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A Ripple Free Sampled-Data Robust 
Servomechanism Controller Using Exponential Hold 

Yung-Chun Wu and Nie-Zen Yen 

Absbact-In a general command tracking and disturbance rejection 
problem, it is known that a sampled-data controller using zero-order hold 
may only guarantee the asymptotic tracking at the sampling instances, 
but cannot smooth out the ripples between the sampling instances. In this 
paper, a sampled-data robust servomechanism controller using exponen- 
tial hold is developed for guaranteeing the asymptotic tracking not only 
at, but also between, the sampling instances. In this development, a so 
called "internally-reducible" condition to characterize a class of robust 
servomechanism controllers is derived first, then the proposed controller 
is shown to be contained in this class. Generally speaking, a sampled-data 
structure using exponential hold can provide more design freedoms so that 
it tends to simplify the comtruction of a robust servomechanism controller 
and facilitate the implementation on digital computers. An example for a 
dc motor control is presented to illustrate the advantages of this approach. 

I. INTRODUC~ION 
The robust servomechanism problem of a multivariable linear time- 

invariant system has been widely considered in the literature. In this 
problem it is desired to obtain a so-called "robust servomechanism 
controller" [3], [7] to guarantee the asymptotic tracking and distur- 
bance rejection in the permission of plant variations. In many cases, 
one may prefer to implement a robust servomechanism controller in 
digital rather than analog form, especially when only discrete output 
measurements are dealt with or when the control scheme is to be 
implemented on a digital computer. 

It is known that if the steady state of either the reference input or the 
disturbance is not constant (e.g., ramps, sinusoids, polynomials, etc.), 
then a sampled-data controller using zero-order hold will give rise to 
ripple error. That is, the intersampling error exists and never decays, 
although the steady-state error is zero at the sampling instances. More 
seriously, if the sampling rate is slow, then the ripple error may even 
become unacceptable. The ripple error resulted from this structure 
has been illustrated by Franklin and Emami [ 11; they have shown that 
the continuous internal model principle is a necessary and sufficient 
condition for guaranteeing the ripple-free tracking. 

To avoid the occurrence of the undesired ripple error, a hybrid 
method which uses a preparatory analog internal model followed by a 
digital stabilizing compensator is usually employed [I], [2]. Although 
such a hybrid controller will guarantee the asymptotic ripple free 
tracking, a high order single-rate digital compensator may be required 
since the digital compensator has to stabilize the augmented system 
comprising the plant and the preparatory analog internal model. 

In this paper, a sampled-data robust servomechanism controller 
combining a discrete-time internal model and an exponential hold is 
developed. The combination acts as a continuous-time internal model, 
so that the desired ripple free tracking can be achieved. The developed 
controller structure is described in a rather general form. A distinctive 
feature of the structure is that it can lead to a closed-loop system 
expressible in the dual form of complete state feedback. This allows 
us to choose the parameters more conveniently (e.g.. pole placement 
or optimal design approach). 
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Throughout this paper, the following notations will be used. 

In = the n x n identity matrix. 
0, = the n x m zero matrix (or simply 0, if n = m). 
0, = the zero element of R"[t], the space of all m x 1 time 

eig(#) = the set of eigenvalues of a square matrix #. 
exp(#) = the exponential of a square matrix #. 
[#I' = the transpose of a matrix #. 
C+ = the unstable right-half complex plane including the imag- 

R" " (or C" ") = the set of all real (or complex) matrices of 

Rnxm [0  T) = the set of piecewise continuous functions from 

functions. 

inary axis. 

dimension n x m. 

[ O T )  into Rnx". 

11. PRELIMINARY 

Consider the linear time-invariant system 

k ( t )  = Ax(t) + Bu(t)  + Fd(t )  

y ( t )  = Cx(t )  + Gd(t )  

e ( t )  = Y ( t )  - T ( t )  ( 1 .a) 

where x E R" is the state of the system, U E R" is the input of the 
system, y E R" is the output of the system which is measurable and 
to be regulated, d E R" is the disturbance, T E R" is the reference 
input, and e E Rm is the tracking error. Assume the reference input 
r and the disturbance d satisfy the following models: 

kr(t) = Arxr(t) 

and 

where x, E Rmr, Xd E R m d ,  eig(A,) C C+ and eig(Ad) C C+. 
The system (1) is said to have no transmission zero at the eigenvalues 
of A d  and A,. if 

Now, the robust servomechanism problem [4], [7] can be stated al- 
ternatively as obtaining a controller to satisfy the following definition 
(in this paper, only the class of error-driven robust servomechanism 
controllers is considered). 

DeJnition I :  A controller U = f ( e )  (i.e., with input e and output 
U )  is a robust servomechanism controller of system (1) if it satisfies 
the following three conditions: 

Condition I )  The resultant closed-loop system is asymptotically 
stable. That is if z d ( t )  0 and x 7 ( t )  0, then 
x ( t )  -+ 0, x c ( t )  -+ 0, and u ( t )  -+ 0 as t -+ 00 

(where z, denotes the controller state). 
Condition 2 )  The asymptotic tracking action occurs, i.e., e ( t )  -+ 

0 as t -+ 00 for any z(O), xr(0), Z d ( 0 )  and the 
initial controller state ~ ~ ( 0 ) .  

Condition 3)  Condition 2 is true for any plant variations in 
A, B, c, F, G, C,, and c d  as long as Condition 
1 remains true. 
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A general structure of a linear time-invariant robust servomech- 
anism controller has been characterized by Davison et al. [3]-[5]. A 
well-known criterion of a robust servomechanism controller is the 
so-called “continuous internal model principle” [8], [6], [I]. Since 
a robust servomechanism controller may be constructed by using 
different structures, it seems difficult to describe a continuous internal 
model in general. The following definition tries to give an alternative 
description. 

Defiition 2: An error-driven controller U = f ( e )  is said to be 
internally reducible if, for any matrices T P I  E Rmxmr,  TZZ E 
R m X m d  and initial values zT(0) ,  i d ( ( ) ) ,  there exists an initial con- 
troller state zc(0), such that Tplzr(t) + T22Zd(t) = f(%) for all 
t 2 0. 

By the analysis of transfer function of a linear time-invariant 
robust servomechanism controller given by Desore and Wang [6], 
it is obvious that every linear time-invariant error-driven robust 
servomechanism controller is internally reducible. The advantage of 
giving the internally-reducible class is that it contains the sampled- 
data robust servomechanism controller using exponential hold as will 
be presented in this paper. 

111. INTERNALLY-REDUCIBLE ROBUST SERVOMECHANISMCONTROLLER 

In this section, it is shown that a linear, internally-reducible, error- 
driven controller is a robust servomechanism controller if the resultant 
closed-loop system is asymptotically stable. Besides, the steady-state 
trajectories resulted from a linear, internally-reducible, error-driven 
robust servomechanism controller is unique. Thus from the viewpoint 
of “deviation variables” [9], the robust servomechanism problem can 
be treated as a regulating problem. 

A. The Deviation Model 
One of the valuable approaches to synthesize a robust servomech- 

anism controller is by way of the “deviation model.” Young and 
Kwatny [ 101 have shown that this model can be easily derived from 
a necessary and sufficient condition for the existence of a robust 
servomechanism controller stated by Francis [8] and Davison [4]. 
This model is reviewed and derived briefly as follows. 

R m X m d ,  and define 
Let Ti1 E Rnxmr,  Tip E Rnxmd,  Tpi E RmXmr and Tzz E 

z S s ( t )  = Tiizr(t) + Tiz~d(t) 

and 

By substituting (3.b) into the plant (l.a), one obtains 

(4) 

Since eig(A,) C C+, eig(Ad) C C+, it is clear from (4) that if 
TI 1, T12, TZI , and TZZ are chosen to satisfy the matrix equation 

A B  
[c om] [2 21 - [O:xn O;,] E: 21 

Om,?Zmd] = y;,m. 

then the following holds for all z(O), zr(0), I d ( O ) ,  and t 2 0: 

&(t)  = A&(t) + B&(t )  (6 .4 

e ( t )  = C & ( t )  (6.b) 

It is proved (see Lemma A.l in the Appendix) that if and only if the 
transmission zero assumption (2) is true, then the matrix equation 
(5) has a unique solution TE3, i = 1, 2 and j = 1, 2. Thus if 
the transmission zero assumption (2) is true, the model (6) can be 
uniquely defined. 

Theorem 1: A linear, internally-reducible, error-driven controller 
is a robust servomechanism controller of system (1) if the resultant 
closed-loop system is asymptotically stable. 

P m $  Consider an arbitrary linear, internally-reducible, error- 
driven controller U = f(e),  one claims the following two facts. 

Claim 1: Let T11, Tip, T21, and T p p  be a solution of (5), and 
define S,(t) and 6,(t)  as (3). If the resultant closed-loop system is 
asymptotically stable, then it is true that &(t) + 0, &(t)  + 0, and 
e ( t )  + 0 as t + 00. 

Pro08 Notice that the internally-reducible condition implies 
that there exists an initial condition of the controller, such that 
6, = f (e)  holds. Hence the asymptotically stable controller can also 
be considered as a stabilizing regulator of the model (6). 

Claim 2: A necessary condition for the closed-loop system to be 
asymptotically stable is that the transmission zero assumption (2) 
holds. 

Proof: A counter proof will be employed to check this claim. 
Assume the transmission zero assumption (2) is not true, then by 
Lemma A.l, there exists a nontrivial solution T,3, i = 1, 2 and 
j = 1, 2 which satisfy (5) in the case of F = 0, G = 0, and C ,  = 0 
(i.e., zero disturbance and zero reference input). Now, if the resultant 
closed-loop system is asymptotically stable, then by Claim 1, one 
has &(t) + 0 and &(t) + 0 (i.e., ~ ( t )  + T11z,(t) + TlpZd(t) 
and u( t )  + Tzlz,(t) + TpZzd(t)) as t + 00. This is impossible, 
however, because zero disturbance and zero reference input always 
implies ~ ( t )  --$ 0 and ~ ( t )  -+ 0, as t + 00. 

Notice that (5) has a unique solution for any parameters 
A, B, C ,  F, G ,  Cd, and C ,  if the transmission zero assumption 
(2) holds. Therefore by the above two claims, it is concluded that the 
asymptotic tracking action occurs as long as the resultant closed-loop 
system is asymptotically stable. Hence, the theorem is proved. 0 

Remark I :  Since the transmission zero assumption (2) is a neces- 
sary condition for the existence of a robust servomechanism controller 
and the model (6) can be uniquely defined when the transmission zero 
assumption holds, so that by the Claim 1 of Theorem 1, it is concluded 
that 6, (t) and 6, (t) are just the deviations from the ultimate steady- 
state trajectories of ~ ( t )  and u(t).  respectively. Due to this fact, the 
model (6) is called the “deviation model” associated with system 
(1). Notice that the unique existence of deviation model can only be 
guaranteed in the case of dim ( U )  = dim (e), otherwise, Definition 2 
(and so Theorem 1) may be invalid. 

B. Steady-State Input Model 
To develop a sampled-data robust servomechanism controller, it 

is convenient to represent the steady-state input trajectory ulSs (t) in 
terms of a discrete-time model. To do so, let 

P-1 

X(S) = SP - x a , s e  = 0 (7) 
i = O  

be the lowest degree polynomial satisfied by Ad and A,, i.e., 
“-1 
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o =  

P - 1  

- 0, I ,  0, ' . . Om - 
0, 0, L ... Om 
: . .  E R m p X m p  (lO.a) 

Om Om Im 
-aoIm air,  azI, ap-iIm - 

Define the matrices 

4 = wow-l 

r = pw-l (9.b) Fig. 1. 
troller using exponential hold. 

A dynamical structure of sampled-data robust servomechanism con- 

where W E R m p X m p  is a selected nonsingular matrix, 

Thus if one defines 

then the steady-state trajectory u g g ( t )  can be expressed by the 
following model 

(13.a) 

By subtracting (14) from (15), one obtains 

su(kT+@) = [ r exP(4@)  P h ( @ ) l  rkT)] h(kT)  +p , (e )e(kT) .  (17.b) 

Thus by combining (17) and the deviation model (6), one obtains the 
closed-loop sampled-data system 

L3C Ogxmp 
_ -  

where A, B + ,  L1 and H1 are given by 
- 
A = exp (AT) (19.a) 

(19.b) 
- 
Bt = lT exp (A0)Brexp  (4(T - e)) d6' 

uL, , ( t )  = rt(t). (13.c) 
Theorem 2: If the matrix 

Ompxn 4 Ompxg 

This model can also be transformed to the following 
form 

E ( ( k  + 1)T) = W k T )  

u, , (kT+ 0)  = rexp(4B)E(kT) (14.b) 

where 0 5 0 < T, T is a selected sampling period, and 5 = 
exp (4T). 

IV. SAMPLED-DATA ROBUST SERVOMECHANISMCONTROLLER 

A. A Linear Dynamical Class 
Consider the following controller (also see Fig. 1): 

E(kT)  + p,(B)e(kT) (15.b) 

where k = 0, 1, 2 , . - . ,  H2 E R m p x g ,  HJ E R g x g ,  LZ E R m p x m ,  
L3 E RgX",  p,(B) E Rmxm[O T), and 
g is a selected nonnegative integer. Now, if the transmission zero 
assumption (2) holds, one can define 

i ( k T )  = i ( k T )  - [(kT). (16) 

[h(hT) I 4 k T  + 0) = [r exp (40) p h  (e)] 

T ) ,  p h ( B )  E RmXg[O 

is stable (i.e., all eigenvalues lie insides the unit complex circle), then 
(15) is a robust servomechanism controller of system (1). 

Pro08 By the above derivations, one only needs to check that 
- the controller (15) is internally reducible. Notice that for any matrices 
Tz1 E R m x m r ,  Tz2 E R m X m d ,  and initial values z r ( 0 ) ,  zd(0). one 
can express the function T21z,(t) + F z z z d ( t )  by the following form 
(see (1 1H14)): 

17((k + 1)T) = &?(kT) (21.a) 

Tz l z r ( t )  + Tzzz~(~) = rexp(@)v(kT) (21.b) 

- where, ~ ( 0 )  = W [ d  17; ... 1 7 ; - l ] r ,  17. = TzlAfz r (0 )  + 
Thus by choosing the controller state as i ( 0 )  = q ( O ) ,  h(0)  = 0, 
and substituting {e (kT)}  by the zero value sequence, then the 
controller (15) is reduced to the form (21) (i.e., the controller exists 
- an initial condition such that the zero input 0, yields the output 
T z 1 z T ( t ) + ~ z z z , 4 ( t ) ) .  Thus the controller (15) is internally reducible, 

0 

- 

TzzAhzd(O), i = 0, I,.. . , p  - 1, for all t = kT + 0, 0 E [0 2'). 

and the result follows by Theorem 1. 
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Now, by taking h 3 0, Theorem 1 leads to the following result. 0.5 

Corollary 1 (Minimal-Order Class): If the matrix 

[ Omp x n 4]+ [E:][c O m x m p l  

is stable, then the following controller 
-0.5 

i ( ( k  + 1 ) ~ )  = @ ( k ~ )  + Lze(kT) (23.a) 

u ( k T + 6 )  = rexp(&?)i(kT) + ue(6')e(kT) (23.b) -1 

is a robust servomechanism controller of system (1). 

assumption (2) holds, then it is true ([3]-[5]) that 
Remark 2: If (C, A) is detectable and the transmission zero 

-e 
0 2 4 6 B 10 12 14 16 18 20 

A "'I) is detectable. 

As a result, for almost the sampling time T > 0, it is also true that _ -  
A ?t]) is detectable 

where 

Remark 3: If (A ,  B) is controllable, then for every specified L1 

and H1, there exist infinitely many choices of p,(e) and v h ( e )  

to satisfy (19.c) and (19.d), respectively. Thus by the closed-loop 
sampled-data system (18) (also see (20) or (22)), the parameter choice 
of the proposed controller (15) (or (23)) can be transformed into the 
dual of a complete state feedback problem. 

B. Continuous- Time Intemul Model 
Let us show that the combination of a discrete-time internal 

model and an exponential hold acts as a continuous-time internal 
model. Notice that the exponential hold employed in (15.b) is a D/A 
converter [12] which transforms the digital signals into continuous 
signals by following the waveform of the exponential function 
r exp(46) .  The pulse response of the exponential hold can be 
described by 

E P ( @ )  = [ rexp(@) O m X m p  
: : 0 otherwise 5 8 < T ' (25.a) 

Thus the exponential hold has a transfer function matrix 

Hep(s) = lT e-e"I'exp(&?)d8 

where the term ( Imp - z - 'T )  can be canceled by the transfer function 
of the discrete-time internal model contained in (15.a), and the left 
term (simp - 4 )  is just a continuous-time internal model. 

V. EXAMPLE 
Consider a dc motor described by equation [5]. 

where d = 1 is a constant disturbance. The output is desired to track 
a sinusoidal signal described as 

kT 

Fig. 2. Robust illustration of sampled-data controller (27). where 40 tracking 
error responses are plotted with parameters randomly varied over a range of 
f25% for R,  L ,  Be, and J .  

T ( t )  = [l 0 ] 4 t ) .  

Let T = 0 . 5 ~ / w  and 

Then a sampled-data robust servomechanism controller of (23) is 
given as 

i ( k T ) + L z e ( k T )  (27.a) 

u(kT + 6 )  = Loe(kT) + [l cos(w6) - sin(wB)]i(kT). (27.b) 

Assume the parameters of the dc motor are B, = 0.0162, J = 

one chooses LO = -0.5, LZ = 1-0.5, 0.5, -0.5]', then from (22), 
one has 

0.215, Kt = K ,  = 1.11, R = 1.05, L = 0.0053, and w = 5. If 

= (0.0327, 0.1591 f 0.55412, 

f 0.2242 f 0.390721. (28) 

Thus (27) is a robust servomechanism controller of the dc motor. 
The robust property of this controller has been illustrated by the 
simulation shown in Fig. 2 (where 40 curves are plotted with pa- 
rameters randomly varied over a range of f 2 5 %  for R, L,  Be,  
and J). To show the advantage of using an exponential hold, the 
following digital controller using zero-order hold (the closed-loop 
poles are 0, 0.4254f0.6642i7 0.1581f0.5009i) is also simulated for 
comparison (notice that the comparison is only for the convenience 
of illustration of ripple error) 

u (kT  + 6) = [l 1 O]i(kT).  (29.b) 

(26.b) The sinusoidal tracking responses by using the controllers (27) and 
(29) are shown in Fig. 3 and Fig. 4. 

0 -w 
i r ( t )  = [. o].r(t), zr(0) = [-;I 
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Pro08 One can rearrange (A.l) as the equivalent form 

0 5 I O  15 20 25 30 

(a).usin: exponential hold kT 

I ,  

-2 ’ 1 
0 5 10 15 20 25 30 

(b):usrng zero-order hold kT 

Fig. 3. 
pled-data controller (27), (b) using the sampled-data controller (29). 

Comparison of tracking error responses, where (a) using the sam- 

0 5 10 15 20 25 30 

(a):using exponential hold kl 

I , 

0 J 10 15 20 25 30 

(b):using zero-order hold kT 

Fig. 4. 
controller (27). (b) using the sampled-data controller (29). 

Comparison of output responses, where (a) using the sampled-data 

VI. CONCLUSIONS 
In this paper, a new strategy based on the combination of a 

discrete-time internal model and an exponential hold is proposed 
for constructing a ripple free sampled-data robust servomechanism 
controller. The proposed controller can guarantee the asymptotic 
tracking not only at, but also between, the sampling instances. This 
is due to the weighting by the exponential hold, so that the correct 
waveform of input can be obtained when the steady state is reached. 

An advantage of this approach is that more design freedoms can 
be obtained from the structure. Thus even if the controller is at the 
simplest form, it remains possible to convert the design into the dual 
of a complete state feedback problem (see Corollary 1). Besides, the 
measurements and the on-line computations of the proposed controller 
are arranged to base on the sampling periods, so that the control 
scheme is easily implemented by digital computers. 

APPENDIX 

LemmuA.1: Let El E Cqxq,  Ez E Cqxq, E3 E C f x f  and 
E4 E C q X f ,  then there exists a unique solution M E C q x f  for 
the matrix equation 

EiM -I- EzME3 = E4 (A. 1 )  

if and only if E1 + SEZ is nonsingular for all s E eig(E3).  

where = MV, E3 = VP1E3V, E4 = E4V,  and V E C f x f  is a 
nonsingular matrix which is chosen such that E3 is lower triangular. 
Now, assume = [MI MZ . . . M I ] ,  E4 = [E41 E42 . . . E4f], and 

where Mi E Cqx’ and E d 2  E Cqx’ (z  = 1, 2 , . . . , f )  are the 
columns of %f and E4 ,  respectively. By comparing the multiplication 
of each column, (A.2) can be further rearranged as the following 
Kronecker product [13] form 

. [“I = I“]. (A.4) 

M f  E4f 

Thus by checking the diagonal terms, the lemma is easily derived. 0 
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