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A distributed system is self-stabilizing if, regardless of its initial state, the system is
guaranteed to reach a legitimate (i.e., correct) state in finite time. In 2007, Turau proposed
the first linear-time self-stabilizing algorithm for the minimal dominating set (MDS)
problem under an unfair distributed daemon [9]; this algorithm stabilizes in at most 9n
moves, where n is the number of nodes in the system. In 2008, Goddard et al. [4] proposed

a 5n-move algorithm. In this paper, we present a 4n-move algorithm.
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1. Introduction

Self-stabilization is a concept of designing a distributed
system for transient fault toleration and was introduced
by Dijkstra in [2]. A fundamental idea of self-stabilizing
algorithms is that the distributed system may be started
from an arbitrary state, and after finite time, the system
will reach a legitimate (i.e., correct) state. Notice that the
(global) state of a distributed system consists of the (local)
state of every node (also called process) and the content of
every communication channel (or communication register).
A distributed algorithm is self-stabilizing if the following
two properties hold: convergence and closure. The conver-
gence property ensures that, starting from any illegitimate
state, the distributed system reaches a legitimate state in
finite time without any external intervention. The closure
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property ensures that, after convergence, the system re-
mains in the set of legitimate states.

This paper follows the conventions used in [9]. In par-
ticular, every node executes the same program, and main-
tains and changes its own state based on its current state
and the states of its neighbors. A node can change its state
by making a move, that is, by changing the value of at least
one of its local variables. Our algorithm requires locally
unique identifiers (i.e., no closed neighborhood contains
two identical identifiers) and assumes the shared mem-
ory model of communication, where neighboring nodes
can communicate via common variables or registers. No-
tice that the shared memory models have two variants:
state reading model and link-register model; we assume
the former, in which each node can directly read the inter-
nal state of its neighbors.

The program of every node comprises a collection of
rules of the form:

(precondition) — (statement).

The precondition is a Boolean expression involving the
states of the node and its neighbors. The statement up-
dates the state of the node. The execution of a statement is
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called a move. A rule is enabled (or privileged) if its precon-
dition evaluates to be true. A node is enabled (or privileged)
if at least one of its rules is enabled. It is assumed that
rules are atomically executed, that is, the evaluation of a
precondition and the move are performed in one atomic
step. More precisely, we use composite atomicity, meaning
that a node may read all its input variables, perform a
state transition, and write all its output variables in a sin-
gle atomic step.

Various execution models have been used in self-
stabilizing algorithms and these models are encapsulated
within the notion of a daemon (or scheduler): the central
daemon, the synchronous daemon, and the distributed dae-
mon. A daemon can be fair or unfair. Refer to [6] for these
definitions. It is well-known that an unfair distributed dae-
mon is more practical for implementations than the other
types of daemons, and it is the daemon used in this paper
and [4,9].

In this paper, we consider a distributed system whose
topology is represented by an undirected, simple graph
G = (V,E), whose V represents the set of nodes and E
represents the set of edges (i.e., interconnections between
nodes). Let n = |V|. If two nodes are connected by an edge,
they are called neighbors. A subset S € V is a dominating
set of G if every node of G is either a member of S or adja-
cent to a member of S. A dominating set of G is a minimal
dominating set (MDS) of G if none of its proper subsets
is a dominating set of G. An MDS has an application of
clustering in wireless networks and is maintained for min-
imizing the number of required resource centers [7]. The
MDS problem is that of finding an MDS of a given graph
and this is the problem concerned in this paper.

We now briefly review previous results. In [8], Hedet-
niemi et al. proposed the first self-stabilizing algorithm
for the MDS problem; their algorithm assumes the cen-
tral daemon. In [11], Xu et al. presented an algorithm
under the synchronous daemon. In [9], Turau proposed
a 9n-move algorithm under an unfair distributed dae-
mon; this algorithm is the first linear-time self-stabilizing
algorithm for the MDS problem. In [4], Goddard et al.
presented a 5n-move algorithm. A good survey for self-
stabilizing algorithms for the MDS problem can be found
in [6].

The time complexity of a self-stabilizing algorithm is
estimated in terms of moves or in terms of rounds. As was
mentioned in [9], for a wireless system with bounded re-
sources, the number of moves is at least as important as
the number of rounds. The reason is that a node has to
broadcast the state to its neighbors after making a move
and therefore a reduction of the number of moves pro-
longs the lifetime of the network. The paper [11] uses the
number of rounds to estimate the time complexity; but
[4,8,9] and this paper uses the number of moves. The main
contribution of this paper is to propose a 4n-move self-
stabilizing algorithm for the MDS problem under an unfair
distributed daemon. We now summarize all the known re-
sults in Table 1.

This paper is organized as follow. In Section 2, we
present a 4n-move self-stabilizing algorithm for the MDS
problem. Concluding remarks are given in Section 3. A pre-
liminary version of this paper appeared as [1].

Table 1
Self-stabilizing algorithms for the MDS problem.

stabilization time daemon type

Hedetniemi et al. [8] (2n + 1)n moves central

Xu et al. [11] 4n rounds synchronous
Turau [9] 9n moves distributed
Goddard et al. [4] 5n moves distributed
this paper 4n moves distributed

2. Main result: a 4n-move algorithm

The purpose of this section is to present our main re-
sult: Amps, a 4n-move self-stabilizing algorithm for the
MDS problem under an unfair distributed daemon. Apps
uses four (local) states, which are defined by the four-
valued variable state. The range of values of state is: IN,
ouUT1, OUT2, and WAIT. A node with state = IN will be
referred to as an IN node. A neighbor is an IN neighbor
if it is an IN node. Let S = {v : v.state = IN}. Nodes with
state = OUT1 or OUT2 or WAIT will be referred to as OUT
nodes.

The values of state have the following meaning. The
value IN indicates that the node is in the MDS. The value
OUT1 means that the node is not in the MDS and it has
a unique IN neighbor. The value OUT2 indicates that the
node is not in the MDS and it has at least one IN neighbor.
The value WAIT means that the node is not in the MDS
and it does not have any IN neighbor. To make it precise,
in our self-stabilizing MDS algorithm, a legitimate state is:
the set of IN nodes form an MDS, every OUT node with
state = OUT1 has a unique IN neighbor, every OUT node
with state = QUT2 has at least one IN neighbor, and there
is no node with state = WAIT.

Let N(v) denote the set of neighbors of node v and v.id
denote the identifier of v. To formally define the rules of
Awmps, the following predicates defined for each node v are
needed:

e noBtNbr = Fu € N(v) : u.state =WAIT A u.id < v.id.
e n0DpNbr = Bu € N(v) : u.state = OUT1.

When two or more neighboring nodes want to enter
the MDS simultaneously, our algorithm chooses the one
with the smaller (smallest) id. According to this, if v is an
OUT node and has a neighbor u such that u.state = WAIT
and u.id < v.id, then u is called a better neighbor. The
predicate noBtNbr indicates that v has no better neigh-
bor. Also, if v is an IN node and has a neighbor u with
u.state = OUT1, then u is called a dependent neighbor since
u depends on its unique neighbor in the MDS (the neigh-
bor is v). The predicate noDpNbr indicates that v has no
dependent neighbor.

For convenience, we introduce InNbr = [{u € N(v) |
u.state = IN}|. The algorithm Apps uses the following six
rules and its state diagram is given in Fig. 1.

R1. state = WAIT A InNbr = 0 A noBtNbr — state := IN.
R2. state = IN A InNbr = 1 A noDpNbr — state := OUT1.
R3. state = IN A InNbr > 1 A noDpNbr — state := OUT2.
R4. state =WAIT A InNbr =1 — state := OUT1.
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InNbr=1 A noDpNbr

InNbr=0 A noBtNb. InNbr>1

InNbr>1 A noDpNbr

Fig. 1. The state diagram of Apps.

R5. (state = OUT1 V state = WAIT) A InNbr > 1 — state :
ouT2.

R6. (state = OUT1 V state = OUT2) A InNbr = 0 — state :
WATT.

We now prove the correctness of Apps.

Lemma 2.1. In any state in which no node is enabled the set S
is a minimal dominating set of G.

Proof. Suppose to the contrary that S is not a minimal
dominating set of G. Then either (i) S is not a dominat-
ing set or (ii) S is a dominating set but not minimal. First
consider (i). Since S is not a dominating set, there exists at
least one node u ¢ S which has no IN neighbor; let S’ be
the set of all such nodes. Since rule 6 is not enabled, every
node in S’ has state =WAIT. Let ug be the node in S’ with
minimum id. Then ug satisfies all the constraints of rule 1.
Hence, rule 1 is enabled and this contradicts to the as-
sumption that no node is enabled. Now consider (ii). Since
S is a dominating set but not minimal, there must exist at
least one node u € S such that S\{u} is also a dominat-
ing set of G. Then |[N(u) N'S| > 1 and for all u’ in N(u)\S,
we have |N(u’) N'S| > 2. Thus, every node u’ in N(u)\S
has InNbr > 1. Hence, every node u’ in N(u)\S must have
u’.state = OUT2; otherwise rule 5 is enabled on u’. Conse-
quently, node u has noDpNbr = true and either InNbr =1
(if IN(w) N'S|=1) or InNbr > 1 (if [N(u) N S| > 1). Hence,
either rule 2 or rule 3 is enabled on node u, which is a
contradiction. O

We now show that Apps converges in finite time. In
particular, we show that the number of moves of Ayps
is at most 4n — 2. Let k be a nonnegative integer and
(r1,72,...,1%) be a sequence of rules (r;’s are not necessar-
ily distinct). The sequence (rq{,12,...,r¢) is called a move
sequence if a node can execute rq, then r, ..., then ry. The
following two lemmas show that in any possible move se-
quence of a specific node, rule 1 and rule 6 will appear at
most once.

Lemma 2.2. If a node executes rule 1, then it will not execute
any other rule. Consequently, if a node enters the set S, then it
will never leave S.

Proof. Let v be a node which executes rule 1. Then v.state
is set to IN and v enters S. By the precondition of rule 1,

v has no IN neighbor and no better neighbor; therefore
no neighbor of v enters S at the same time. Thus, no node
in N(v) enters S and therefore InNbr = 0. After executing
rule 1, v.state is IN and the possible rule that v can ex-
ecute is either rule 2 or rule 3. Rule 2 is impossible since
it requires InNbr = 1; rule 3 is also impossible since it re-
quires InNbr > 1. Therefore, v will not execute any other
rule. The second statement of this lemma now follows. O

Lemma 2.3. A node can execute rule 6 at most once, or equiva-
lently, a node can set its state to WAIT at most once.

Proof. Let v be a node which executes rule 6. By the pre-
condition of rule 6, v has no IN neighbor. After executing
rule 6, v.state is set to WAIT and the possible rule that
v can execute is rule 1 or rule 4 or rule 5. If v executes
rule 1, then by Lemma 2.2, v will not execute any other
rule and we have this lemma. If v executes rule 4, then
InNbr =1 must be true before rule 4 is enabled, meaning
that v has a neighbor (say, u) which has executed rule 1;
by Lemma 2.2, u will never leave S and therefore it is im-
possible to have InNbr = 0, which means that v cannot
execute rule 6 again. Similarly, if v executes rule 5, then
InNbr > 1 must be true before rule 5 is enabled, meaning
that v has two neighbors (say, u and w) which have exe-
cuted rule 1; by Lemma 2.2, both u and w will never leave
S and therefore it is impossible to have InNbr = 0, which
means that v cannot execute rule 6 again. O

Theorem 2.4. The proposed algorithm Awps is self-stabilizing
under an unfair distributed daemon and it stabilizes after at
most 4n — 2 moves with a minimal dominating set, where n
is the number of nodes. Moreover, the bound 4n — 2 is tight.

Proof. By Lemma 2.1, Apps is correct. To prove that Apps
stabilizes after at most 4n — 2 moves, we first prove that
it stabilizes after at most 4n moves. To do this, it suffices
to show that any move sequence of a node is of length at
most 4 under an unfair distributed daemon. Let v be an
arbitrary node in G. By Lemma 2.3, v can execute rule 6
at most once. Thus, there are two cases: v never executes
rule 6 and v executes rule 6 once.

First consider the case that v never executes rule 6.
Then v.state never changes to WAIT. Thus, the move se-
quence of v is either (1) or (2,5) or (4,5). It follows that
any move sequence of v is of length at most 2.

Now consider the case that v executes rule 6 once. In
this case, regard a move sequence of v as the concate-
nation of a prefix and a suffix. By Lemma 2.2, the prefix
of any move sequence of v cannot contain 1 since if v
executes rule 1 then v will not execute any other rule,
including rule 6. Hence, the possible prefix of any move
sequence of v is either (2,6) or (3,6) or (4,6) or (5,6).
After v executes rule 6, v.state changes to WAIT. Thus, the
possible suffix of any move sequence of v is either (6, 1)
or (6,4,5) or (6,5). Concatenating the prefix and suffix,
we conclude that any move sequence of v is of length at
most 4.

From the above, Ayps stabilizes after at most 4n moves
with a minimal dominating set. We now prove that the
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bound can be strengthened to 4n — 2. The cases of n =1
and n =2 are trivial. Suppose n > 3 and one of the nodes
makes 4 moves; by the above argument, this node has two
neighbors executing rule 1. Thus, at least two nodes in
G make less than 4 moves and the upper bound can be
strengthened to 4n — 2. We now prove that this bound is
tight. Consider the complete bipartite graph K3 ,—2, where
n > 3. Let the two nodes in the partite of cardinality two
have the maximum and the minimum identifiers among
the n nodes. If initially all nodes are in state IN, then there
is a way that all the rest of the nodes executes (3,6, 4, 5)
but nodes with the maximum and minimum identifiers ex-
ecute (3,6, 1). All together 4n — 2 moves are made. 0O

Before ending this section, we would like to point out
an error in the modified MDS algorithm in [9] (denote it
as Ajps here). The author claimed (in page 93) that rule 4
can be changed by replacing the predicate inNeighbor with
inNeighborWithLowerld so that the total number of moves
can be further reduced. We now show that the author’s
claim is incorrect. Suppose the replacement is done and
the resultant rule is called rule 4. Let G be a path of three
nodes vi — v, — v3. Suppose v;.id is i and suppose the
initial states are: vi, v, are IN nodes with dependent = A
and vs3 is an OUT node with dependent = v5. Since {v1, v}
is not an MDS, algorithm A}, must make a move. It is
easy to verify that no rule can be enabled by Aj};.

3. Concluding remarks

The main result of this paper is a (4n — 2)-move self-
stabilizing algorithm for the MDS problem using an unfair
distributed daemon and the bound 4n — 2 is tight. The pre-
vious best algorithm is a 5n-move algorithm. The model
that we use is the normal model, also called the distance-1
model. Notice that in [3] and [10], the authors consid-
ered the distance-2 model, in which every node can read

the states of nodes up to distance 2; see also [5] for the
distance-k model.
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