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Abstract A perfect secret-sharing scheme is a method of distributing a secret among a
set of participants such that only qualified subsets of participants can recover the secret and
the joint shares of the participants in any unqualified subset is statistically independent of
the secret. The set of all qualified subsets is called the access structure of the scheme. In a
graph-based access structure, each vertex of a graph G represents a participant and each edge
of G represents a minimal qualified subset. The information ratio of a perfect secret-sharing
scheme is defined as the ratio between the maximum length of the share given to a participant
and the length of the secret. The average information ratio is the ratio between the average
length of the shares given to the participants and the length of the secret. The infimum of
the (average) information ratios of all possible perfect secret-sharing schemes realizing a
given access structure is called the (average) information ratio of the access structure. Very
few exact values of the (average) information ratio of infinite families of access structures
are known. Csirmaz and Tardos have found the information ratio of all trees. Based on their
method, we develop our approach to determining the exact values of the average information
ratio of access structures based on trees.
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1 Introduction

A secret-sharing scheme is a method of distributing a secret among a set of participants in
such a way that only qualified subsets of participants can recover the secret from the shares
they receive. If, in addition, the joint shares of the participants in any unqualified subset is
statistically independent of the secret, then the secret-sharing scheme is called perfect. Since
all secret-sharing schemes considered in this paper are perfect, we will simply use “secret-
sharing scheme” for “perfect secret-sharing scheme”. The access structure of a secret-sharing
scheme is the collection of all qualified subsets in this scheme. It is required to be monotone
which means any subset of participants containing a qualified subset must also be qualified.

There are two major tools for measuring the efficiency of a secret-sharing scheme, namely,
the information ratio and the average information ratio. The information ratio of a secret-
sharing scheme is the ratio between the maximum length (in bits) of the share given to a
participant and the length of the secret. The average information ratio of a secret-sharing
scheme is the ratio between the average length of the shares given to the participants and
the length of the secret. These ratios represent the maximum and average number of bits of
information the participants must remember for each bit of the secret. The lower the ratios
are, the lower storage and communication complexity the scheme has. Therefore, for a given
access structure, constructing a secret-sharing scheme with the lowest above-mentioned ratios
is one of the main goals of the research. The infimum of the (average) information ratios of
all possible secret-sharing schemes realizing a access structure is referred to as the (average)
information ratio of that access structure.

In 1979, Shamir [8] and Blakley [2] independently introduced the first kind of secret-
sharing schemes called the (t, n)-threshold schemes in which the minimal qualified subsets
are the t-subsets of the set of participants of size n. Related problems have then received
considerable attention. Secret-sharing schemes for various access structures and many mod-
ified versions of secret-sharing schemes with additional capacities were widely studied. The
reader is referred to [1,7] and their references for recent developments on secret-sharing
problems.

In the present paper, we only consider graph-based access structures. In such a structure,
each vertex of a graph G represents a participant and each edge of G represents a minimal
qualified subset. A secret-sharing scheme � for the access structure based on G is a collection
of random variables ξs and ξv for v ∈ V (G) with a joint distribution such that

(i) ξs is the secret and ξv is the share of v;
(ii) if uv ∈ E(G), then ξu and ξv together determine the value of ξs; and

(iii) if A ⊆ V (G) is an independent set, then ξs and the collection {ξv|v ∈ A} are statistically
independent.

Given a discrete random variable X with possible values {x1, x2, . . . , xn} and a probability
distribution {p(xi )}ni=1, the Shannon entropy of X is defined as

H(X) = −
n∑

i=1

p(xi ) log p(xi ),

which is a measure of the average uncertainty associated with the random variable X. It
is well known that H(X) is a good approximation to the average number of bits needed
to represent the elements in X faithfully. Using Shannon entropy, the information ratio
of the secret-sharing scheme � can be defined as R� = maxv∈V (G){H(ξv)/H(ξs)} and
the average information ratio as AR� = ∑

v∈V (G) H(ξv)/(|V (G)|H(ξs)). For conve-
nience, we use “a secret-sharing scheme on G” for “a secret-sharing scheme for the
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Average information ratio of secret-sharing schemes 39

access structure based on G”. Also, “the information ratio (resp. the average infor-
mation ratio) of the access structure based on G” is referred to as “the information
ratio (resp. the average information ratio) of G”, denoted as R(G) (resp. AR(G)). As
mentioned above, R(G) = inf{R� |� is a secret-sharing scheme on G} and AR(G) =
inf{AR� |� is a secret-sharing scheme on G}. It is well known that R(G) ≥ AR(G) ≥ 1
and that R(G) = 1 iff AR(G) = 1. A secret-sharing scheme � with R� = 1 or AR� = 1 is
then called an ideal secret-sharing scheme. An access structure is ideal if there exists an ideal
secret-sharing scheme on it. Determining the exact value of R(G) or AR(G) is extremely
challenging. It is not easy even for small graphs sometimes. Due to the difficulty, most known
results give bounds on R(G) and AR(G). Stinson [10] has shown the important bounds for
general graphs: R(G) ≤ d+1

2 where d is the maximum degree of G and AR(G) ≤ 2m+n
2n

where n = |V (G)| and m = |E(G)|. The exact values of R(G) and AR(G) are obtained
only for very few specific graphs. Most graphs of order no more than five, and the cycles and
paths have known exact values of the average information ratio [3,10]. Most graphs of order
no more than six, and the cycles, paths and trees have known exact values of the information
ratio [3,6,9–11]. The information ratio of a tree T was determined by Csirmaz and Tardos
[6] as R(T ) = 2 − 1

k where k is the maximum size of a core in T . Based on their method,
we develop our approach to the problem of determining the value of AR(T ) for any tree T .

This paper is organized as follows. In Sect. 2, some basic known results and definitions are
introduced. Our results are presented in Sects. 3, 4 and 5. We derive a lower bound on AR(T )

and introduce our approach in Sect. 3. Our main results are shown in Sect. 4. Subsequently,
in Sect. 5, two examples are given to demonstrate our systematic way of evaluating AR(T ).

A concluding remark will be given in the final section.

2 Preliminaries

We introduce some basic known results on graph-based access structures first. The ideal
graph-based access structures have been completely characterized by Brickell and Davenport.

Theorem 1 ([4]) Suppose that G is a connected graph. Then R(G) = 1 if and only if G is
a complete multipartite graph.

We introduce the methods of deriving upper bounds and lower bounds on AR(G) for a non-
ideal access structure G in what follows. By constructing a secret-sharing scheme � on graph
G, one can obtain an upper bound AR� on the average information ratio AR(G). Stinson’s
decomposition construction [10] has been a major tool to do this job. This method enables
us to build up secret-sharing schemes for graphs using complete multipartite coverings. A
complete multipartite covering of a graph G is a collection of complete multipartite subgraphs
Π = {G1, G2, . . . , Gl} of G such that each edge of G belongs to at least one subgraph in the
collection. The value

∑l
i=1 |V (Gi )| is crucial for our discussion, we call it the vertex-number

sum of Π.

Theorem 2 ([10]) Suppose that {G1, G2, . . . , Gl} is a complete multipartite covering of a
graph G with V (G) = {1, 2, . . . , n}. Let Ri = |{ j |i ∈ V (G j )}| and R = max1≤i≤n Ri .

Then there exists a secret-sharing scheme � on G with information ratio R� and average
information ratio AR� where

R� = R and AR� = 1

n

n∑

i=1

Ri = 1

n

l∑

i=1

|V (Gi )|.
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The only main tool for establishing lower bounds on AR(G) is the information theoretic
approach [5]. Let � be a secret-sharing scheme in which ξs is the random variable of the
secret and each ξv is the one of the share of v, v ∈ V (G). Define a real-valued function f
as f (A) = H({ξv : v ∈ A})/H(ξs) for each subset A ⊆ V (G), where H is the Shannon
entropy. Then, AR� = 1

n

∑
v∈V (G) f (v), where n = |V (G)|. Using properties of the entropy

function and the definition of a secret-sharing scheme, one can show that f satisfies the
following inequalities [5]:

(a) f (∅) = 0, and f (A) ≥ 0;
(b) if A ⊆ B ⊆ V (G), then f (A) ≤ f (B);
(c) f (A)+ f (B) ≥ f (A ∩ B)+ f (A ∪ B);
(d) if A ⊆ B ⊆ V (G), A is an unqualified set and B is not, then f (A)+ 1 ≤ f (B); and
(e) if neither A nor B is unqualified but A ∩ B is, then f (A) + f (B) ≥ 1 + f (A ∩ B) +

f (A ∪ B).

Csirmaz and Tardos [6] defined a core V0 of a tree T as a subset V0 of V (T ) such that
V0 induces a connected subgraph of T and each vertex in V0 has a neighbor outside it. They
also showed the following theorem.

Theorem 3 ([6]) Let V0 be a core of a tree T . If f is defined as above, then
∑

v∈V0
f (v) ≥

2|V0| − 1.

In the next section, we shall derive a lower bound on AR(T ) and rewrite Theorem 2 as
an upper bound on AR(T ) of particular form. Our approach can then be introduced.

3 Lower bound and upper bound on AR(T)

Given a tree T, we let I N (T ) and L F(T ) be the sets of all internal vertices and leaves of
T respectively. Denote |I N (T )| as in(T ) and |L F(T )| as l f (T ). In order to cope with the
average information ratio, we extend the idea of a core of T . For T 	= K1,1, we define a
core cluster of T of size k as a partition C = {V1, V2, . . . , Vk} of I N (T ) such that each
Vi , i ∈ {1, 2, . . . , k}, is a core of T . The size of a core cluster C is written as cC . We also
denote the minimum size of all core clusters of T as c∗(T ), called the core number of T .

Note that
⋃k

i=1 Vi may not be a core of T, if so, then c∗(T ) = 1 for T 	= K1,1. In addition,
we naturally define that c∗(K1,1) = 0.

The idea of a core cluster helps us establish a lower bound on AR(T ).

Theorem 4 If T 	= K1,1 is a tree of order n, then AR(T ) ≥ n+in(T )−c∗(T )
n .

Proof Suppose that � is a secret-sharing scheme on T . Then the function f defined in
Sect. 2 by the random variables from � satisfies all the properties (a) to (e) and Theorem
3. Let C = {V1, V2, . . . , Vk} be a core cluster of T . By Theorem 3 and the definition of
a core cluster,

∑
v∈I N (T ) f (v) = ∑k

i=1
∑

v∈Vi
f (v) ≥ ∑k

i=1(2|Vi | − 1) = 2in(T ) − k.

Since T is connected, f (v) ≥ 1 for all v ∈ V (T ) [5].
∑

v∈V (T ) f (v) = ∑
v∈I N (T ) f (v) +∑

v∈L F(T ) f (v) ≥ 2in(T ) − k + l f (T ) = n + in(T ) − k. Thus we have AR� ≥ 1
n (n +

in(T ) − k). Since the result holds for any secret-sharing scheme on T, we have AR(T ) ≥
1
n (n + in(T )− c∗(T )). ��

On the other hand, as suggested in Theorem 2, in order to construct a secret-sharing
scheme with lower average information ratio, we need a complete multipartite covering with
the least vertex-number sum. Since we are dealing with trees, and stars are the only complete
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multipartite trees, star coverings with the least vertex-number sum are what we are aiming
for. For a better description of our approach, given a star covering Π of T with vertex-number
sum m, we define the deduction of Π, written dΠ, as dΠ = |V (T )| + in(T ) − m. A star
covering with the largest deduction gives the least vertex-number sum. The largest value
of the deductions over all star coverings of T is called the deduction of T and is denoted
as d∗(T ). The following corollary is simply a rephrasement of Theorem 2 in terms of the
deduction of T .

Corollary 5 ([10]) Let Π be a star covering of a tree T of order n, then

AR(T ) ≤ n + in(T )− d∗(T )

n
.

Combining Theorem 4 and Corollary 5, we have the following results.

Theorem 6 For any star coveringΠ of T and any core cluster C of T, cC ≥ dΠ. In particular,
c∗(T ) ≥ d∗(T ).

Corollary 7 If there exists a star covering Π of T and a core cluster C of T such that
dΠ = cC, then d∗(T ) = dΠ = cC = c∗(T ).

As indicated in these results, c∗(T ) = d∗(T ) makes a criterion for examining whether the
upper bound and the lower bound on AR(T ) will match. In the next section, we will show
that this equality holds for all trees.

4 The main results

Blundo et al. [3] gave an algorithm for producing a star covering of a tree T . We make a
slight modification to it and restate it for completeness. Let NT (v) be the set of all neighbors
of v in T and Sv be the star centered at v with NT (v) as its leaf set.

Algorithm;
Covering(T) Cover(v)

Let v ∈ I N (T ) A(v)← NT (v) ∩ I N (T )

Π ← φ Π ← Π ∪ {Sv}
Cover(v) E(T )← E(T )\E(Sv)

Output the star coveringΠ V (T )← V (T )\((NT (v) ∩ L F(T )) ∪ {v})
for all v′ ∈ A(v) do Cover(v′)

Lemma 8 Let T be a tree. The star covering Π of T produced by Covering(T ) has deduction
dΠ = 1 if T 	= K1,1 and dΠ = 0 if T = K1,1.

Proof For T 	= K1,1, the initial vertex v and all leaves of T appear in exactly one star in Π.

All internal vertices but the initial one appear twice in the covering. So the vertex-number
sum m = l f (T )+ 1+ 2(in(T )− 1) = |V (T )| + in(T )− 1, and we have dΠ = 1. ��

We shall refine this process and obtain star coverings with higher deductions next.
A vertex v ∈ I N (T ) is called a critical vertex of T if NT (v)∩L F(T ) = ∅. In the structure

of a tree T, critical vertices play an important role in our discussion. We use XT to denote
the set of all critical vertices of T . Let KT be the subgraph induced by XT and �T (resp. YT )
be the set of all nontrivial (resp. trivial) components in KT . The set YT is in fact the set of all
isolated vertices in KT . Therefore, YT can been seen as a subset of XT . For any V ′ ⊆ V (T )
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and E ′ ⊆ E(T ), the graph T \V ′ is obtained by removing from T all vertices in V ′ as well
as all edges incident to them. T \E ′ is resulted from removing all edges in E ′ from T . Both
T \V ′ and T \E ′ may contain isolated vertices.

Proposition 9 Let T 	= K1,1 be a tree. If �T = ∅ and |YT | = y ≥ 0, then there exists a
star covering Π of T with deduction dΠ = y + 1.

Proof Let G be an arbitrary component in T \YT . If w1, . . . , wl are all of the vertices in YT

that are adjacent to some vertices in G, then we define G̃ as the subgraph of T induced by
V (G)∪{w1, . . . , wl}. Let H = {G̃|G is a component in T \YT } and ΠG̃ be the star covering
produced by algorithm Covering(G̃). By the definition of YT , no G̃ is isomorphic to K1,1,

so dΠG̃
= 1 by Lemma 8. Since

⋃
G̃∈H E(G̃) = E(T ), the covering Π = ⋃

G̃∈H ΠG̃ is a
star covering of T with vertex-number sum

m =
∑

G̃∈H
(|V (G̃)| + in(G̃)− 1)

=
⎛

⎝V (T )+
∑

v∈YT

(degT (v)− 1)

⎞

⎠+ (in(T )− y)

−
⎛

⎝
∑

v∈YT

degT (v)− (y − 1)

⎞

⎠

= V (T )+ in(T )− (y + 1).

��
Next, we consider the core number of T . For a tree T with XT = ∅, {I N (T )} is obviously

a core cluster of minimum size. The following lemma is straight forward.

Lemma 10 Let T 	= K1,1 be a tree. If XT = ∅, then c∗(T ) = 1.

Now, we introduce the way we decompose a tree in order to define a core cluster we
need. Let V ′ ⊆ V (T ). Given a vertex v̄ ∈ NT (v) ∩ I N (T ) for each v ∈ V ′, we set
E ′ = {vv̄|v ∈ V ′}. For each component G in T \E ′, let G+ be the subtree of T obtained
by attaching to G all edges of the form vv̄ if v̄ ∈ V (G), then G+ = G if G does not
contain any v̄. We also denote the collection of all G+’s, where G is a component in T \E ′,
as H+(T, V ′, E ′). Observe that, if degT (v) = 2, then v ∈ L F(G+) for exactly two G+’s in
the collection H+(T, V ′, E ′).

Proposition 11 Let T 	= K1,1 be a tree. If �T = ∅ and |YT | = y ≥ 0, then c∗(T ) =
d∗(T ) = y + 1.

Proof It suffices to show that there is a core cluster of T of size y + 1. For each v ∈ YT ,

choose an arbitrary neighbor of v as v̄, then v̄ ∈ I N (T ). Let E ′ = {vv̄|v ∈ YT }. There are
y + 1 subgraphs in H+(T, YT , E ′). Let H+(T, YT , E ′) = {G+0 , G+1 , . . . , G+y } where Gi ’s,
i = 0, 1, . . . , y are the components in T \E ′. Note that any two vertices in YT have distance
at least two, so I N (G+i ) 	= ∅. Let Vi = I N (G+i ) ∪ {v|v ∈ V (Gi ) ∩ YT and degT (v) = 2}.
We claim that {V0, V1, . . . , Vy} is a core cluster of T . First, each vertex u ∈ I N (T )\YT

belongs to exactly one I N (G+i ) and also exactly one Vi . Each v ∈ YT belongs to exactly
two G+i ’s. If degT (v) ≥ 3, then v is an internal vertex of one G+i and a leaf of the other.
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It belongs to exactly one I N (G+i ) and hence exactly one Vi . If degT (v) = 2, then v is a
leaf of exactly one component Gi in T \E ′ and is a leaf of two subgraphs in H+(T, YT , E ′).
Hence it belongs to exactly one Vi and none of I N (G+j )’s, j = 0, 1, . . . , y. This shows
that {V0, V1, . . . , Vy} is a partition of I N (T ). Next, each Vi certainly induces a connected
subgraph of T . In addition, each v ∈ Vi ∩ YT has a neighbor v̄ not in Vi . Each u ∈ Vi\YT

has a leaf neighbor in T which does not belongs to Vi . Hence, Vi is a core of T . Since we
have a core cluster of size y + 1, the result then follows immediately by Proposition 9 and
Corollary 7. ��

Before literally proving our main theorem, we examine the relation between the deductions
of star coverings of subtrees in H+(T, V ′, E ′) and the deduction of a star covering of T more
closely.

Lemma 12 Let V ′ be an independent subset of I N (T ) and z = |{v ∈ V ′|
degT (v) ≥ 3}|. For each v ∈ V ′, let v̄ be a nonleaf neighbor of v in T and E ′ = {vv̄|v ∈ V ′}.
If there is a star covering ΠT ′ of each T ′ ∈ H+(T, V ′, E ′) with deduction dΠT ′ , then Π =⋃

T ′∈H+(T,V ′,E ′) ΠT ′ is a star covering of T with deduction dΠ =∑
T ′∈H+(T,V ′,E ′) dΠT ′ −z.

Proof Denote H+(T, V ′, E ′) by H+ for now. Since
⋃

T ′∈H+ E(T ′) = E(T ), Π is a star
covering of T . The vertex-number sum m of Π is

m =
∑

T ′∈H+
(|V (T ′)| + in(T ′)− dΠT ′ )

= |V (T )| + |V ′| + in(T )− (|V ′| − z)−
∑

T ′∈H+
dΠT ′

= |V (T )| + in(T )−
⎛

⎝
∑

T ′∈H+
dΠT ′ − z

⎞

⎠ .

��
Now, we are in a position to present our main theorem.

Theorem 13 Let T be a tree of order n, then c∗(T ) = d∗(T ) and

AR(T ) = n + in(T )− c∗(T )

n
.

Proof We prove this result by induction on |XT |.
(1) If |XT | = 0 or 1, then �T = ∅. The result holds by Proposition 11.
(2) Suppose that |XT | ≥ 2. By Proposition 11, we may assume that �T 	= ∅.
Choose a vertex v ∈ L F(T ′) for some T ′ ∈ �T and let v̄ be the neighbor of v in T ′. There
are two subtrees G+0 and G+1 in H+(T, {v}, {vv̄}), each of which is not a K1,1. Let G+0 be
the one not containing v̄, then |XG+0

| < |XT | is obviously true. Since v ∈ L F(G+1 ), it is

no longer a critical vertex of G+1 , we also have |XG+1
| < |XT |. By induction hypothesis,

there exist a star covering Πi of G+i and a core cluster Ci = {Vi1, Vi2, . . . , Viki } with
dΠi = cCi = ki > 0, i = 0, 1. Then Π = Π0 ∪Π1 is a star covering of T . We construct a
core cluster of size dΠ next.

(i) If degT (v) ≥ 3, then dΠ = k0 + k1 − 1 by Lemma 12. Suppose that v ∈ V01. Since V01

is a core of G+0 , there is a neighbor v′ of v in G+0 and v′ /∈ V01. v′ is an internal vertex
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of G+0 because v is critical both in T and in G+0 . We may assume that v′ ∈ V02. Now, let
C = {V01 ∪ V02, V03, . . . , V0k0 , V11, . . . , V1k1}, then |C| = k0 + k1 − 1. We claim that C
is a core cluster of T . First note that I N (G+0 ) ∪ I N (G+1 ) = I N (T ) and any two sets in
C are disjoint. Each set in C\{V01 ∪ V02} is a core of G+0 or G+1 , hence a core of T . For
V01∪V02, v̄ is a neighbor of v in T not in V01∪V02. Since v ∈ L F(T ′), v′ is not critical
and then has a leaf neighbor v′′ 	= v in G+0 (and in T ) not in V02, so v′′ /∈ V01 ∪ V02 and
V01 ∪ V02 is qualified as a core of T . Therefore, C is a core cluster of T of size dΠ.

(ii) If degT (v) = 2, then dΠ = k0 + k1 by Lemma 12. Since v is a critical vertex of T, the
neighbor v′ 	= v̄ in T is an internal vertex of G+0 . We may assume that v′ ∈ V01. Let
C = {V01 ∪ {v}, V02, . . . , V0k0 , V11, . . . , V1k1}, then |C| = k0 + k1. To show that C is
a core cluster of T, it suffices to show that V01 ∪ {v} is a core of T . Note that v′ is not
critical in both G+0 and T . It has a leaf neighbor v′′ 	= v not in V01 ∪ {v}. Besides, v̄ is a
neighbor of v in T not in V01 ∪ {v}. V01 ∪ {v} is then a core of T . Therefore, T also has
a core cluster of size dΠ in this case.

In both cases, we have c∗(T ) = d∗(T ), which implies that the lower bound and the upper
bound of AR(T ) coincide. Hence, AR(T ) = n+in(T )−c∗(T )

n . ��

5 Some examples

In this section, we evaluate the average information ratio systematically for two infinite
classes of trees using our approach.

The only infinite class of trees which has known average information ratio is the paths.
By evaluating the core number, we can easily obtain the known result.

Proposition 14 ([10]) Let Pn be a path of length n. Then

AR(Pn) =
{

3n
2(n+1)

, i f n is even; and
3n+1

2(n+1)
, i f n is odd.

Proof By Proposition 11, we have c∗(P1) = 0, c∗(P2) = c∗(P3) = 1 and c∗(P4) = 2.

Observe that �Pn = {Pn−4} for all n ≥ 5. Since any leaf of the Pn−4 in �Pn has degree two
in Pn, from the proof of Theorem 13, we have c∗(Pn) = c∗(Pn−4)+2. Recursively, we have

c∗(Pn) =
{

c∗(Pi )+ 2k, if n = 4k + i, i = 1, 2, 3; and

c∗(P4)+ 2(k − 1), if n = 4k.

=
{

n
2 , if n is even; and
n−1

2 , if n is odd.

Hence,

AR(Pn) = (n + 1)+ (n − 1)− c∗(Pn)

n + 1
=

{
3n

2(n+1)
, if n is even; and

3n+1
2(n+1)

, if n is odd.

��
Next, we evaluate the average information ratio of complete q-ary trees. A complete q-ary

tree with k levels is a rooted tree such that each nonleaf vertex has q children and the distance
from the root to each leaf is k.
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Proposition 15 Let Tk be a complete q-ary tree with k levels, q ≥ 2. Then

AR(Tk) =
⎧
⎨

⎩

qk+2+2qk+1−q2−2q
(q+1)(qk+1−1)

, i f k is even; and
qk+2+2qk+1−q2−q−1

(q+1)(qk+1−1)
, i f k is odd.

Proof By Proposition 11, c∗(T1) = 1 and c∗(T2) = 2. Observe that �Tk = {Tk−2} and
the Tk−2 has qk−2 leaves, each of which has degree q + 1 ≥ 3 in Tk . Since each leaf of
the Tk−2 and its descendants in Tk compose a T2, from the proof of Theorem 13, we get
c∗(Tk) = c∗(Tk−2) + qk−2(c∗(T2) − 1) = c∗(Tk−2) + qk−2. Recursively, the core number
of Tk can be evaluated as follows.

c∗(Tk) =
{

qk−2 + qk−4 + · · · + q2 + c∗(T2), if k is even; and

qk−2 + qk−4 + · · · + q + c∗(T1), if k is odd.

=
⎧
⎨

⎩

qk+q2−2
q2−1

, if k is even; and
qk+q2−q−1

q2−1
, if k is odd.

Therefore,

AR(Tk) =
qk+1−1

q−1 + qk−1
q−1 − c∗(Tk)

qk+1−1
q−1

=
⎧
⎨

⎩

qk+2+2qk+1−q2−2q
(q+1)(qk+1−1)

, if k is even; and
qk+2+2qk+1−q2−q−1

(q+1)(qk+1−1)
, if k is odd.

��

6 Conclusion

We have proposed the idea of the deduction d∗(T ) and the core number c∗(T ) of a tree and
showed that these values are the same, thereby proving the upper bound and the lower bound
of the average information ratio of a tree coincide. By doing so, we also present a systematic
way of evaluating the core number of a tree. Together with the result by Csirmaz and Tardos
[6], we complete the work of evaluating the information ratio and the average information
ratio of all trees.

In fact, the notions of the deduction and the core number can be extended to general graphs.
The condition d∗(G) = c∗(G) makes a criterion for examining whether the upper bound
and the lower bound on AR(G), for any G, will match. The idea formulates a complicated
problem of secret-sharing schemes into a problem in graph theory with easy description.
“For what kind of graphs will the identity be true?” is indeed an interesting question to
investigate. One obvious restriction to set on G is that G must be of larger girth. A star
covering generally does not serve as a complete multipartite covering with the least vertex-
number sum for a graph of small girth. We have made some progress in the study of bipartite
graphs of large girth. Finding a star covering whose deduction matches the size of a core
cluster is in general very difficult. However, there have not been any bounds or asymptotic
results on the complexity of the problem yet.
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