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a b s t r a c t

This study proposes a simple, rapid, and highly accurate method to achieve the collimation testing and
calibration of laser light beams. By applying a relative constant velocity to two gratings, every pixel of a
CMOS camera can receive a series of heterodyne moiré signals. Based on the least squares sine fitting
algorithm, the phase of the optimized sinusoidal wave can be obtained. Consequently, the phase slope
along the direction perpendicular to the grating lines can be estimated and then used to judge the
degree of collimation. Furthermore, by measuring only two phase slopes at two positions of the
collimating lens, the calibration of the light beam collimation can also be achieved. The experiment
validated the proposed method, and the positioning error of the light beam collimation was
approximately 7 μm.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In the procedures for assembling numerous types of optical
systems, the collimation degree of an expanded laser light beam
can strongly affect the performance of the entire system. Evidently,
the collimation testing and calibration of a laser light beam play
crucial roles in installing an optical system. Moiré interferometry is
widely studied and applied in collimation testing because it
features a simple and economic optical configuration, high accu-
racy, and high resolution. The accuracy of collimation testing is
defined as the smallest detectable deviation of the collimating lens
in the collimation position [1,2], and several research groups are
devoted to improving the testing accuracy by developing novel
optical configurations or new signal analysis methods for the
collimation testing system. Shakher used the self-image effect of
circular grating [3] and Mehta used the self-image effect of specially
designed grating [4] to observe the Moiré images for determining
the collimation position. Because both methods cannot quantita-
tively determine the variation of the Moiré patterns, the measure-
ment errors are larger than those of the quantitative methods. The
collimation testing techniques involving the use of the self-image
effect of Ronchi gratings are often applied to quantitative collima-
tion testing because the Moiré pattern of the Ronchi gratings can be
regarded as a sinusoidal variation and is simple to analyze. Torroba
and Mudassar measured the spatial frequencies of the Moiré fringes
to determine the collimation position [5–7], but large errors can be

introduced near the collimation position. When Moiré fringes are
lower than one period, the harmonic noise of Moiré dramatically
affects the low-frequency Moiré fringes. Prakash determined the
collimation position more accurately by using the phase-shifting
technique [8] and the Fourier transform method [2] to analyze the
phase distribution of the Moiré fringes. All of the aforementioned
methods are used for determining the collimation position by using
the criteria obtained from the principle of the proposed testing
system. However, when the light beam is used to calibrate the
collimation, the procedures are trivial and time-consuming because
the collimating lens must scan and test along the optical axis until
the test result matches the criteria. Therefore, this study proposes a
simple, rapid, and highly accurate method to achieve the collima-
tion testing and calibration of laser light beams. The collimation
position of the collimating lens can be determined by measuring
the phase slopes of the Moiré fringes at two positions of the
collimating lens. In addition, by using the concept of heterodyne
interferometry to analyze the phase distribution of the Moiré
fringes, the measured phases and phase slopes are less influenced
by the instability of the light source and the disturbance of the
environment. The positioning error of the collimating lens in the
collimation position can achieve approximately 7 μm under experi-
mental conditions.

2. Principle

Fig. 1 shows the optical configuration of the proposed collima-
tion testing system. When a laser light beam at a wavelength of λ
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passes through an objective, a pinhole, and a collimating lens
mounted on the motorized translation stage M1 to form an
expanded and collimated light beam, it then impinges on the
grating G1 mounted on the motorized translation stage M2 to
generate the self-images. The first self-image of G1 is projected on
the grating G2 to form the Moiré fringes, and the first self-image
distance Z1 can be expressed as

Z1 ¼
p2

λ
; ð1Þ

where p is the grating pitch of the gratings G1 and G2. The grating
G1 is moved by the motorized translation stage M2 at a constant
velocity v along the x-axis, and the collimating lens deviates from
the collimation position with a distance of Δf to cause the light
beam to exhibit convergence or divergence and thus the light
beam generate a deflection angle. Assuming the deflection angle is
small, and according to the Fresnel diffraction formula, every pixel
of a CMOS camera can receive a series of time-varying heterodyne
Moiré signals [8,9]:

Iðx; y;Δf ; tÞ ¼ 1
4
� 2
π2 cos 2πf htþφðx; y;Δf Þ� �

; ð2Þ

where fh¼v⧸p is the heterodyne frequency that results from the
time-varying phase difference. φ(x, y, Δf) is the phase distribution
of the Moiré fringes and can be expressed as

φðx; y;Δf Þ ¼ 2π
p
uðx; y;Δf ÞZ1þϕ; ð3Þ

where ϕ is the addition phase that results from the initial
displacement between the gratings G1 and G2, and u(x, y, Δf) is
the deflection angle of the light beam. Because only the x-
component of the deflection angle can affect the phase distribu-
tion of the Moiré fringes, u(x, y, Δf) can be expressed as

uðx; y;Δf Þ ¼ x
RþZ1

; ð4Þ

where R is the curvature radius of the wavefront of the discollima-
tion light beam. When the light beam approaches collimation, R is
substantially greater than Z1. By differentiating Eq. (4) with respect
to x, the phase slope of the Moiré fringes along the x-axis can be
obtained:

θðΔf Þ ¼ dφ
dx

ffi2πZ1

pR
; ð5Þ

According to Eq. (5), the criteria of the collimation degree can be
determined: (1) when the light beam is collimated, namely Δf¼0
and R approaches infinity, the phase slope of the Moiré fringes
θ¼0; (2) when the light beam is divergent, namely Δfo0 and
R40, θ40; and (3) when the light beam is convergent, namely
Δf40 and Ro0, θo0. Therefore, the phase slope θ of the Moiré

fringes along the x-axis can be estimated by measuring the phase
distribution φ(x, y) of the Moiré fringes, and can be used to judge
the degree of collimation and calibrate the collimation of the light
beam simultaneously. To extract the phase distribution of the
Moiré fringes, Eq. (2) can be rewritten as

Iðx; y;Δf ; tÞ ¼ A cos ð2πf htÞþB sin ð2πf htÞþC; ð6Þ
where A, B, and C are real numbers, and

φðx; y;Δf Þ ¼ tan �1 �B
A

� �
; ð7Þ

where A and B can be obtained by using the least squares sine fitting
algorithm [10]. The phase slope θ can also be estimated by differ-
entiating the phase distribution φ with respect to x, and then the
degree of collimation can be determined. Additionally, the curvature
radii R of the light beam near the front and back collimation positions
are approximately equal and have opposite signs. According to Eq.
(5), the phase slopes near the collimation position exhibit a linear
variation. When the optical system is initially assembled using the
naked eye, the phase distribution of the Moiré fringes can be
measured to obtain the phase slope θ1. By subsequently moving
the collimating lens with a value of zd along the z-direction (zd40) or
along the �z-direction (zdo0), the phase slope can be measured as
θ2. Considering the linear variation of the phase slope near the
collimation position, the calibration distance zc can be calculated:

zc ¼ � zdθ2

θ2�θ1
�� ��: ð8Þ

Therefore, the collimation position Δf¼0 can be determined by
moving the collimating lens with zc. Because the collimating lens is
not required to scan and test along the optical axis in the proposed
method, this system can rapidly and accurately perform light beam
collimation testing and calibration.

3. Experiments and results

The collimation testing and calibration system was implemented
to validate the proposed method. The optical configuration included
a diode laser at a wavelength of 473 nm, a 40� objective, a pinhole
of 5 μm, an achromatic lens featuring a focal length of 100 mm as a
collimating lens, two linear gratings exhibiting a pitch of 0.2822 mm,
and two motorized translation stages (Sigma Koki/SGSP(MS)26-100),
M1 and M2, with a resolution of 0.05 μm. M1 was used to control the
position of the collimating lens and M2 was used to generate a
heterodyne frequency fh¼10 Hz (v¼2.822 mm/s). A CMOS camera
(Basler/A504k) featuring an 8-bit gray level and an image resolution
of 1280�1024 was used to record the heterodyne Moiré signals at
various times at a frame rate fs¼150 fp s, exposure time a¼1 m s,

Fig. 1. Optical configuration. MO: objective; PH: pinhole; L1: collimating lens; L2: camera lens; G1 and G2: gratings; M1 and M2: motorized translation stages; C: CMOS
camera; and Δf: displacement from collimation position.
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and total recording time T¼1 s. Two-dimensional median filtering
was applied to every recorded Moiré image by using a 3�1 window
to filter the grating noise of the Moiré fringes [11]. Then, applying the
least squares sine fitting algorithm to every pixel, the phase of the
heterodyne Moiré signal of every pixel can be calculated. Figs. 2–5
show the experimental results of the collimation testing. The
heterodyne Moiré signal of one pixel can be seen in Fig. 2. Fig. 3
(a), (b), and (c) shows the measured phase distribution in the
positions of Δf¼0 and Δf¼7300 μm. Fig. 4(a), (b), and (c) shows
the phase curves captured along the x-axis and through the center of
the image (namely, the optical axis) in Fig. 3(a), (b), and (c). The
linear line segments F(θ, δ)¼θxþδ were simultaneously plotted
using the least squares method of polynomial fit to obtain the phase
slope θ. Figs. 3(a) and 4(a) can obviously be judged as θ40 when
Δfo0, and the light beam is divergent. As shown in Figs. 3(b) and 4
(b), the phase distribution suffered from the large harmonic noise of
the moiré fringes when the light beam was collimated, Δf¼0.
However, the phase slope θffi0 could also be estimated using the
polynomial fit. Figs. 3(c) and 4(c) show θo0 when Δf40, and
indicate that the light beam is convergent. To inspect the smallest
detectable deviation of the collimating testing system, the system
implemented 10 measurements in the positions of Δf¼0 and
Δf¼78 μm, as shown in Fig. 5. The phase slopes measured in the
position of Δf¼0 lie from 0.8314 rad⧸m to �0.9118 rad⧸m, and do
not overlap the phase slopes measured in the positions of
Δf¼78 μm. Therefore, the smallest detectable deviation of the
proposed system can be below 16 μm, and the repeatability of the
phase slope can be estimated as 1.7432 rad⧸m by observing the
phase fluctuation in Fig. 5(a), (b), and (c). To validate the property of
the linear variation of the phase slope near the collimation position,
the phase slopes were measured by considering the interval of
50 μm between Δf¼71000 μm. The experimental results are
shown in Fig. 6 and indicate the same property of the linear variation
of the phase slope in Eq. (5). By using this linear property, the rapid
calibration of the light beam collimation can be achieved. Fig. 7
shows the experimental results of the calibration. Fig. 7(a) shows the
measured phase curve, fitted line segment, and estimated phase
slope θ1. Fig. 7(b) shows the measured phase curve, fitted line
segment, and estimated phase slope θ2 after the collimating lens was
moved by zd¼300 μm. By substituting θ1 and θ2 into Eq. (8),
zc¼�260.5 μm can be obtained. Consequently, the collimation
position of the light beam can be calibrated by moving the collimat-
ing lens along the �z-axis by 260.5 μm. Fig. 7(c) shows the
measured phase curve, fitted line segment, and estimated phase
slope in this collimation position. The estimated phase slope lies
within the repeatability of the phase slope 1.7432 rad⧸m and can
therefore prove the feasibility of the proposed method.

4. Discussions

The sensitivity of the proposed method can be deduced by
incorporating the concept of the geometric optics. When the light
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Fig. 2. Heterodyne Moiré signal of one representative pixel recorded by CMOS camera.

Fig. 3. Phase distribution maps. (a) Δf¼�300 μm; (b) Δf¼0 μm; and (c)
Δf¼300 μm.
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beam is close to collimation, the ray tracing of a thin lens can be
assumed to describe that the small deflection angle is altered by
the refractive power of the collimating lens and can be derived by
the following formula

duðx; y;Δf Þ
dx

¼ �Δf

f 2
: ð9Þ

where f is the focal length of the collimating lens. According to
Eqs. (3) and (9), the phase slope can be expressed in the following
form:

θðΔf Þ ¼ �2πZ1

pf 2
Δf : ð10Þ

Therefore, the sensitivity S of the collimation testing method can be
derived as

S¼ dθ
dðΔf Þ

����
����
Δf

¼ 2πZ1

pf 2

�����
Δf

¼ 2πp

λf 2

�����
Δf

; ð11Þ

which indicates the ability of phase slope change when moving
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Fig. 6. Phase slop curves by testing along the optical axis. Black dots denote the
measured data and solid line denote fitted data.
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the collimating lens per unit length, and simultaneously indicates
the constant change of the phase slope within the close collima-
tion position. Fig. 8(a) and (b) shows the sensitivity plots of the
proposed method. For ease to understanding, the unit of sensi-
tivity has been set as the phase slope per micrometer, namely
rad⧸(m �μm). Fig. 8(a) displays the plot of sensitivity versus the
grating pitch while the focal length of the collimating lens is
100 mm. In closely collimation region, namely the deflection
angle is very small, the sensitivity is proportional to the grating
pitch as shown in Eq. (11), and the distance Z1 between two
gratings obviously dominates the sensitivity of the proposed
method. However, although the smaller grating pitch has the
ability to increase the phase slope, itbut can also sharply shortens
the self-image distance Z1 and consequently reduces the sensi-
tivity. Fig. 8(b) displays the plot of sensitivity versus focal length
of the collimating lens and shows the normality that a smaller
focal length has a larger refractive power and leads to a larger
sensitivity of phase slope. Therefore, increasing the grating pitch
can improve the measurement sensitivity. But the large optical
setup is not expected for designers. So the grating pitch should be
chosen by determining the sensitivity that the users would like to
achieve when using different collimating lens.

The phase slope of the proposed method is acquired by the
optimized line segment F(θ, δ)¼θxþδ using the least squares

method of polynomial fit and can be expressed as

residue¼ 1
N

∑
N�1

i ¼ 0
ðFi�ϕiÞ2; ð12Þ

where N denotes the sampling points in x-axis, Fi denotes the ith
fitting data of phase, and φi denotes the ith sampling data of
phase. The coefficients θ and δ can be obtained by minimizing the
residue of Eq. (12). The standard error Δθs of the resultant phase
slop θ can be expressed as [12]

Δθs ¼ sffiffiffiffiffiffiffiffi
ssxx

p ; ð13Þ

and

s¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ssφφ�ðss2xφ=ssxxÞ

N�2
;

s
ð14aÞ

ssxx ¼ ∑
N

i ¼ 1
ðxi�xÞ2; ð14bÞ

ssφφ ¼ ∑
N

i ¼ 1
ðφi�φÞ2; ð14cÞ

ssxφ ¼ ∑
N

i ¼ 1
ðxi�xÞðφi�φÞ; ð14dÞ

where x and φ denote the arithmetic means of x and y, respec-
tively. Substituting the experimental conditions and the random
error with the amplitude, which is set to be the phase error of the
heterodyne Moiré signal as 0.91 [10], the standard errorΔθs can be
estimated as 0.1343 rad⧸m. But the harmonic noise strongly
affects the phase distribution of moiré when the collimating lens
is close to the collimation position, as shown in Fig. 4. Hence, the
amplitude of random error can accordingly be set to be 0.2 rad and
the standard error Δθs can subsequently be estimated as
1.7859 rad/m. The resultant standard error Δθs is larger than
and close to the repeatability of the phase slope in the experiment,
and can therefore prove the validity of the error analysis of the
proposed method.

Furthermore, According to Eq. (8), the positioning error Δzc of
the proposed calibration method can be expressed as

Δzc ¼
θ2

θ2�θ1

����
���� Δzd
�� ��þ zdθ2

ðθ2�θ1Þ2

�����
����� Δθ1
�� ��þ zdθ1

ðθ2�θ1Þ2

�����
����� Δθ2
�� ��; ð15Þ

where Δzd is the displacement error of the collimating lens, and
Δθ1 andΔθ2 are the phase slope errors. The displacement error of
the collimating lens is introduced by the resolution of the
motorized translation stage, and can be estimated as approxi-
mately 0.05 μm. The phase slope error is introduced by the error of
phase slope measurement. The phase slope errors Δθ1 and Δθ2
can be set as the standard error Δθs¼1.7859 rad/m. By substitut-
ing Δzd, Δθ1, Δθ2, and the experimental conditions into Eq. (15),
the positioning error Δzc of the proposed calibration method was
approximately 7 μm.

5. Conclusions

This paper proposed a simple, rapid, and highly accurate
method to achieve the collimation testing and calibration of laser
light beams. By applying a relative constant velocity to two
gratings, every pixel of a CMOS camera can receive a series of
heterodyne Moiré signals. Based on the least squares sine fitting
algorithm, the phase of the optimized sinusoidal wave can be
obtained. Subsequently, the phase slope along the direction
perpendicular to the grating lines can also be estimated and
be used to quantitatively determine the degree of light beam
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collimation. In addition, only two phase slopes in two positions of
the collimating lens must be measured to acquire the collimation
position because the calibration of the light beam collimation is
performed rapidly and accurately using the proposed method.
Because the phase distribution of the Moiré fringes is analyzed
using the concept of heterodyne interferometry, the measured
phases and phase slopes are less influenced by the instability of
the light source and the disturbance of the environment. The
experiment validated the proposed method, and the positioning
error of the proposed calibration method was approximately 7 μm.
This method exhibits the merits of simplicity, rapidity, and high
accuracy because of the introduction of Moiré interferometry, the
Talbot effect, and heterodyne interferometry.
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