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solving a problem induced by different directions between the thermal diffusion and main flow streams,
a hybrid boundary condition composed of the absorbing boundary condition and local one-dimensional
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The results show that the hybrid boundary condition successfully prevents the rebound of heat energy
from the artificial buffer zone back to the domain. The area-averaged Nusselt numbers of this study are
slightly larger than those of existing experimental results, and the averaged deviation is about 10%.
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1. Introduction

The clarification of flow and heat transfer mechanisms of natural
convection in parallel square plates — which is often observed in
many practical thermal devices such as in printed circuit board
(PCB), solar cell, and thin film manufacturing chamber — is very
important for both industrial applications and academic research.
The existence of multiple neighboring open boundaries located at
edges of parallel square plates is a unique characteristic. Important
functions of the open boundary involve demarcating the inside and
outside regions of the parallel square plates and then letting fluids
flow into or out of the inside region, according to the corresponding
boundary conditions of both regions. Within inside region, the
phenomena induced by the boundary conditions of the parallel
square plates are presented. The outside region lies outside of the
domain, and the phenomena in it are not necessarily discussed.
However, for satisfying the demands of computation processes
conducted in the inside region, approximate boundary conditions
are necessary for assigning in auxiliary in the outside region. It is
well known that when the temperature difference of natural con-
vection is larger than 30 K [1], the compressibility of the working
fluid should be taken into consideration in order to simulate a more
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realistic situation. The speed of the compressible fluid induced by
natural convection is much slower than that of the pressure wave
caused by the compressible flow. Afterward, the motions of the
compressible fluid in the inside region of the parallel square plates
are inevitably polluted by reflection of the pressure wave from the
open boundary that easily causes computation processes to diverge
[2]. For solving the problem of pollution, a modified local one-
dimensional inviscid relations (LODI) method — which is also
called a non-reflecting boundary condition for a low speed
compressible flow originally developed by [2] was proposed by Fu
etal.[3,4] —and usage of the modified LODI method for a low speed
compressible flow successfully solved one problem of a natural
convection channel flow. In this problem, the open boundaries are
separately located at both ends of the channel without a shared
intersection area. That is, the treatment of the reflection of the
pressure wave is only adopted to one direction normal to the
boundary. However, in the situation of natural convection in the
parallel square plates, an inside region is surrounded by four open
boundaries that are mutual neighbors. Fluids are therefore able to
flow into and out of the inside region diagonally. In the diagonal
direction, the fluids’ behaviors are not affected by any of the
neighboring open boundaries that are exclusively and substantially
influenced by an interaction of neighboring open boundaries. It
means that the intersection region of the neighboring open
boundaries that have two flowing directions should be treated.
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Nomenclature

A area (m?)

c speed of sound (m/s)

e internal energy (J/kg)

erarger  target internal energy (J/kg)

g acceleration of gravity (m/s?)

k thermal conductivity (W/mK)

ko surrounding thermal conductivity (W/mK)

L length of square plate (m)

1 height between square plates (m)

I3 width of artificial buffer zone (m)

L dimensionless Cartesian coordinates, v/x2 4 z2/ \/ﬁ

M Mach number,

Nu local Nusselt number defined in Eq. (61)

~Nu = b/ko(Tyy — To) [k(T) (8T /ay)]

Nu area-averaged Nusselt number defined in Eq. (65)
Nu = 1/A [l /ko(Tys — To)k(T) (8T /3y)dA

P pressure (Pa)

Py surrounding pressure (Pa)

Pr Prandtl number (v/a)

R gas constant (J/kg/K)

Ra Rayleigh number defined in Eq. (59)

Ra = Pr(gp3(Ty — To)B/Tou(T)?)

Ra” modified Rayleigh number defined in Eq. (60).
Ra*=Ra x l]/lz

T temperature (K)

To temperature of surroundings (K)

Ty temperature of heated top surface (K)

t time (s)

t* dimensionless time, t* = tug/(pol3)

u, v, w velocities in x, y and z directions (m/s)

Utarget Viarget, Wrarget target velocities in x, y and z directions (m/
s)
wy, Wy, W, lengths of artificial buffer zones in x, y and z directions
(m)

Xx,¥,z  Cartesian coordinates (m)

X,Y,Z dimensionless Cartesian coordinates, x/l;, y/l, and z/l
Greek symbols

) density (kg/m?)

Po surrounding density (kg/m?)

prarger  target density (kg/m?)

U viscosity (N s/m?)

o surrounding viscosity (N s/m?)

v specific heat ratio

According to Yoo et al. [5] and Lodato et al. [6], the Navier—Stokes
characteristic boundary conditions (NSCBC) were unavailable for the
problems having neighboring open boundaries such as edge and
corner boundaries. NSCBC was usually adopted for the flow being
normal to the boundary plane, which meant the transverse terms
were ignored in the edge and corner regions. In actuality, flow
distortion and high reflection appeared when the flow crossed the
boundaries along different directions. It might produce unstable and
inaccurate results without considering these transverse terms at the
boundary plane. Therefore, the transverse terms required a specific
treatment for the computational domain of edge and corner effects. A
kind of modified NSCBC then proposed by Yoo et al. [5] and Lodato
et al. [6] for two-dimensional and three-dimensional approaches
successfully brought a drastic reduction of flow distortion and nu-
merical reflection even in regions of strong transverse convection.
Similarly, the modified LODI method [3,4] for a low speed compress-
ible flow mentioned above has difficulty in treating this kind of
problem properly. In order to overcome the above difficulty, a modi-
fied method for three-dimensional absorbing boundary condition was
proposed by Fu et al. [7] to solve the problem of natural convection of
the parallel square plates with a heated bottom surface. In this method,
artificial buffer zones needed to be added around the physical model.
In the artificial buffer zone, two new terms of an artificial convection
term and an artificial damping term were additionally added to the
original governing equations, mainly to eliminate the reflection of the
pressure wave from the edge of the artificial buffer zone. The nu-
merical method for solving flow and thermal fields affected by an
interaction of neighboring open boundaries was explained in detail.
Related developments of the history of the absorbing boundary con-
dition [8—14] were described. Recently, Mani [15] proposed an anal-
ysis method to optimize numerical sponge layers — which were the
same as artificial buffer zones — as a non-reflective boundary treat-
ment. Two-dimensional Euler’s equations were solved, and the opti-
mization of sponge strength and profile and also its length were
obtained for a wide range of conditions in terms of Mach number.

In the previous study [7], a heated bottom surface was assigned
in the physical model, and fluids were naturally sucked from its

surroundings and flowed upward to impinge the top surface, which
finally turned the flow direction to its surroundings. Both directions
of the mainstream flow and the thermal diffusion were the same,
causing the variation of thermal field to be accompanied with the
variation of the flow field. Relative to the subject of [7], another
important and practical subject of natural convection of parallel
square plates with a heated top surface — which is also indicated in
many industrial applications such as building cooling, solar cell and
electric cooling — has seen little exploration. With the exception of
the difficulty induced by the intersection of neighboring open
boundaries described in [7], the thermal diffusion direction not
always being consistent with the direction of mainstream flow is
another thorny problem. These phenomena are significantly
different from those of [7], causing the flow field to be complex and
difficult to solve. Manca and Naradini [16] conducted an experi-
mental work to reveal heat flow mechanisms in this subject. C type
flow phenomena were visualized and empirical formula were
proposed to indicate relationships between both Nusselt numbers
and temperatures with Rayleigh numbers.

As a result, the study aims to investigate numerically natural
convection of the parallel square plates with a heated top surface. In
order to solve the problem induced by different directions between
the thermal diffusion and main stream flow mentioned above, a
hybrid boundary condition composed of the absorbing boundary
condition and the modified LODI method [3,4] is then used.
Methods of the Roe scheme, preconditioning and dual time step-
ping matching the Lower-upper symmetric-Gauss-Seidel (LUSGS)
scheme are combined and used simultaneously for solving gov-
erning equations of the compressible flow induced by a high tem-
perature difference. The results indicate achievements of the usage
of the hybrid method composed of the absorbing boundary con-
dition and modified LODI method to solve this kind of problem.
Because of the heated top surface, distributions of local Nusselt
numbers form concentric circles. The results compared with
experimental results obtained by Manca and Naradini [16] are
slightly larger than those of [16], and the averaged deviation is
about 10%.
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2. Physical model

A physical model of the three-dimensional parallel square plates
mentioned above is indicated in Fig. 1. The three-dimensional
parallel square plates regarded as an original domain are
composed of the top surface of abfe and bottom surface of cdhg.
Open boundaries of the original domain are bfhd, fegh, eacg and
abdc. The length of the square plate is [; and the height between the
two squares is I;. The temperature of the heated top square is Ty,
and the bottom surface is adiabatic. The direction of gravity is the
negative y direction. Since the absorbing boundary is used, an
additional zone called an artificial buffer zone is necessarily added
to the original domain and indicated by dashed lines in Fig. 1. In this
physical model, the direction of the normal line of the artificial
buffer zone, in which the surface of bybfifp is the top surface and
the surface of dydih1hg is the bottom surface, directs the positive x
direction. Similarly, the other three artificial buffer zones can be
defined, and the three directions of the normal lines of the artificial
buffer zones are the negative x direction and the positive and
negative z directions, respectively. However, an intersection artifi-
cial buffer zone of neighboring artificial buffer zones can be
observed at each corner such as a cubic rectangle composed of the
top surface of bbgb;b, and the bottom surface of ddodid>. The
intersection artificial buffer zone includes two artificial buffer
zones which have different directions of normal lines mentioned
above, and the phenomena in the intersection buffer zone are
naturally different from those in the artificial buffer zone described
earlier. The solution methods used in the two zones are subse-
quently different. Therefore, the artificial buffer zone should
exclude the intersection artificial buffer zone, and the residual zone
— in which the surface of bff,bg is the top surface and the surface of
dhhydy is the bottom surface for example — is exclusively called by
the artificial buffer zone afterward. The distance between the
boundaries of the original domain and artificial buffer zone is Is.
The temperature and pressure outside the artificial buffer zone are
To = 300K and Py = 1 atm, respectively.

In the previous study [7], the bottom surface is the heated sur-
face that causes directions of both the thermal diffusion and the
mainstream flow to be the same. The diffusion of the thermal en-
ergy is naturally accompanied with the mainstream flow. The
artificial convection and damping terms for treating the fluid flow
and the fully developed condition for treating the thermal diffusion
in the artificial buffer zone are then suitable. However in this work
the heated surface is the top surface that is opposite to that of [7].
Fluids close to the heated top surface are expanded by heat con-
duction mode and flow outward to their surroundings. Afterward,
cooling fluids are sucked from surroundings via a region near the
bottom surface and flow upward to supplement the vacant space
due to the outward flow of fluids. Near the central low region, di-
rections of the thermal diffusion from the top surface to the bottom
surface and the mainstream flow from the bottom region to the top
region are different. As a result, the usage of the fully developed
condition for treating the thermal diffusion in the artificial buffer
zone similar to [7] will easily cause part of the thermal energy to be
rebounded from the edge of the artificial buffer zone back to the
domain. These phenomena led to unreasonable results appear
during the transient process. The modified LODI method used in
Refs. [3,4] is then held on the edge of the artificial buffer zone to
prevent computational processes polluted by the rebound of the
thermal diffusion mentioned above. Both the absorbing boundary
condition and the modified LODI method called the hybrid
boundary condition are simultaneously held in the artificial buffer
zone to investigate this kind of problem.

For facilitating the analysis, the following assumptions are
made.

1. The flow is laminar flow.

2. The work fluid is ideal gas and follows the equation of the ideal
gas state.

3. Radiation heat transfer is neglected.

The governing equations described in the original domain in
which the parameters of viscosity and compressibility of the fluid
and gravity are considered simultaneously are shown in the
following equations.

U oF G oH _

R (1)

P = pRT (2)

The contents of U, F, G, H and S are separately indicated as
follows.

P

pu
Uu=1pv

pw

pE

pu
pu? + P — Ty
F = puv — Txy
PUW — Txz

pEu + Pu — k% — UTxx — UTxy — WTxz
pv
pu — Tyx
2
G — pve +P —1yy 3)

pPYwW — Tyz

pEv + Py — kg

— UTyx — VTyy — WT
ay yX yy yz

oW
pU — Tzx
H = PV —Tzy

pvwW + P — 14,

oT
pEwW + Pw — k& — UTzx — Vigy — Wiz

0
0

S=| ~(b=ro)g
0

—(p = Po)gv

The viscosity and thermal conductivity of the fluid are based
upon Sutherland’s law and shown as follows.
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2
3To + 110
K = o(%) P70

#(T)YR
k(T) = o D)pr (4)
P

= iy o ()

where pg=11842kg/m>, g = 9.81 m/s?, up=1.85x 107> Ns/m?,
v =14, R = 287 J/kg/K and Pr = 0.72.

As for the governing equations described in the artificial buffer
zone [14], the artificial convection and damping terms are newly
adopted. The function of the artificial convection term mainly ac-
celerates outward velocities of fluids through the artificial buffer
zone to reach a high speed that reaches near-supersonic speed at
the edge of the artificial buffer zone. Moreover, the function of the
artificial damping term eliminates the disturbances in the artificial
buffer zone. The modified LODI method is held on the outer surface
of the artificial buffer zone to prevent the rebound induced by the
thermal diffusion, and therefore the modified LODI method is not
necessary to be described in the governing equations. Then general
forms of the governing equations in the artificial buffer zone can be
described as Eq. (5). Since Eq. (5) is exclusively adopted in the
artificial buffer zones, the source term induced by gravity does not
exist that is different from Eq. (3) described in the original domain.
oU 0oF oG 0oH .

where

NP
5 o Nxpu
F = F+ 9,0 = { Mxpv
NxPW
NxPE
nyp
nypU

G =G+ Tc = { Nypv (6)
NypW
nypE

NzP
nzpu
Nzpv
Nnzpw
n,pE

H = H+0y,My =

0 =0x+0y+0;

Ox (P - ptarget)
x(pu — Putarget)
ox(pv — Pvtarget)
Ox(pW — PWtarget)
ox(€ — etarget)

0z (p - ptarget)
0z(pu — putarget)
T oz (pv — PVtarget) 7
0z(PW — pWrarget)
0z(€ — etarget)

Oy (p - ptarget)

oy (pU — Putarget)
Oy (pv — pUtarget)
Oy (pW — PWtarget)
gy(e — etarget)

Ik, N and 7y are artificial convection terms, and dx, 6y and ¢, are
artificial damping terms. 7y, 1y and 7, included in %g,j; and 7y are
separately shown as follows.

Fig. 1. Physical model of three-dimensional parallel square plates.

W By
TIxOl( ‘;(li)d ) 0<x<wy
N =40 Wy <X < Xmax — Wxr (8)
X (Xemax— W) By
Nxor {%} Xmax — Wxr < X < Xmax

By
Nyol <W£wy ) 0<y<wy

Ny =40 Wy <Y < Ymax — Wyr 9)

Y (W) Byr
- max T
Nyor {Ty} Ymax — Wyr <Y < Ymax

Bz
wy—z
77201( \?‘l/zl ) 0<z<wy
n, =40 Wy < Z < Zmax — Wzr (10)
2 (e War) B
Nzor {%} Zmax — Wzr < Z < Zmax

Mx0. Myo and 7, are the target velocities at the edges of the
artificial buffer zones. oy, 0, and o, are the artificial damping
functions and shown as follows, respectively.

e\ B
UxOl( J\I;X, )

Ux: O

0<x<wy
Wy < X < Xmax — Wxr (11)

X—(Xmax—Wxr)

ﬂ)(r
Ox0r [ Wy } Xmax — Wxr < X < Xmax
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By
Wy—X
0y01<wy1 ) 0<y<wy
gy =40 Wy <Y < Ymax — Wyr (12)
Byr
— (Xmax—W,
UyOr[ ( T,;y, yr)} Ymax — Wyr <Y < Ymax
o B
‘TZOI( \f\l/zl ) 0<z<wy
g, =<0 Wy < Z < Zmax — Wzr (13)
Xf(x —w ) ﬂzr
0z0r [%} Zmax — Wzr < Z < Zmax

0x0, 0yo and o, are the target damping functions at the edges of
the artificial buffer zones.

Locations of g and ¢max and lengths of w,, and w,,r are indicated
in Fig. 2, respectively. In order to keep equilibrium between the
order of the acoustic wave speed and both orders of the target
velocities of the artificial convection terms (Egs. (8)—(10)) and the
target damping functions of the artificial damping terms (Egs. (11)—
(13)), the process proposed by Dennis et al. [17] is executed and the
order of an original acoustic wave speed is transformed into the
similar order of a modified acoustic wave speed. Afterward, the
new target velocities of the artificial convection terms and new
target damping functions of the artificial damping terms are
expressed, respectively, as follows and can be adopted in a low
speed compressible flow situation.

u2(0 — 1)% + 46¢2
Nxo = CF\/ 2 (14)

V120 — 1) + 40¢2
Myo = Cc 2 (15)

w2(0 — 1) + 40¢2
Nzo = CH\/ 5 (16)

20 — 1)% + 402
Oxo = Cx\/u ( 2) < (17)

V120 — 1) + 462
Oyo = Cy 5 (18)

2(0 — 1)? + 40¢2
ozozc\/w( 2)+ ¢ (19)

where ®=100M?2 and c is the speed of the sound.

#(=x,9.2)
_—
$=0 1 2 3
Artificial Original domain Artificial
buffer zone B buffer zone
14«’4), WW‘

Fig. 2. The diagram of one-dimensional absorbing boundary condition.

From the previous study [7], the appropriate values of c, cg, cy,
Cxv Cy Cz are cp=cg=cy=115 cx=cy=c,=0.05 and §=3,
respectively.

Thus the magnitudes of the artificial convection terms will be
equal to zero at the interface of the original domain and artificial
buffer zones, and equal to the modified acoustic wave speed at the
edges of the artificial buffer zones. Furthermore, the disturbances of
the flowing fluids are gradually reduced to zero, accompanied with
the location close to the edge of the artificial buffer zone.

3. Numerical method

In natural convection, the speed of the compressible fluid flow is
much slower than that of the acoustic wave. The Roe Scheme [18]
coordinating the preconditioning method is then adopted to
resolve the governing equations shown in Eq. (1) which can be
derived as the following equation and shown in Eq. (20).

AU,  OF 3G oH _ (20)

o Tox oy Tz

where [' is the preconditioning matrix proposed by Weiss and
Smith [19] and Uy, is the primitive form of [P, u, v, w, TI".

A method of the dual time stepping is added to calculate tran-
sient states of the physical model. The derived equation is shown in
Eq. (21).

oUp oU 0oF oG oH
F? ot &"!‘@4—575 (21)
where 7 is an artificial time, t is a physical time and U is the con-
servative form of [p, pu, pv, pw, pe]”.

When the discretization of Eq. (21) is executed, terms of oU,/dt
and oU/ot are differentiated by a first-order forward difference and
a second-order backward difference, respectively, and terms of dF/
dx, 0G/oy and 0H/oz are differentiated by a central difference, the
following equation can be obtained.

k+1 _ 1k 1 -1
r Up Up N 3um —4ut +U" n L S |
At 2At Ax | “itsik o Tigjk
+ i Gkl Gk+1 + l Hk+1 _ gk+1 -S
Ay | Vibk T Vij-Lk Az | Vigkrd T Mgk | T

(22)

Terms of U¥*! and F**" in Eq. (22) are necessary to be linearized
and expressed as follows.

Ukl — Uk 4 MAU, (23)

FR1 — Fk 4 A, AU, (24)

where A, = 8F[0U,, is the flux jacobian and the same methods for
By, = 8G/0Up and C, = dH/dU, are used in linearization of G*'! and
H*1 respectively.

Egs. (23) and (24) are substituted into Eq. (22), the following
equation is derived.

I 3
|:E+ F71M2—Al_+ f*] (5XA{§ +(3yBII§ —+ 6ZC’1§>:|AUP = I‘*]Rk
(25)

where 0y, 0y, and 0, are central-difference operators and
RE = S (3UF - 4Um + U 1) /28t — (8K 4 6,GK + 0,HF )
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In order to solve a problem of the convergence of a low speed
compressible flow, the solver of Eq. (26) is newly derived from the
LUSGS implicit method originally proposed by Yoon and Jamesont
[20].

L=- [ﬁ (Ag)i—l‘jk + Aiy <B+>u—1 ' é (C;’r)i.j’k—l}

Eq. (31) can be rearranged as follows.

(L+D+U)AU, = T 'RK (32)

where

b= E*T Mm+{ R >uk ( ):J,k]+Aiy[(33>u,k7<35)u,k}+Al2{(q)uv’<i(c’;)"”‘“ >

U= {& (A[:)Hlj,k ( )1,}+1 k

( 7) i,j,k+1}

Ap = I'Ak
B, = r*js’g (26)
G =1I""¢k

Ap, Bp and Cp, can be divided into two parts.

Ap = Aj +A,
B, = By +B, 27)
G=CG+G
where
Ax = Yy x
p = 35 (Ap = 1Aall)
1
By = 5 (Bp + 25]1) (28)
1
G = E(Cpi [Acll)
To substitute Eq. (27) into Eq. (25), the following equation is
obtained.
Lo m3 s(as +AS) 4+ 6,(BS + B
E+ 2—+x(p+ p)+y<p+ p)

) AU, = I 'R (29)

+6Z<
o (45 +

) can be derived as the following equation.

-4 ~+ ~_ -

pi Ap,i—] +Ap,i+1 _Ap,i

x°P Ax Ax

(30)
To substitute Eq. (30) into Eq. (29), and Eq. (31) can be obtained.

~ ~+ ~_ -

_ ~ 4 ~+
L+F Mi+Ap,i _Ap,i—] +Ap,i+1 _Ap,i+BPJ _Bpj—l
At 2At Ax Ax Ay
BI;JH -B q.k - F:H E;,kﬂ - 67k 1
5 Py, AU = TR

(31)

As for the computation of
Rk = S — (3UK —4U™ + U"1) /24t — (0xF* + 0,G* + 0,H*) in the
right hand side of Eq. (32), the terms in F shown in Eq. (3) can be
divided into two parts. One is an inviscid term Fipyiscig and the other
is a viscous term Fyiscous.

ou
pu? +P
Finviscid puv (34)
puw
pEu + Pu
0
—Txx
Fviscous = Ty (35)
—Txz

k or urt VT wr,
ox XX Xy Xz

Methods of the Roe scheme and preconditioning are utilized to
calculate the magnitude of Fipviscig at the location of i + 1/2 between
the cells for a low Mach number condition.

F.

1 1 _1
inviscid,i+} = j(FR +F) *i{‘r AP’AUP} (36)
The Monotone Upstream-centered Schemes for Conservation
Laws (MUSCL) with a third order proposed by Abalakin et al. [21] is
used to compute Eq. (36). A fourth order central difference is
adopted to calculate the Fyjscous and Eq. (37) can be obtained.

ou _ uj o —8u; 1 +8u —
ox 12Ax

Uiz | o(Ax“) (37)

In order to explain the calculation in the artificial buffer zones
and the intersection artificial buffer zones mentioned above, a one-
dimensional artificial buffer zone shown in Fig. 2 is used to describe
the treatment of the absorbing boundary condition. The zones of 1
and 3 are the artificial buffer zones, and the zone of 2 is the original
domain. w indicates the length of the artificial buffer zone, [ and r
mean the left and right sides, respectively. ¢ and ¢max represent
the start and end locations of the total domain including the zones
of 1, 2 and 3. In order to avoid the reflection of acoustic waves at
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¢o and @max rebounding back to the zone of 2, the artificial con-
vection term accelerates the velocities of fluids — which are in the
zones of 1 and 3 and flow out of the original domain — at a high
speed and that is greater than the sound speed at edges of ¢¢ and
omax- The artificial damping term directly multiplies the distur-
bances of fluid velocities with an appropriate damping function to
cause the disturbances to be zero within the artificial buffer zone.

Since the phenomena in the artificial buffer zones and the
intersection of artificial buffer zones mentioned above are rather
different, that therefore leads to the contents of the artificial con-
vection and damping terms in the governing equations Eq. (5) to
also be different. Therefore, the governing equations of the artificial
buffer zone which is orthogonal to the x direction can be expressed
as follows.

NxpP
N ~ ~ nxpu
F=F+0, 0= 0xpv
NxpW (38)
N nxpE
G =G+ T =
H=H+mny, 0y =
Ox <p - ptarget)
- - Ox (pu - Putarget)
0 =0x= UX(PU* pUtarget) (39)

Ox (pW — PWrarget)
Ox (e - etarget)

Governing equations of the artificial buffer zone which is
orthogonal to the z direction can be expressed as follows.

F=F+7p, iF=0
G G+ 17'67 ’F’G =0
NzP
) npU (40)
H=H+ny, My =00
Nz20W
n,pE
0z (P - ptarget)
- _ | oz(pu — putarget)
0= 0z| g,(pv— pl’target) (41)

Oz(pW — tharget)
0z(€ — etarget)

Also, governing equations used in intersections of artificial
buffer zones can be expressed as follows.

NxP
) NepU
N = NxpPv
NxpPW

NxPE

fic = (42)

MzP

B . ) n,pU
H=H+7y, 0y = Npv
NzpW

n.pE

Ox <P - ptarget) 0z <p -p target)

- - - ox(pu — putarget) (Pu - putarget)

0= 0x+0z= |gy(pv— PVtarget) + E pUtarget
Ox(pW — PWtarget) w — PWtalget
ox(€ — etarget) ( etarget)

(43)

The direction of the fluid flow of the artificial buffer zone should
be outward relative to the original domain, and then in the zone of
1 (Fig. 2) a backward finite difference form is adopted to derive the
differential form. It can be expressed as Eq. (44). Similarly, in the
zone of 3 (Fig. 2) a forward finite difference form is adopted and it
can be expressed as Eq. (45).

For zone of 1

op Pi — Pi-1
n¢a¢ s i A¢l

apu pU; — pU;_q

opv pvj — pyj_q

Mag = A (44)
opw PW; — pW;j_q
7I¢w = 77¢ ! A¢ l
dpE g PEi — pEi 4
Urys o ¢ A
For zone of 3
op Pi — Pis1
n¢a¢ n(b 1 A¢l+
opu puU; — pujq
Tag ~ M Rp
opv _ 1 PYi — Piyq
Mo =1 Ag (45)
opw _ PWi — pWiq
U rys R ¢ A
opE pE; — pEi 4
n¢ a¢ 77(]5 1 A¢ 1+
¢ =xz

Eqgs. (44) and (45) are adopted for the artificial buffer zones of
the directions of x and z, respectively. For the intersection artificial
buffer zone, the finite difference derived in the x direction and the
finite difference derived in the z direction should be considered
simultaneously.

In order to solve the results of the original domain and artificial
buffer zone, Egs. (1) and (5) are combined, and the integration of
the governing equations can be indicated as follows.

au oF oG oH

In the subject of natural convection of parallel square plates
with a heated top surface studied in this work, the thermal diffu-
sion direction is not always consistent with the direction of main
stream flow induced by natural convection that causes the phe-
nomena in the original physical domain to be affected by the arti-
ficial thermal field in the artificial buffer zone. In consequence, the
modified LODI method used in [3,4] is necessary to be additionally
added at the boundary of the artificial buffer zone, in order to
prevent the thermal energy to rebound back to the original physical
domain. In order to clearly explain the method, the following local
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one-dimensional Navier—Stokes equation is adopted to describe
the details.

oy OF _

o +& =0 (47)

To multiply I'"! on the left side of Eq. (47), dF/dx can be trans-
ferred into a primitive form.

aUp ]‘*1E _

ot ax ~° (48)

The term of I'~!(8F/ox) can be expressed as the following form
further.

_10F 1 0F 0Up .4
R Ty

Wp

P (49)

To substitute Eq. (49) into Eq. (47), the following equation can be
obtained based on the primitive form.

oUy
0T

oU
+I71A2 =
P ox 0 (50)
A similar transformation of the term of I’ ’1Ap is executed to

obtain the characteristic velocities of the open boundaries.
I 'Ap = KiK' (51)

where K is an eigenvector, A are eigenvalues of the term of I’ ‘1Ap, as
well 1 are characteristic velocities at the boundary. According to
Dennis et al. [17], to transform the orders of u (original flow speed)
and c (original acoustic wave speed) into the similar orders of v’
(modified flow speed) and ¢’ (modified acoustic wave speed), the
following equation is obtained.

/11 u
/12 u
A=12| = u (52)
/14 u+c
As u—c
where U = (@+1u/2, ¢ =/u2(@-1)?%+46c2/2 and
6 =100M2. Let
L = 2K~ 1(aUp /0x) (53)

The contents of the term of L are

LT 1 (o
ox  py \0x ox
L
L4 ox
L, v
L5 | = u<f&) (54)
Ly
Ls / / @_ r a_u
) G- ot - ¢ - B

., .~ |0P P ou
(u +c)[&fp(u —C fu)&}
The physical meaning of the term of L is the magnitude of wave
amplitude with time variation.
Based on the characteristic velocities Eq. (52), the propagation
speeds of Ly, Ly, L3, L4 and Ls are u, u, u, u’ + ¢’ and u’ —c’, respec-
tively. To substitute Eq. (53) into Eq. (54), Eq. (55) can be obtained.

Up _
S2A+KL=0 (55)

To derive Eq. (55), the equations of pressure, velocities and

temperature through the open boundary are obtained,
respectively.

G+ gy (la—Ls) = 0

%— L3 =0

%—VTV +L, =0

%ZJrLl +%%2%[L4(u’+6’ —¥) - L' = —y)] =0

(56)

The difference forms of Eq. (56) can be expressed as the
following forms, respectively.

At

I I

pkt = p<—W[L4(U/+C/—U)—Ls(ul—d—u)}
At

I k

utt = u —W(M—Ls)

57
s — uk+L3At (57)

wktl = wk — [, At

1y+1
k+1 _ Tk _ L k+1 _ ok
T =T L1Af+p v (p p)

where k is an iteration number in an artificial time.

For the calculation of the original domain, the artificial con-
vection and damping terms are equal to zero. Oppositely, for the
calculation of the domain of the artificial buffer zone, the source
term is equal to zero, and the modified LODI method is adopted at
the boundaries of the artificial buffer zones. Therefore, a calculation
procedure is briefly described as follows.

(1) Assign the initial conditions of pressure, velocity and tem-
perature of the artificial buffer zone, intersection artificial
buffer zone and original domain. The temperature of the
heated top plate is Ty = 700 K.

(2) Use the MUSCL method to obtain the magnitude of Fg, F; and
AU,

3) Sutl)gstitute the magnitude of AUy, into Eq. (36) and use the Roe
scheme to calculate magnitudes of inviscid terms of Fipyiscid-

(4) Calculate Eq. (37) to obtain magnitudes of viscous terms and
substitute into Eq. (35).

(5) Use the following Eq. (58) to solve U’];“.

Ut = Ug + AU (58)

(6) Calculate Eq. (22) and examine the convergence of the
computation of Uﬁ“. Repeat steps (2)—(5) until the conver-
gent criteria are satisfied and the convergent magnitude of
U’Ff“ will be regarded as that of U, of the (n + 1)th time step
and the process proceeds to the next time step. The
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convergent criteria of variables are (y"*1 — y*) /¢! < 1073,
v=p, u,v,w,T.

4. Results and discussion

The height of parallel square plates is usually regarded as a
characteristic length when the Rayleigh number is defined and
expressed as follows.

gp3(Ty — To) 3
Tou(T)?

However, the area of the heated top wall affects heat transfer
phenomena significantly. In order to highlight the influence of the
area of the heated wall, the modified Rayleigh number Ra* is newly
defined. In the study of Manca and Nardini [16], the modified
Rayleigh number is characterized by I,/l;. In contrast, in this study
the effect of [1/1, is then considered because of the difference of the
physical model compared to Manca and Nardini [16]. The physical
model of Manca and Nardini [ 16] was similar to a channel with two
open-ended apertures. By increasing the length of the channel of [,
the heated area then increase while the coolant inlet area is still not
changed, and the cooling efficiency in the central region becomes
lower. In this situation, the heat transfer rates may decrease, so it is
reasonable to characterize the modified Rayleigh number by I,/I;.
However in this study, the physical domain is surrounded by square
plates and four open boundaries, which means by increasing the
length of I;, the coolant inlet area also be increased. To give suffi-
cient consideration to this condition, the modified Rayleigh num-
ber is then characterized by I1/I; in the following equation.

Ra = Pr (59)

Ra" = Ra x h (60)
5]

In this work, three different values of the modified Rayleigh
numbers, Ra* = 1.72 x 10°, Ra* = 1.55 x 10° and Ra* = 4.31 x 106, are
investigated.

In Fig. 3, tests for determination of an appropriate length of the
artificial buffer zone are executed. The definition of the local Nus-
selt number is shown as follows.

W T R e .
L/_2 .

L 14

L/_3
L] h 14 N

.................... Ly _ 4

L 14
Nu 1of € f
X i ]
i a b ]
5f 7
0.2 04 06 08 1

X

Fig. 3. Distributions of local Nusselt numbers along ij of different lengths of the
artificial buffer zone under Ra“ = 1.72 x 10°.

I [ 6T}
Nu = ——=>——|k(T) — 61
Ro(Tn —To) |13y {88
According to results, that the length equals to I3/l; =3/14 is
adopted.

In Fig. 4, transient thermal fields obtained by two different
methods at certain instants of transient processes are indicated,
respectively. The brighter the color is, the higher the temperature is
indicated. Solid lines are isothermal lines and white dashed lines
are the interface between the original domain and artificial buffer
zones. Shown in Fig. 4(a), the thermal field is obtained by a situa-
tion in which the absorbing boundary condition is solely adopted in
the artificial buffer zone. The isothermal line between the dark grey
and light black colors is immediately pushed away from the orderly
arrangement of isothermal lines. This phenomenon implies the
rebound of thermal energy from the boundary to occur, and it is
unreasonable. For improving the phenomenon, in addition to the
usage of the absorbing boundary condition, the modified LODI
method [3,4] is further adopted in the artificial buffer zone. Both
the absorbing boundary condition and the modified LODI method
[3,4] are abbreviated as the hybrid boundary condition. It means
simultaneous usage of both methods. The result obtained by the
latter method is shown in Fig. 4(b). Isothermal lines are arranged in
order, relative to that shown in Fig. 4(a) that indicates the correct
usage of the hybrid boundary condition.

In Fig. 5, transient variations of thermal fields, velocity vectors
and pressure fields during initial stages are indicated, respectively.
At the beginning (Fig. 5(a)), fluids close to the heated top surface are
heated by heat conduction mode and expanded, which causes the
heated fluids to flow outward. The magnitude of the pressure
changes from large to small, accompanied with the location from
the central top region to surroundings. Parallel thermal layers on
the top surface are observed that is a typical mode of heat con-
duction. Afterward, other fluids are sucked from their surroundings
via the low region due to the heated fluids flow with a high velocity
from the central top region to the surroundings mentioned above.
The fluids sucked from surroundings impinge other fluids dis-
charged from the central top region, leading to the pressure in this
region to be large shown in Fig. 5(b). Both fluids coalesce and
become new flow streams that flow upward, and meanwhile
thermal layers begin to be distorted near the edge region. At
dimensionless time t* =3.14 x 103, the upward fluids are sucked
from their surroundings via the low region in the physical domain,
and the phenomena of fluids that is discharged from the central top
region are no longer observed. These phenomena are completely

' =1.57x10 |
X T. 320 360 400 440 480 520 560 600 640 680

(a) Absorbing boundary condition

(b) Combination of absorbing boundary condition and modified LODI method

Fig. 4. Transient thermal fields under different boundary conditions.
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affected by the natural convection mode. The magnitudes of the
pressure naturally change from high to low, accompanied with the
location away from the central top region. The distortion of the
thermal layers becomes more apparent near the edge region.

In Fig. 6, the distributions of the velocity vectors, temperature
contour and pressure contour on the central cross section of the xy
plane under a steady state are displayed, respectively. The darker
the color, the higher the temperature and pressure are indicated.
The fluids move from the bottom plate to the top plate while the
pressure distributions decrease from the top plate to the bottom
plate. In this situation, the direction of the driving force caused by
the pressure gradient is opposite to the flow direction, which ap-
pears to not be an ordinary recognition. Two reasons suggest the
cause of the occurrence of the phenomenon. One is that fluids
sucked from surroundings are mainly induced by strongly outward
flows of fluids of which pressures are raised by the heated top
surface. The other reason is caused by the influence of the buoyancy
force especially in the central region. Shown in Fig. 7 are the
pressures and densities at the grids of y and y+1 are Py, Py, 1 and py
and py 1, respectively. The pressure difference at the interface of the
grids of y and y + 1 is calculated as follows.

AP = P,.q — P, (62)

According to the distribution of the pressure shown in Fig. 6(c),
the magnitude of AP is positive and the flow direction ought to be
downward contrary to the velocity vectors shown in Fig. 6(a).
However, the direction of the buoyancy force that is calculated by
the difference of both densities of pg and py is exclusively upward,
and therefore the buoyancy force at the grid of y + 1 does not affect
the motion of the fluid at the grid of y. The buoyancy force f;, at the
grid of y is expressed by the following equation.

{Fb = (pO _py)gv (63)
fo = Fy/A

As a result, the direction of the fluid is decided by the difference
of both magnitudes of AP and fi, which are shown in Fig. 7(d). In the
low region, the buoyancy force is larger than the pressure differ-
ence, and therefore the movement of fluid is upward. In the high
region, although the pressure difference is larger than the buoyancy
force, the suction effect induced by strongly outward flows of
heated fluids mentioned above on the fluids in this high region
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([T
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© ¢t =3.14x10"

Thermal field

Velocity vectors and pressure field

Fig. 5. Transient variations of thermal field, velocity vectors and pressure field during initial stage under Ra“=1.72 x 10°.
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Fig. 6. Distributions of velocity vectors, temperature contour and pressure contour at a
steady state under Ra* = 1.72 x 10°.

begins to operate. The fluids are then continuously move upward
and finally join into the strongly outward flows. These phenomena
are quite different from those shown in the previous study [7].

Fig. 8 indicates a three-dimensional distribution of the stream-
lines. Due to the parallel square plates, the distribution of the
streamlines displays a symmetrical shape.

In Fig. 9, the local Nusselt numbers distributed on the top sur-
face of the central cross section under situations of three different
heights are indicated, respectively. The higher the height is, the
larger the space is. The distribution of the largest magnitude of the
local Nusselt number is naturally the situation of Ra* =4.31 x 10°.

Fig. 10 reveals the distributions of the local Nusselt numbers on
the central and diagonal lines of the top surface, respectively. A
dimensionless parameter L means lengths of ij and eb are
normalized by the length of eb. Since the physical model is sym-
metrical, fluids from the diagonal line flow into the physical model
are easily squeezed by flows distributed on both neighboring sides.
Therefore, the local Nusselt numbers distributed near the edge of
the diagonal line are larger than those near the edge of the central
line. In the central region, both local Nusselt numbers are almost
equivalent.

Local Nusselt numbers distributed on the top surface are
shown in Fig. 11. The darker the color is, the smaller the
magnitude displays. The fluids are heated by the top surface, and
from the central region to its surroundings the fluids flow uni-
formly, which causes the distribution of the local Nusselt
numbers to be similar to concentric circles except in the edge
region. This phenomenon makes a difference compared with that
of the previous study [7].

heated top surface
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'

Fig. 7. Distribution of differences of AP and f;, under Ra" = 1.72 x 10°.

Fig. 8. Distribution of streamlines under Ra“=4.31 x 10°.
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Fig. 9. Distributions of local Nusselt numbers along ij under different modified Ray-
leigh numbers.

In Fig. 12, comparisons of the mass flow rates under different
modified Rayleigh numbers of the previous study [7] and the pre-
sent study are indicated, respectively. In the previous study [7], the
heat surface is installed on the bottom surface, and the directions of
the thermal diffusion and the pressure gradient that varies from the
large magnitude to the small magnitude are the same. Oppositely,
the heat surface of the present study is installed on the top surface,
and directions of the thermal diffusion and the pressure gradient
mentioned above are not always consistent. As a result, the mass
flow rates through the domain of the previous study [7] are natu-
rally larger than those of the present study. The mass flow rate is
defined as follows.

= /pv~d/1 (64)
A
140 ————————————————————————
1 1
0 1
m 1
n —_— |
120} — |
H l.] 4
H
)
100t 1
Ll I
n i
H H
H J_;.
80 i
Nu [ i
K] 1
60 r
n n
[ [
Ly T
L ll_
40\ /7]
0’1 1 1 1 l 1 1 1 1 l 1 1 1 1 l 1 1 1 1 I 1 1 1 l-
0 02 04 06 08 1

Fig. 10. Distributions of local Nusselt numbers along ij and eb on the heated top
surface under Ra" =4.31 x 106,
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Fig. 11. Distributions of local Nusselt numbers on the heated top surface under
Ra" =431 x 105,

where v is the velocity flow out of the domain, and 4 represents the
area of the open boundary.

The area-averaged Nusselt numbers of both studies are sepa-
rately shown in Fig. 13. The area-averaged Nusselt number Nu is
defined as follows.

Nu {k(r)‘;—y dA (65)

1 /l—2
A J ko(Ty—To)
A

Relative to the differences between both mass flow rates shown
in Fig. 12, the differences of area-averaged Nusselt numbers be-
tween both studies are small. In the previous study, the fluids
sucked from surroundings flow over the heated bottom surface
plays a main role of heat transfer mechanism. However, in the
present study, the fluids sucked from their surroundings that

4.5 ————ry ——

4 o Mass flow rate of heated bottom parallel -
square plates [7]

o Mass flow rate of heated top parallel
square plates o

2.5 =
m(kg/s)
2_ il

1.5+ 1

10 10 10

Fig. 12. Comparison of mass flow rates of present results and results of Fu et al. [7].
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Fig. 13. Comparison of area-averaged Nusselt numbers of present results and results of
Fuetal. [7].

impinge the heated top surface plays the main role of the heat
transfer mechanism. The velocity fields of both studies are shown
in Fig. 14(a) and (b), respectively. The heat transfer rate caused by
an impingement of fluids is typically prior to that by fluids flowing
over a flat plate. Consequently, although the differences shown in
Fig. 12 are large, the differences of Fig. 13 became small due to
different heat transfer mechanisms.

In order to compare numerical results of this work and experi-
mental results of Manca and Naradini [16], a new model, which is
the same as that of Manca and Naradini [16], is newly set and
shown in Fig. 15. The parallel plates are surrounded by two solid
walls ABDC and EFHG and two open boundaries BFHD and AEGC.
The thermal condition of top plate ABFE is an uniform heat flux. The
artificial buffer zones in —x and +x directions are surrounded by
ApAEEy and CoCGGy, and BBgFoF and DDgHgH, respectively. The
modified LODI method is adopted at surfaces of AgEgGoCo and
BoFoHgDgp. The parameters of computation are listed in Table 1.

Shown in Fig. 16, a comparison of the area-averaged Nusselt
numbers of the present results and experimental results of Manca
and Naradini [16] is indicated. The results show that the area-
averaged Nusselt numbers of this work are slightly larger than
those of [16], and the averaged deviation is about 10%.

5. Conclusions

Natural convection in parallel square plats with a heated top
surface is investigated numerically. Results of the present study are
quite different from those of the previous study [7], due to the
difference of the locations of the heated surfaces. Several conclu-
sions are drawn as follows.

1. Suitability of usage of the combination of the absorbing
boundary condition and modified LODI method as the hybrid
boundary condition is proven to successfully overcome the
problem caused by different directions of the thermal diffusion
and mainstream flow in a central low region.

2. Due to the location of the heated top surface, local Nusselt
numbers distributed on the top surface form concentric circles.

3. A comparison of the present results with existing experimental
results displays a slightly deviation of 10%.
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Fig. 14. Velocity profiles at different locations of (a) u along X of [7] and (b) v along Y of
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Fig. 15. Physical model for comparing the existing study [16].
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Table 1
Computation parameters.
Case Computation domain Physical domain Ra (Y/2L)
grid numbers grid numbers
1 100 x 32 x 50 70 x 32 x 50 2.00 x 10?
2 100 x 36 x 50 70 x 36 x 50 3.82 x 107
3 100 x 40 x 50 70 x 40 x 50 6.69 x 102
4 100 x 50 x 50 70 x 50 x 50 2.15 x 10°
5 100 x 60 x 50 70 x 60 x 50 5.51 x 10°
6 100 x 70 x 50 70 x 70 x 50 1.20 x 104
7 100 x 80 x 50 70 x 80 x 50 2.38 x 10*
1
10' e AR e
Nu 19| _
[ — Manca and Naradini [16] ]
I ® Presentresults 1
10" Ll L vl L
10° 10’ 10° 10°

Ra(Y/2L)

Fig. 16. Comparison of present results and results of Manca and Nardini[16].
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