilance, as evidenced by variations in their task per-
formance, by evaluating electroencephalographic (EEG) changes.
However, monitoring the neurophysiological activities of automo-
bile drivers poses a major measurement challenge when using a
laboratory-oriented biosensor technology. This work presents a
novel dry EEG sensor based mobile wireless EEG system (referred
to herein as Mindo) to monitor in real time a driver’s vigilance
status in order to link the fluctuation of driving performance
with changes in brain activities. The proposed Mindo system
incorporates the use of a wireless and wearable EEG device to
record EEG signals from hairy regions of the driver conveniently.
Additionally, the proposed system can process EEG recordings
and translate them into the vigilance level. The study compares
the system performance between different regression models.
Moreover, the proposed system is implemented using JAVA pro-
gramming language as a mobile application for online analysis.
A case study involving 15 study participants assigned a 90 min
sustained-attention driving task in an immersive virtual driving
environment demonstrates the reliability of the proposed system.
Consistent with previous studies, power spectral analysis results
confirm that the EEG activities correlate well with the variations
in vigilance. Furthermore, the proposed system demonstrated the
feasibility of predicting the driver’s vigilance in real time.

Index Terms—Brain computer interface, dry electroencephalo-
graphic (EEG) system, machine learning, vigilance monitoring.

I. INTRODUCTION

ONG-TERM, monotonous, or nighttime driving often
lowers driving performance. As is widely assumed,
drowsiness significantly contributes to automobile accidents,
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leading to a considerable number of traffic collisions, injuries,
and fatalities annually [1]. Developing an effective system for
detecting drowsiness is thus of priority concern for real-life
driving. Such an in-vehicle system must continuously monitor
the arousal status of drivers and accurately predict the potential
impact on behavioral lapse.

Several bio-behavioral signatures have been developed
to monitor drowsiness of automobile drivers, including eye
blinking [2] and head nodding [3]. However, false alarms are
likely since these visual attributes are not always accompanied
by drowsiness [4]. Related studies in recent decades have
demonstrated that electroencephalography (EEG), i.e., the
electric fields produced by brain activity, is a highly effective
physiological indicator for assessing vigilance states [5]—[8].
EEG is the only brain imaging modality with a high temporal
and fine spatial resolution that is sufficiently lightweight to
be worn in operational settings [9]. Numerous EEG studies
suggest that delta (1-3 Hz), theta (4—7 Hz), and alpha (8-12
Hz) activities are highly correlated with fatigue, drowsiness,
and poor task performance [10]-[12]. By using the conven-
tional wet and wire EEG acquisition system (i.e., Neuroscan
System), our previous studies [13]-[17] explored driver brain
activity changes: from alertness to drowsiness. Based on the
neurological findings, drowsiness monitoring algorithms were
developed by using several machine learning methods. The
experimental results further demonstrated the feasibility of
detecting or monitoring driver drowsiness level using EEG
signals. However, designing a user acceptable and feasible
EEG device to realize the real-time monitoring system is still a
challenging task. Data collection in most EEG studies requires
skin preparation and conductive gel application to ensure
excellent electrical conductivity between a sensor and human
skin. These procedures are time consuming, uncomfortable,
and even painful for participants [18], [19]. Additionally, the
signal quality may degrade over time as the conductive gel
dries out [20]. Hence, a wearable and wireless dry-electrode
EEG system must be developed, capable of assessing the brain
activities of participants performing ordinary tasks.

According to a previous study [15], spectral dynamics of EEG
at posterior brain regions are strongly correlated with the dete-
rioration of task performance and declining vigilance. In [13],
the power spectra were successfully linked with behavioral per-
formance by regression models. Additionally, the advantage of
using the EEG signals of the posterior brain region has been
shown in a recent study [17] that the classification performance
of the drowsiness detection system using the EEG signals of
parietal and occipital regions is significantly better than that
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TABLE 1
COMPARISON OF DRY EEG SYSTEMS

Dry EEG . Cognionics . NeuroSky .
system Mindo-4 [53] Enobio [54] 23] DSI 10/20 [55] imec [56]
Sensor Type D Dry and D D D Dry and active
yp ry active ry ry Ty y
. 0.23-125
Bandwidth Hz 0-50Hz 0 - 50Hz 3 - 100Hz 0.02-120Hz 0.5-100Hz
Resolution 24bits 24bits 24bits 12bits 16bits 12bits
#(Channels) 4 16/24/32/ 64 8/20 1 23 8
Sampling  128/256/512 3405, 500 Hz 512Hz  240/960Hz  1024Hz
rate Hz
Transfer wireless wireless wireless wireless wireless wireless
Weight 100g 350g 65g 90g 500g N/A
Battery life 23 6 8 2 22-70
(hour)
Signal
quality No
compared Correlation  Correlation sionificant Correlation  Correlation  Correlation
with coefficient: coefficient: digfference coefficient: coefficient: coefficient:
conventional ~ >92% [29] >90% [57] >70% [59] >80% [60] 81%-98% [56]
[58]
wet EEG
systems

using the EEG signals of the frontal region. However, these
studies [13], [15], [17] still used conventional wet EEG elec-
trodes in measuring EEG signals. Hence, acquiring the EEG
signal of the hair region is a critical factor in developing a suc-
cessful vigilance monitoring system. Recent studies have mea-
sured EEG signals using dry sensors, including silicone conduc-
tive rubber [21], comb-like electrode [22], gold-plated electrode
[23], bristle-type electrode [24], and foam-based sensor [25].
Table I lists some commercially available EEG systems. Most
of these dry sensors are useful for hairy sites. EEG acquisition
from the posterior region is available.

This study develops an EEG-based in-vehicle system for as-
sessing human vigilance level. EEG dynamics and behavioral
changes of participants are simultaneously recorded via a new
dry-contact EEG device [26], [27] with spring-loaded sensors
[28], [29] when they perform a sustained-attention driving task.
Additionally, an effective system using support vector regression
(SVR) [30] is developed to model the relationship between the
brain activity and the behavioral performance. The system perfor-
mance of SVR-based model is compared with other state-of-art
regression methods. Moreover, the prediction model is imple-
mented on a portable device. Furthermore, feasibility of the pro-
posed system is demonstrated by monitoring human cognitive
states during a sustained-attention driving task [31].

II. SYSTEM ARCHITECTURE

Fig. 1 shows the proposed EEG-based in-vehicle system, de-
signed to monitor human vigilance level continuously during
automobile driving. To construct the system, EEG signals were
recorded using a mobile and wireless EEG device with dry sen-
sors when the participants performed a sustained-attention task

in a realistic dynamic driving simulator [32]. For data acquisi-
tion, the wireless and mobile EEG system, as shown in Fig. 2,
consists of dry electrodes, data acquisition module, Bluetooth
transition module, and rechargeable battery. The device was de-
signed for quickly and conveniently recording an EEG signal
of the occipital region which is highly correlated with the vig-
ilance [15]. This dry EEG system surpasses the conventional
wet electrodes with the conduction gel for long-term EEG mea-
surements [25]. Additionally, the signal quality of the used dry
EEG system is comparable with that of the NeuroScan [29].
For data analysis, the pre-stimulus EEG spectra of all experi-
mental trials were segmented and formed as a training dataset of
N samples after applying band-pass filter (0.5-50 Hz) and fast
Fourier transformation (FFT) [33]. Each training sample was ac-
companied with the behavioral performance in response to the
given task, indicating the presumable vigilance of a driver. As
for the core of the prediction system, the relationship between
EEG and behavior was modelled using support vector regres-
sion (SVR) [30]. Finally, the predicted outputs were converted
to different levels of vigilance. For real-world applications, the
proposed system was implemented on a mobile device using
JAVA programming language. The wireless and wearable EEG
device transmitted its recorded data via a Bluetooth interface to
the user’s device. The acquired EEG is displayed, processed,
and analyzed in real time. The following sections introduce in
detail the major components of the proposed system.

A. Dry EEG Electrodes

As shown in Fig. 2(a)—(c), a new dry-contact EEG device
with spring-loaded sensors [28] was proposed for potential op-
erations in the presence or absence of hair and without any skin
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Fig. 1. Design of EEG signal acquisition, processing, and analysis system, where N, p, and b denote the number of training samples, lags, and baseline samples,
respectively. The real-time vigilance monitoring system is implemented in a tablet-based application using Java programming language.
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Fig. 2. Wireless and wearable EEG devices. (a) Wireless and wearable EEG headsets. (b) Five dry EEG electrodes and one patch sensor. (¢) Spring-loaded probes.

(d) Block diagram of the circuit.

preparation or conductive gel usage. Each probe was designed to
include a probe head, plunger, spring, and barrel. The 17 probes
were inserted into a flexible substrate using a one-time forming
process via an established injection molding procedure. With 17
spring contact probes, the flexible substrate allows for a high ge-
ometrical conformity between the sensor and the irregular scalp
surface to maintain low skin-sensor interface impedance. Ad-
ditionally, the flexible substrate also initiates a sensor buffer ef-

fect, thereby eliminating pain when force is applied. This sensor
is more convenient than conventional wet electrodes in mea-
suring EEG signals without any skin preparation or conductive
gel usage.

B. EEG Signal Acquisition Circuit

According to Fig. 2(d), the EEG acquisition module consists
of four major components [28]: a amplifier (ISL28470, Intersil,
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USA);, a front-end analog-to-digital converter (ADC, AD1298,
Analog Devices, USA), a microcontroller (MSP430, Texas In-
struments, USA), and a wireless transmission (BM0403, Uni-
grand Ltd., Taiwan). The voltage between the electrode and the
reference was amplified using a biosignal amplifier with high
input impedance. Meanwhile, the common-mode noise was re-
jected to precisely detect microvolt-level brain wave signals
from the scalp [34]. In particular, transfer function of the pream-
plifier, i.e., equivalent to the form of a high-pass filter with input
signals of frequency w, is as follows [35]:

R
=(1+—Fl>
R(;'i'ﬁ

where Rrp = 1.5 MQ, Ry = 14.7 KQ, and C = 47 pyF in
this study. The gain of the preamplifier unit is set to 103 V/V if
w = 0.4r.

The amplified signal was digitized via an ADC with a 24 bit
resolution and 256 Hz sampling rate. The minimum input
voltage of ADC ranges from —1.94 to 1.94 mV. The maximum
input voltage of ADC ranges from —23.30 to 23.30 mV. In
the microcontroller unit, the power-line interface was removed
using a moving average filter with a frequency of 60 Hz.
The digitalized signals after amplification and filtering were
transmitted to a PC or a mobile device via Bluetooth with
a baud-rate of 921600 bits/s. Power was supplied by a high
capacity (750 mAh, 3.0 V) Li-ion battery, which provided 23 hr
of continuous operation at maximum power consumption.

Vn ut

>
V in
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C. EEG Signal Processing and Analysis

During a 90 min driving experiment (see Section III), the
study participants encountered hundreds of unexpected lane-de-
parture events. In the signal processing, all 2 s baseline data (512
sampling points) before the stimuli were extracted from contin-
uous EEG signals. The data in this baseline period, without any
confounding factors (i.e., events, motion stimuli, and motor ac-
tions) were an appropriate segmentation of EEG signals to link
the physiological message with the driving performance. The
data pair of the ¢-th trial is denoted as

erial(t) = {(X(t), y(t)) | X() € R>2} ()
where 4 denotes the number of channels, N represents the
number of trials: ¢ = [1,2,...,N]; and y(t) refers to the
driving performance, as measured by the reaction time (RT) in
response to the lane-departure event.

First, a type I Chebyshev band-pass filter with cut-off fre-
quencies of 0.5 Hz and 50 Hz was applied on the raw data
to remove artifacts. Second, physiological features were ex-
tracted by transforming the EEG signals of all trials, { X ()|t =
1,2,...,N}, into a frequency domain using FFT to charac-
terize the spectral dynamics of brain activities. As shown in
Fig. 4, the EEG signal was successively fed into a weighted
time-frequency analysis before applying support vector regres-
sion. Power spectral density (PSD) of the EEG signal at time
t was the weighted average of power spectrum of previous p
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Fig. 3. Spectral EEG feature extraction. Power spectra at time ¢, denoted by
PSD(t), are estimated by using FFT with Welch’s method and a weighting
scheme, where the spectral feature are extracted every 2 s.

windows of EEG spectrum, in which all frequency responses
of EEG activations were calculated using a 512-point moving
window without overlapping points. Each 512 points (2 s) of
data were further subdivided into several 128-point sub-win-
dows advanced in a 64-point step. Windowed 128-point epochs
were extended to 256 points by zero-padding in order to calcu-
late the power spectra using a 256-point FFT (Welch’s method),
subsequently yielding an estimate of the power spectral density
with 30 frequency bins from 1 to 30 Hz. The power spectra of
these sub-windows were converted into a logarithmic scale and
averaged to form a log power spectrum for each window. Fur-
thermore, the estimated spectral powers of four channels were
averaged, and the mean power spectrum of the first 10 min of
the experiment, which was putatively the alert pattern, was sub-
tracted from each estimated spectrum.

Since the periods of the cyclic fluctuations of drowsiness
exceeded 4 min [36], variance at cycle lengths shorter than 1
min was eliminated using a weighted-averaging filter that ad-
vanced in a step of 2 s. Next, PSD of the &£** window was mul-
tiplied by a weighted coefficient wy, where w decreased as &
increased. In this study, p = 20 and w = [1,2,...,20]. Com-
pared with an unprocessed PSD without a weighted-averaging
filter, a smoother PSD estimate is obtained by using this algo-
rithm.
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Fig. 4. Snapshot of the proposed driver drowsiness prediction system
implemented on an Android platform. The pie chart display the current level of
driver’s vigilance evaluated every 2 s. Four traces display the EEG recordings
with refresh rate of five seconds. Color bars record the changes of vigilance
level during driving.

D. Prediction Model

According to previous studies [15], the behavioral lapses in-
duced by drowsiness correlate with the changes of EEG activ-
ities. To link the power spectra with RTs, a nonlinear model is
preferred in the model fitting to cover linear and nonlinear re-
lationships between EEG power spectra and RTs. The support
vector machine is a conventional means of solving the multidi-
mensional function estimation problem, and has been applied
to various fields such as classification and regression. When
used to solve the function approximation and regression esti-
mation problems, SVM is denoted as the support vector regres-
sion (SVR)[30]. Fig. 1 shows the graphical framework of SVR,
including the support vectors, mapped vectors, and dot product
operations. SVR is a complex and heavy-computational imple-
mentation of a forecasting algorithm based on structuring risk

minimization principles to obtain an effective generalization ca-
pability [37], [38]. The goal of e-SVR is to find a small w such
that a function f(2) = (w, X') + b has at most ¢ deviation from
the targets y; for all the training data X = {(x;,y;)}, where
i=11,2,....1] and (., .) denotes the dot product. According to
[30], the e-SVR, can be formulated as minimization of (3) and
(4) as the following:

!
1
min §||w||2 +C§(fi+ff)7 3)
yi—w-x; —b<et &
subject to =< w-w; +b <y +&F “)

52',7 51* Z 07

where &;, & are slack variables. The constant C' > 0 determines
the compromise between the flatness of f and the amount up to
which deviations larger than ¢ are tolerated. In this study, the
SVR model was implemented using a library of LIBSVM [39].
The dot product operation of any two mapped vectors can be
implemented by a kernel function which satisfies Mercer’s the-
orem [30]. In this study, most commonly used kernel functions,
including linear, polynomial, radial basis function, and sigmoid
function were implemented and their performances were com-
pared. The formulas of these four kernels are listed as follows:
1) Linear kernel

k(zi,xj) =z 2.

2) Polynomial kernel

k(i 2;) = (z; - x; + 1)

3) Radial basis function kernel (RBF kernel)

k T, Ly;) = ex -
( g J) exp ( 202

4) Sigmoid kernel

(i, ;) = tanh(y(z; - 25) — )

where o determines the width of RBF function, d is a constant
trading off the higher-order versus lower-order term in the poly-
nomial, v > 0 is a scaling parameter of the input data, and § > 0
is a shifting parameter controlling the threshold of mapping.

The root mean square error (RMSE) is a conventional index
for evaluating the performance of the predictor [40]. RMSE can
be estimated as follows:

2

S(RT — RT)

n

RMSE = ®)

where RT and RT' denote the observed reaction times and the
predicted reaction times, respectively; and n represents the
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number of validation datasets. A smaller RMSE implies a more
accurate prediction for the used model.

E. Mobile Application

After yielding the optimal parameters of SVR, the proposed
prediction model was incorporated in a mobile application
using JAVA programming language to run on smartphones,
tablet computers, and other mobile devices. This application
connects wirelessly with a wearable EEG device via Bluetooth
to record the subjects’ EEG signal and evaluate their vigilance
level directly. Fig. 4 displays the graphic user interface (GUI)
of the developed mobile application. The raw EEG recordings
of 4 channels displayed in the middle of GUI refresh every 5 s.
The estimated vigilance level displaying in the upper right hand
corner (circle icon) refreshes every 2 s. The vertical bars shown
in the bottom of GUI show the changes of vigilance level. The
predicted RT was then converted into the presumable vigilance
level by

RT
Vigilance degree = rounding ( - X D) (6)

where rounding denotes the operator to return the value to the
nearest integer, and RT represents the predicted RT. In this
study, T is set to 3. A “three-second” rule is generally recom-
mended for the driver to follow in order to maintain a safe dis-
tance from the lead vehicle on the highway [41]. Here, param-
eter D is set to 8, i.e., the total number of vigilance levels.

III. EXPERIMENTAL DESIGN AND MATERIALS

A. Subjects

Fifteen subjects participated in a sustained-attention driving
task. Each subject wore a wireless and wearable EEG headset,
sat inside the vehicle, and controlled the simulator by using
the steering wheel. To easily induce drowsiness, the experi-
ment began in the early afternoon (13:00—14:00) after lunch and
lasted for approximately 90 min when the circadian rhythm of
sleepiness reached its peak [42].

B. Driving Simulator

As shown in Fig. 5(a), the synchronized scenes were pro-
jected from six projectors to constitute a surrounding 360°
vision. At the center of the projected scenes, a real vehicle
(without the unnecessary weight of an engine and other com-
ponents) was mounted on a six degree-of-freedom motion
platform. The motion sensation was then delivered along
with the movement of the vehicle. A four-lane highway scene
projected on a surrounding screen simulates a visually monot-
onous and unexciting stimulus of a driving condition to induce
drowsiness. Additionally, the refresh rate of the highway scene
was set properly to emulate a car driving at a fixed speed of
100 km/hr. The four lanes from left to right were separated
by a median stripe. The distance from the left side to the right
side of the road was equally divided into 240 units (digitized
into values of 1-240): the widths of each lane and the car were
60 units and 28 units, respectively. These units were converted

A

Fig. 5. Sustained-attention driving task implemented in an immersive driving
simulator. (a) The driving simulator was mounted on a motion platform. The
VR scene simulates nighttime cruising at a speed of 100 km/hr on a four-lane
highway without other traffic. (b) The event-related lane-departure paradigm.
Deviation onset: the time interval when the car starts to drift to the right or left
of the cruising lane. (c) Response onset: the time interval when subjects use the
steering wheel. (d) Response offset: the time interval when the car returns to the
original lane.

into the same ratio of the width of the real lane (3.75 m) and
the car (1.8 m).

Additionally, the server also received the data via RS-232
compatible serial port from the client which ran the VR program
and recorded the behavioral response. This data stream with an
8-bit digital resolution including the vehicle trajectory (0-240),
deviation onset (251/252 for left and right side of the deviation),
response onset (253), and response offset (254), was synchro-
nized with the EEG data for further event-related analysis.

C. Experimental Paradigm

The event-related land-departure paradigm [43](Fig. 5) was
implemented in the VR driving simulator. This paradigm at-
tempted to replicate a nonideal road surface to make the car
randomly drift out of the cruising lane (deviation onset) at a
deviation speed of 5 km/hr toward the left or right side. When
encountering each lane-departure event [Fig. 5(b)], which oc-
curred approximately every 8—12 s, the subject was instructed
to steer the car (response onset) back to the center of the original
lane (response offset) immediately [Fig. 5(c)]. During a 90 min
experiment, the total number of trials available from each sub-
ject was ~ 200. Next, the subject’s vigilance level in each trial
was quantified using the reaction time (RT, the duration between
the deviation onset and the response onset). As is assumed, al-
though the subject was alert during the experiment, their RT was
fast, whereas a slow RT accompanied the occurrence of drowsi-
ness.

IV. EXPERIMENTAL RESULTS

A. Relationship Between RTS and Power Spectra

Fig. 6 shows the spectral EEG changes in response to changes
in the increase of RT, where 122 denotes the square of Pearson’s
correlation coefficient. The power spectra of four EEG record-
ings were averaged and converted into a logarithmic scale in
order to form a log power spectrum. Amplitudes of the 2 s pres-
timulus EEG spectrum were then used to correlate with the fol-
lowing RT. Most studies [15], [44], [45] identified significant
increases in the delta and theta activities, which were strongly
correlated with the deterioration of task performance. However,
according to our results, the changes of delta (122 = 0.196) and
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Fig. 6. (a) RT-sorted spectral changes across 1-30 Hz. (a) Delta-power
(left-upper), theta-power (right-upper), alpha-power (left-lower), and
beta-power (right-lower) augments as the RT changes.

theta (1?2 = 0.090) powers were not linearly correlated with
the RTs. The eye movements may have profoundly affected the
EEG power bands, especially for the delta activity. The alpha
power and the (theta+alpha)/beta and alpha/beta power ratios
are commonly proposed as meaningful indices of poor perfor-
mance, fatigue, and arousal [45]-[48]. Consistent with the re-
sults of these investigations, this study (Fig. 6) suggests that
monotonic increases in power spectrum, as evident in the alpha
range (1?2 = 0.548), can be used as a potential indicator of the
vigilance state.

B. System Performance

The feasibility of predicting drivers’ vigilance level based on
spectral EEG patterns was examined by comparing the predic-
tion performance of using either delta power (&), theta power
(8), alpha power (@), beta power (3), the concatenation of four

bands (6,6, @, (), or the power spectra of 1-30 Hz as the fea-
ture vectors for training a SVR. The prediction performances
of SVR using linear, polynomial, radial basis function (RBF),
and sigmoid kernel functions were also compared. Regarding
the performance validation (Table II), two-fold cross-validation
was performed and run 100 times to yield the average results.
Restated, half of data (257 samples) were randomly selected as
the training data, and the remaining data (257 samples) were
selected as the validation data. The performance was evaluated
by the root mean square error (RMSE) and squared R(R?) be-
tween the recorded RT and the predicted RT. The number of
trained support vectors was also reported. Each cell represents
the accuracy % standard deviation of the measures.

In terms to using the EEG features, SVR with a RBF kernel
trained by the alpha power yields the lowest RMSE (0.267 +
0.013) and the highest R? (0.688 £ 0.035), compared to the
delta (RMSE: 0.440£0.026, R?: 0.19940.039), theta (RMSE:
0.478 £ 0.027, R?: 0.099 % 0.029), and beta powers (RMSE:
0.448 £ 0.034, R?: 0.183 £ 0.042). When using the concate-
nation of four band powers, RMSE decreased to 0.207 4 0.012
and the R? increased to 0.81640.020. Moreover, the RMSE de-
creases to 0.124 £ 0.011 and the R? increased to 0.932 4 0.011
when RBF-SVR used the spectral power of 1-30 Hz as the
feature vectors. The number of support vectors tended to de-
crease if the number of features increased. Additionally, SVR
with a RBF kernel, which was trained by the spectral power
of 1-30 Hz, used the least number of support vectors (36% of
the data), compared to other methods (50-70% of the data).
The highlighted cells indicate the optimum results among all of
the combinations of learning algorithms and spectral features.
Overall, SVR using a RBF kernel yields a higher prediction ac-
curacy than that using linear, polynomial, and sigmoid kernel
functions. According to the safety distance between vehicles re-
ported by the Road Safety Authority [49], a minimum reaction
distance of 20 m is recommended when driving at a speed of
100 km/h. Notably, the RMSEs obtained by the proposed system
ranges from 124 ms to 481 ms (about 3—13 m at a 100 km/hr car
speed), which does not violate the recommended reaction dis-
tance. Additionally, the best performance of this study is com-
parable with our previous result (RMSE: 130 ms) [13] in which
the drowsiness detection system used the EEG signals acquired
by the NeuroScan.

Fig. 7 further compares the prediction result of SVR using
different kernel functions, where SVR was trained by using the
spectral powers of 1-30 Hz. The black trace is the recorded
RT sorted from fast to slow, and the color traces are RT pre-
dicted by different methods. The black bars denote the abso-
lute differences between the recorded RT and the predicted RT.
This finding clearly indicates that SVR with a RBF kernel had
a higher prediction accuracy than that of other methods, espe-
cially for the prediction of fast and slow RTs. Additionally, the
uniform distribution of prediction errors across the entire spec-
trum of RT revealed how the RBF-based SVR provided the de-
sired robustness for forecasting human behaviors.

In our previous study [50], polymer foam-based sensors were
used in the dry EEG system to record subject’s forehead EEG
signal. Although RMSE of the prediction result was compa-
rable with those obtained in this study (0.115 £ 0.053 versus
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TABLE 11
PREDICTION RESULTS OF REACTION TIMES USING SVR WITH DIFFERENT KERNEL FUNCTIONS

EEG feature If\Iumber of Kernel function Root mean square Squared R Number of support
eatures error (s) vectors

Linear 0.447 +0.026 0.192 £ 0.031 169.7+5.8
3 1 Polynomial 0.448 +0.026 0.192 £ 0.031 169.8 £5.8
Radial basis function  0.440 £ 0.026 0.199 £ 0.039 1555+7.2
Sigmoid 0.449 + 0.026 0.192 +£0.031 170.3+5.8
Linear 0.480 +0.027 0.093 £0.022 1795+ 6.4
7 1 Polynomial 0.480 +0.027 0.093 +£0.022 1795+ 6.4
Radial basis function ~ 0.478 £ 0.027 0.099 £ 0.029 1714+ 74
Sigmoid 0.481 +0.027 0.093 +£0.022 179.4+6.6
Linear 0.360 + 0.024 0.494 £ 0.038 187.1+8.5
o | Polynomial 0.362 +£0.024 0.494 £ 0.038 186.3+8.4
Radial basis function ~ 0.267 £ 0.013 0.688 £ 0.035 158.9+6.9
Sigmoid 0.375+0.026 0.494 +0.038 178.1+72
Linear 0.465 +0.034 0.147 £ 0.032 180.4+6.7
B 1 Polynomial 0.465 +0.034 0.147 £ 0.032 180.0 + 6.6
Radial basis function  0.448 £+ 0.034 0.183 £ 0.042 173.6 £ 6.5
Sigmoid 0.470 + 0.034 0.147 £ 0.032 177.0+6.3
Linear 0.287 +£0.021 0.673 £0.022 1559+84
[5 7a m 4 Polypomia} ' 0.290 +0.022 0.673 £0.022 153.3+8.5
L Radial basis function ~ 0.207 + 0.012 0.816 = 0.020 133.8 £ 6.6
Sigmoid 0.322 +£0.028 0.662 +0.023 1544+7.0
Linear 0.265 +0.020 0.704 +0.025 1549+8.8
Power spectra of 30 Polynomial 0.263 +0.020 0.710+0.024 151.5+£83
1-30 Hz Radial basis function = 0.124 £ 0.011 0.932 £ 0.011 93.1+£5.2
Sigmoid 0.267 +0.022 0.712 £ 0.020 1445+75

3,6, @, and B are the average Log band powers in delta (1-3 Hz), theta (4-7 Hz), alpha (8-12 Hz), and beta range (13-30 Hz), respectively.

[3, y, a, m is the concatenation of the power spectrum of four bands.
The numbers of training samples and testing samples are both 257.
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Fig. 7. RTs predicted by support vector regression using (a) linear,
(b) polynomial, (c) RBF, and (d) sigmoid kernels. Black and color traces
indicate the recorded RT and the prediction RT, respectively. Black bars
denote the prediction errors (i.e., absolute difference between recorded RTs
and predicted RTs).

0.124 + 0.011), the artificial noises caused by eye blinking and
movement were observed pervasively in the forehead EEG, pos-
sibly decreasing the system performance [51].

Fig. 8 compares the system performance using SVRs
with other state-of-art regression methods [52], including
linear regression (Linear: 0.330 =+ 0.010), ridge regres-
sion (Ridger: 0.374 £ 0.011), least absolute shrinkage
and selection operator (Lassor: 0.433 + 0.015), kernel
smoother (Ksmoothr: 0.307 £ 0.014), Pseudo-inverse re-
gression (Pinvr: 0.330 £ 0.08), partial least squares regression
(Plsr: 0.363 £ 0.008), k-nearest-neighbor regression (knnr:
0.226 £ 0.027). Analysis results indicated that RMSE obtained
by RBF-SVR is better than those using other methods.

C. Real-Time Vigilance Prediction

Above results suggest that the EEG-based system using the
RBF-based SVR is a highly promising means of predicting the
driver’s vigilance level. An attempt was also made to verify
the feasibility of the proposed system by further implementing
the SVR model in Java language as an Android application,
in which the parameters of the implemented model (including
slack parameter of SVR, gamma value of RBF kernel, and sup-
port vectors of the obtained model) were trained using Matlab
software.

Fig. 9 shows a temporal relationship between the vigilance
levels predicted by the proposed system and driver’s behavior in
response to regular traffic events or emergencies when the par-
ticipant performed the lane-departure driving task for approxi-
mately 70 min. The predicted results were converted into eight
degrees of vigilance level every 2 s according to Table III which
shows the conversion of predicted RT into vigilance level. At
the beginning of the experiment, the relatively alert state (bluish
bars) was predicted and lasted continuously for several minutes.
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TABLE III
INTERPRETATION OF THE VIGILANCE DEGREE PREDICTED BY THE PROPOSED SYSTEM

Time before severe
behavioral lapse (s)

Degree of vigilance ~ RT (s)

Warning feedback required

1 RT<0.5625

2 0.5625<RT<0.9375 .
Optimal performance No
3 0.9375<RT<1.3125 (presumably alert)
4 1.3125<RT<1.6875
5 1.6875<RT<2.0625 ~700 Yes
6 2.0625<RT<2.4375 ~500 Yes
7 2.4375<RT<2.8125 ~250 Yes
8 RT>2.8125 Severe behavioral lapse Yes
occurred
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Fig. 8. Prediction results compared to state-of-art regression methods, Time (s)

including linear regression (Linear), ridge regression (Ridger), least absolute
shrinkage and selection operator (Lassor), kernel smoother (Ksmoothr),
Pseudo-inverse regression (Pinvr), partial least squares regression (Plsr),
k-nearest-neighbor regression (knnr), SVR with a linear kernel (linear-SVR),
SVR with a polynomial kernel (polynomial-SVR), SVR with a RBF kernel
(RBF-SVR), and SVR with a sigmoid kernel (Sigmoid-SVR).

In terms to the behavioral performance, the vehicle trajectory
[Fig. 9(b)] and RT [Fig. 9(c)] in response to the unexpected de-
parture indicated that the subject could correct the lane depar-
ture promptly (i.e., RT < 1 s). However, the severe behavioral
lapse (i.e., the vehicle hit the right or left roadside) appeared at
~ 1000 s. To avoid car accidents, delivering a warning signal to
alert the driver to the danger is necessary if “low vigilance re-
lated to severe behavioral lapse” is detected. As shown in Fig. 9,
the 5th- (yellow bar), 6th- (orange bar), 7th- (red bar), and 8th-
(brown bar) degree of vigilance detected by the proposed system
first appeared at ~ 300 s, ~ 500 s, ~ 750 s, and ~ 1200 s, re-
spectively. This observation suggests that delivering a warning
feedback no later than the appearance of 7th-degree of the vig-
ilance is highly recommended to alert drivers to the danger of

Fig. 9. Temporal changes in (a) the vigilance level predicted by the proposed
system, (b) the vehicle trajectory, and (c) the RT observed during a 70 min
experiment.

the declining vigilance and prevent behavioral lapses. This rela-
tionship between the predicted level of vigilance and behavior
is summarized in Table III.

V. CONCLUSION

This study developed a driver vigilance prediction system
with a wireless and wearable EEG device, an efficient pre-
diction model, and a real-time mobile App to remedy for
drowsy driving. Based on the proposed EEG system, a link
was established between the fluctuation in the behavioral index
of driving performance (i.e., increase in RT) and the changes
in the brain activity (i.e., trends in EEG power spectra). Ex-
perimental results indicated that the RMSE could minimize
to 0.124 ms when the SVR with a RBF kernel was applied as
the prediction model. Additionally, this SVR-based prediction
model was implemented in real time for the subjects when
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they performed a sustained-attention driving task. In the future,
combining the proposed methods and the warning feedback
system might lead to a practical closed-loop system to predict,
monitor and rectify behavioral lapses of human operators in
attention-critical settings.
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