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Abstract 

For a fixed positive integer k, the k-path partition problem is to partition the vertex set of 
a graph into the smallest number of paths such that each path has at most k vertices. The 2- 
path partition problem is equivalent to the edge-cover problem. This paper presents a linear-time 
algorithm for the k-path partition problem in trees. The algorithm is applicable to the problem 
of finding the minimum number of message originators necessary to broadcast a message to all 
vertices in a tree network in one or two time units. 

1. Introduction 

A path partition of a graph G is a collection of vertex disjoint paths whose union 

is V(G). The path partition problem is the problem of determining the minimum 

number of paths p(G) in a path partition of G. Note that a graph G has a Hamiltonian 

path if and only if p(G) = 1. Since the Hamiltonian path problem is NP-complete for 

planar graphs, bipartite graphs and chordal graphs (see [5]), so is the path partition 

problem. Bonuccelli and Bovet [3] and Arikati and Pandu Rangan [2] gave linear-time 

algorithms for the path partition problem in interval and circular arc graphs, Goodman 

and Hedetniemi [6] and Misra and Tarjan [9] gave a linear-time algorithms for trees. 

Skupien [lo] gave a polynomial algorithm for forests, Chang and Kuo [4] gave a 

linear-time algorithm for cographs, and Srikant et al. [I I] gave linear-time algorithms 

for bipartite permutation graphs and block graphs. In fact, Srikant et al.‘s algorithm 

does not work for all block graphs. Yan and Chang [ 131 gave a linear-time algorithm 

for block graphs. 

A generalization of the path partition problem is as follows. For a fixed positive 

integer k, a path partition is called a k-path partition if each of its paths has at 

* Corresponding author. E-mail: hedet@cs.clemson.edu. 

’ Supported in part by the National Science Council under grant NSC83-0208-M009-050. 

’ Supported in part by the National Science Foundation under grant ENG-79-02960. 

0 166-218X/97/$17.00 0 1997 Elsevier Science B.V. All rights reserved 

PIISOl66-218X(97)00012-7 



228 J.-H. Yan et al. IDiscrete Applied Mathematics 78 (1997) 227-233 

most k vertices. The k-path partition problem is the problem of determining the 

k-path number pk(G), which equals the minimum cardinality of a k-path partition 

of G. The 2-path partition problem is equivalent to the edge-cover problem, which is 

the problem of determining the minimum number of edges and isolated vertices which 

contain all vertices. Note that the n-path partition problem is the same as the path 

partition problem in a graph of n vertices. 

The k-path partition problem is applicable to the following broadcasting problem. 

In computer or communication networks there frequently arises a situation where some 

information must be communicated from some vertices to all other vertices in the 

network. We refer to this as broadcasting. For a good survey, see [7]. In this paper 

we are concerned with the problem of determining the minimum number of message 

originators necessary to complete broadcasting within a fixed number of time units. 

More precisely, we model a communication network with a graph G = (V,E), where 

the edges E represent the communication lines of the network. All communication is 

done by placing phone calls over the edges of G subject to the following restrictions: 

(1) a vertex may participate in only one call per unit of time; 

(2) a vertex may only call an adjacent vertex; and 

(3) each call requires one unit of time to communicate the information. 

It is easy to see that for any connected graph G, the minimum number of vertices 

from which broadcasting can be completed in two (resp. one) time units equals pd(G) 

(rw. Pi). 

A slightly more general version of the k-path partition problem has recently been 

studied by Abbas [l]. In her Ph.D. thesis, Abbas studied a variety of graph clustering 

problems, including the problem of partitioning a graph into a minimum number of 

subgraphs of bounded diameter. Abbas showed that this problem is NP-complete on 

bipartite and chordal graphs, and gave linear time sequential algorithms for this problem 

on bipartite permutation and interval graphs. 

The purpose of this paper is to present a linear-time algorithm for the k-path partition 

problem in trees. By the above discussion, this algorithm can be used to find the min- 

imum number of message originators necessary to broadcast a message to all vertices 

in a tree network in one or two time units. For technical reasons, we also consider the 

k-path partition problem with an additional condition. Suppose v is a fixed vertex of a 

graph G. We consider G to be a graph “rooted” at v. A rooted k-path partition of the 

graph G is a k-path partition in which v is an endvertex of a path in the partition. The 

rooted k-path partition number pk(G, u) is the minimum cardinality of a rooted k-path 

partition of G. Furthermore, let lk(G, v) d enote the minimum number of vertices in a 

path containing v in a rooted k-path partition of size pk(G,v). In this paper, we give 

recursive formulas for pk(G), pk(G, u) and /,+(G, V) in terms Of pk(Gi)‘S, pk(Gi, Vi)‘S 

and Zk(Gi,Ui)‘s, where the Gi’s are subtrees of a larger tree G. From this, we obtain a 

linear-time algorithm for the k-path partition problem in trees. 

Recall that a tree is an acyclic, connected graph. A fundamental property useful to 

our discussion is that a non-trivial tree has at least two leaves, i.e. vertices of degree 

one. Conversely, trees can be obtained from a trivial graph by repeatedly adding new 
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vertices and joining them to existing vertices. An alternative description is by means 

of the following composition operation: Suppose G, and G2 are two disjoint graphs 

rooted at ~1 and ~2, respectively. The composition of Gr and Gl is the graph G rooted 

at v1 that is obtained from the disjoint union of G1 and G2 by adding a new edge 

VI 14. Note that any tree can be obtained from trivial graphs by a sequence of graph 

compositions. 

2. Main theorem 

This section establishes some basic theorems for designing a linear-time algorithm 

for the k-path partition problem in trees. Note that the lemmas and theorems established 

in this section apply to arbitrary graphs, even though we apply them only to trees. 

Suppose P is a k-path partition of a graph G. For any induced subgraph H of G, 

let PH denote the k-path partition of II resulting from P when each vertex in G - H 

is deleted from the path containing it in P. 

Lemma 1. pk(G,v) - 1 < pk(G) < pk(G,v)for u gruph G with root v. 

Proof. Since a rooted k-path partition is a k-path partition, we have pk( G) < Pk( G, t.). 

Suppose P is an optimal k-path partition of G and p is the path containing z’ in P. 

We can partition p into two k-paths p1 and p2 such that 2; is an endvertex of pl and 

PZ may be empty. Then P - {P} U {PI, ~2) is a rooted k-path partition of G of size 

at most pk(G) + 1. Hence, pk(G,v) - 1 d pk(G). 0 

Lemma 2. !f G is the composition qf fwo graphs Gr and GZ with roots 1’1 und 1.2 

respectively, then (a) and (b) hold. 

(a) pk(G ) + Pi - 1 d pk(G) G pk(G > + PA&). 

(b) PAGI,w)+ pdG2)- 1 d pdG,v~) 6 pk(G>u~)+ pdG2). 

Proof. (a) Suppose P is an optimal k-path partition of G. Then PC, and PG? are k-path 

partitions of GI and G2, respectively, and 

Pk(G) 3 IPG, 1 + Ipc,l - 13pk(G1)+ pk(Gz) - 1. 

On the other hand, suppose I: is an optimal k-path partition of G, for i = 1,2. Then 

PI UP2 is a k-path partition of G and pk(G) d pk(GI) + pk(G2). 

(b) Suppose P is an optimal rooted k-path partition of G. Then PC, is a rooted 

k-path partition of Gt, PC, a k-path partition of Gz and 

Conversely, suppose PI is an optimal rooted k-path partition and P2 an optimal k-path 

partition. Then PI UP2 is a rooted k-path partition of G and pk(G,vl) d pk(GI,ul ) + 

PAG). 0 
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Theorem 3. If G is the composition of two graphs G1 and GZ with roots VI and 712 

respectively, then 

Pk(G) = 

{ 

pi + pk(G2) - 1 if IAl =2 and b(G~,vl) + &(Gz,vz) d k, 

pk(GI) + pk(G2) otherwise, 

where 

A=(il pk(Gi)=pk(Gi,u;), i=l OY 2). 

PrOOf. By Lemma 2(a), pk(G1) + pk(Gz) - 1 d pk(G) d pk(G1) + pk(Gz). So we 

need to show only that pk(G) = pk(G1) + pk(G2) - 1 if and only if IAl d 2 and 

lk(Gl, 211) + lk(G2,u2) < k. 

Suppose pk(G) = pk(GI) + pk(G2) - 1. Let P be an optimal k-path partition of G 

and q be the path containing vr in P. Then P G, and PG> are k-path partitions of G1 

and Gz, respectively. If q n V(G2) = 0, then 

tpG,l+ IPG,I=P~(G)=P~(GI)+ Pk(Gz)- 1. 

This implies IPG, I < pk(G1) or IPG, I < pk( Gz), a contradiction. Therefore q n V( G2 ) # 8. 

It follows that PC, is a rooted k-path partition of Gi for i = 1,2. Since IPc, I + IPc, I = 

pk(G) + l=pk(Gl) + pk(Gz), Pk(G,) 6 Pk(Gi,vi) < IPG,I=Pk(Gi) for i=1,2. SO 

Pk(Gi) 
= pk(Gi, vi) and PC, is an optimal rooted k-path partition for i = 1,2. This implies 

that IAl =2 and Ik(Gl,vl) + lk(C%,%) d 141 d k. 

On the other hand, suppose lA[ = 2 and Ik(G1, vt ) + lk(G2,v~) d k. Let Pj be an 

optimal rooted k-path partition of Gi and qi be the path containing ZJ~ in Pi for i = 1,2. 

Since 1% +qaI = lk(Gi,ul) + lk(G2,%) < k, (Pi UP;! U (91 U {uia2} Uq2)) - {qi,q2} 
is a k-path partition of G of size pk(Gl,vl) + pk(GZ,v~) - 1= pk(G1) + pk(G2) - 1 

and so Pk(G)= Pk(G1) + pk(G2) - 1. 0 

Theorem 4. Zf G is the composition of two graphs G1 and G2 with roots 01 and ~2, 

respectively, then 

( pk(G1, vl ) + pk(G2) - 1 if Ik(Gi,Zii)= 1 and lk(G2,v2)<k 

pk(G 01) = ( and pk(G2) = pk(Gz,Vz), 

\ Pk(G1, VI > + Pk(G2) otherwise. 

Proof. BY Lemma 2(b), Pk(Gl,4) + Pk(Gz) - 1 < Pk(G,Q) G Pk(Gl,vl) + I%(&). 

So we need to show only that pk(G,vl)=pk(G1,vl) + pk(G2) - 1 if and only if 

lk(Gl,vl)= 1 and lk(G2,u2)<k and i&(G2)=z%(G2,v2). 
Suppose pk(G,vl) = p,+(GI, ~1) + pk(G2, VZ) - 1. Let P be an optimal rooted k-path 

partition of G and q be the path containing vi in P. Then PC, is a rooted k-path 

partition of Gt and PC, is a k-path partition of G2. If q n V(G2) = 8, then 
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This implies jPc, I< p~(Gl, ~‘1) or IPo2 ( < pk( Gz), a contradiction. Therefore qn V( G2 ) # 

0 and q n V(Gl) = {LQ}. It follows that Pcz is also a rooted k-path partition of 

Gz. Since PC, I + lf’cz I = pdG, VI) + 1 = PL(GI, VI ) + m(G), I&, I = ~(GI. VI ) and 

pdG2) d ~k(G2~2.2) < IPcYI=PL(G~). So pk(G~)=pk(G2,~2) and PC, is an optimal 
rooted k-path partition for i= 1,2. This implies that Ik(Gi,vi) < 1q n V(G,)I = 1 and 

so Ik(G,,c,)= I. Also, l/JG2,u2) < Iqrl V(G2)I<k. 

On the other hand, suppose Ik(Gi,vi)= 1 and Ik(G2,cz)<k and P~(G~)=P~(G~,P?)_ 

Let P, be an optimal rooted k-path partition of G, and q, be the path containing I‘, 

in P; for i= 1,2. Since IqlI =fk(G I,vI)=~ and lq2l=lk(G2,u2)<k, (f’~Uf’~U{y~ci 

{Q~2luq2l)-{ql>q2) is a rooted k-path partition of size p~(G,,cl)+p~(G~,~) -- I = 

pk(G1,~‘1)+pk(G2)- 1 and so P~(G,I,I)=P~(GI.z.I)+P~(G~)- 1. E 

Theorem 5. If‘ G is the composition of two gruphs G, and G? with roots cl and 1.2 

resprctivrly, then 

I 

lk(G>> Q) + 1 if Ik(Gi,z:i)= 1 and Ik(Gz,vl)<k 

and P~(G~)=P~(G~,Q), 

~~(G,cI)= 

1 

I~GI>cI) if pk(G)#pk(G2,~), 

(min{lp(G1,c,),lk(G2,02) + l} otherwise. 

Proof. Suppose P is an optimal rooted k-path partition of G, where the length of the 

path q containing vi is equal to lk(G, vi ). For the case of lk(Gi, VI ) = 1, lk (Gz, v2 ) <k, 

and ok= ~k(G2,1/‘2), from the proof of Theorem 4, it follows that lk(G.1.i ) = 

Ik(Gl, ~‘1) + I. For the other cases, Ik(G,vl) d 2k(Gi,vi ) from the proof of Lemma 

2(b). 
Suppose ok # pk(&,u2), i.e., ~L(Gz)=PI(G~.c~) - I by Lemma 2(a). lf 

q n V(G2)f 0, then PC, is a rooted k-path partition of Gi for i = I,2 and 

lpo, I + lpc, I = pdG 01) + 1 
= PI(GI,UI)+ pdGz)+ 1 

= Pk(GI > VI > + PB(GZ~ 7~2 ). 

It follows that JPc,I=pk(GI,vl) and Ik(Gi,v~)= 1. Thus, Ik(G,vi)=l =Ik(Gi.i.~). 

lf q n V(G2) = 0. Then 

Ipc, 1 + lpcz 1 = P/c(G, V) = Pk(G1, VI ) + I%(‘%). 

This implies lP~,l =pk(G~,vl) and /k(Gi,tii) d Lk(G,vi), i.e., /k(Gi,v~)=/k(G,v~ ). 

For the last case, /k(G,vi) d /k(G2,1’2)+1 since ,z?k(G2)=Pk(G2,Q.). If lk(Gi,vi)== 

1, then 1 < /k(G,Ui) < lk(G1,V1)=1. Assume lk(Gi,vi)#l. Then lP~,_~J=px_(G~.u,) 

and lPGz/=Pk(G2,V2). IfqnV(G?)=0, then ~k(G,Vl)=~k(Gl,Vl). SUppOSe @V(G:) # 

0. Then Ik(G,vi)=lk(G2,2;2)+ 1. Therefore, lk(G,vi)= min{/k(Gi,vi),Ik(Gz,v2)+ 1). 
: 
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3. Algorithm 

Having proved Theorems 3-5, we are ready to present a linear-time algorithm for 

finding the k-path partition number of an arbitrary tree. 

Algorithm KPPN. Find the k-path partition number of a tree. 
Input: A tree T and a positive integer k. 
Output: The k-path partition number pk(T). 
Method. 

Label the vertices of T as ~1, ~2,. . . , v, by DFS; 

for i=l to n do 

P(Q) + 1; /* for pk(T) */ 

P’(Vi) + 1; /* for pk(7;:yvi) * / 
Z(Vi) + 1; /* for Zk(Ti,vi) */ 
end do; 

for i=l ton-l do 

let Vj be the ancestor of vi; 

A +- {t 1 P’(Q) = p(vt), t = i or j}; 

if IAl =2 and Z(vi) + Z(vi) < k 

then p(vj) + p(vj) + p(Ui) - 1 

else P(vj) + P(Vj) + P(h); 
if I( Vj ) = 1 and I( Vi) < k and A = {i} 

then p(vj) + p’(vj) + P(Q) - 1; 

l(Vj> + l(Vi) + 1 

else P(vj) + P’(Vj) + P(Q); 
if P(Q) = P’(Q) then Z(Vj) c 

end do; 

min{ Z(uj), l(h) + 1); 

output P(h ). 

Theorem 6. Algorithm KPPN computes the k-path partition number of a tree in 
linear time. 

Proof. It is clear that Algorithm KPPN runs in linear time. The correctness of the 

algorithm follows from Theorems 3-5. 0 

Algorithm KPPN can also be modified very simply to produce a minimum path 

partition of a tree such that each path has weight at most k when vertices and edges 

have weights. 
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