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One of the major issues for Markowitz mean–variance model is the errors in estimations
cause ‘‘corner solutions’’ and low diversity in the portfolio. In this paper, we compare
the mean–variance efficiency, realized portfolio values, and diversity of the models incor-
porating different entropy measures by applying multiple criteria method. Differing from
previous studies, we evaluate twenty-three portfolio over-time rebalancing strategies with
considering short-sales and various transaction costs in asset diversification. Using the data
of the most liquid stocks in Taiwan’s market, our finding shows that the models with
Yager’s entropy yield higher performance because they respond to the change in market
by reallocating assets more effectively than those with Shannon’s entropy and with the
minimax disparity model. Furthermore, including entropy in models enhances diversity
of the portfolios and makes asset allocation more feasible than the models without incor-
porating entropy.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

The Markowitz [1] mean–variance (MV) model has been widely applied both in academia and in the real-world for
portfolio selection. Numerous studies have analyzed the effectiveness of diversification in investment strategies based on
its risk-return trade-off relation [2]. However, such optimal portfolios are found problematic to be exercised in practice
due to the error in estimation of the moments of asset returns. The major issues for asset management are (1) the MV port-
folios are often extremely concentrated in a limited number of assets, and (2) the out-of-sample performances generated are
poor. The estimation errors may bias the optimal portfolio weights and may cause those portfolios to generate ‘‘corner solu-
tions’’ that involve infeasible asset allocations [3]. There has been extensive research on reducing statistical errors in the
mean and variance–covariance matrixes due to the bias caused by the use of unpredicted information [4,5]. Therefore the
statistics generated by the entropies provide additional information in forming optimal portfolios, particularly to increase
asset diversification by reducing errors in estimating associated parameters. The low diversity of the MV portfolio may result
in loss while some of the invested assets experience unexpected gains [4,6–8]. In this paper, we evaluate the performance of
the portfolio selections incorporating different entropy measures by applying multiple criteria method. To improve the
feasibility of models, we consider the impact of short-sale constraints and transaction costs on portfolios.

Portfolio diversification implies that the idiosyncratic risk can be decreased to zero as the assets included in the invest-
ment increase [9]. Therefore, the purpose of a diversified portfolio is to invest in as many mean–variance efficient assets as
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possible. One of the major issues of realization of a conventional portfolio selection model is low diversity or the corner solu-
tions. Chiou et al. [10] suggest that setting the upper bound of weight reduces the uncertainty but sacrifice the performance
of diversified portfolio. DeMiguel et al. [8] show that a naïve equally-weighted portfolio demonstrates higher out-of-sample
diversification performance than the optimal MV model. In our study, we apply various entropy measures, including Shan-
non’s, Yager’s entropy, minimax disparity model, as theoretical foundation to model portfolio rebalancing and further to
compare the naïve portfolio suggested by DeMiguel et al. [8].

Trading costs play a crucial role in constructing realistic strategies that can be applied in the financial industry [6,11–15].
In our study, we incorporate real brokerage fee and taxes and apply multiple criteria decision making (MCDM) to maximize
the portfolio realized return. The technical difficulty for computing realization portfolio values with considering trading costs
in this study is higher than previous literature using return and mean–variance efficiency. This paper contributes to litera-
ture by applying advanced methodology to evaluate effectiveness of various optimal portfolios in the real world.

The entropy serves an alternative measure of uncertainty in information theory, econometrics, and finance [16]. Among
the measures, the Jaynes [17] selection criterion is referred as the maximum entropy criterion [18], which is a rule to assign
numerical values to probability in circumstances that certain partial information is available [19]. Assuming the given
moments represent known information, the maximum entropy (ME) principle chooses the one having maximum entropy
or equivalently the most uncertain distribution [20].

Entropy is useful to model a least biased distribution from the partial information represented by certain moment restric-
tions [21]. Shannon [16] proposes a non-linear model to estimate entropy. Yager [22] later applies the maximum entropy
principle. Wang and Parkan [23] proposed a linear entropy model, the minimax disparity model, which minimizes the max-
imum difference between each pair of weights. Lutgens and Schotman [24] use a mini-max portfolio strategy to analyze the
decisions and performance of a robust decision maker. Philippatos and Wilson [25] first apply entropy as a measurement of
the uncertainty in portfolio selection. They suggest that entropy is more general than variance as a measure of risk, because it
is free from reliance on the assumption of symmetric probability distributions and can be computed from non-metric data
[26]. Jiang et al. [18] present a maximum entropy portfolio model for large scale portfolio problems. Though the above
models are free of any assumption regarding the distribution, they are static and fail to include rebalancing process.

The weights of portfolio obtained through the maximum entropy (ME) approach are in the form of ‘‘probabilities,’’ there-
fore the weights are non-negative. However, allowing short-sale gives investors flexibility in managing their portfolios, par-
ticularly during the bearish market or for managing hedge funds [4]. To our best knowledge, previous studies related to
entropy do not consider portfolio short-sale in models. White [27] points out that short-sale can be used to lower investment
risks and to improve a portfolio’s risk-return trade-off [28]. Investors also can use short-sale to engage portfolio arbitrage
[29]. In our study, we compare the realized portfolio values of twenty-three models and their change in portfolio weights
[30].

To generate realistic results, we rebalance the optimal portfolios that (1) allow short selling assets, (2) apply various
entropy measures, and (3) consider various transaction costs. Our finding shows that the models with Yager’s entropy yield
higher portfolio value than those with Shannon’s entropy and those with the minimax disparity model. This is because the
models of Yager’s entropy respond the change in market by reallocating assets in the portfolio more effectively. In addition,
including entropy in models enhance diversity of the portfolios. Given the fact that our portfolios with entropy measures are
less subject to the variation in sample, these portfolios are robust [24].

The remainder of this paper is organized as follows. Section 2 introduces the entropy models and portfolio selection
models. In Section 3, we present portfolio rebalancing method. Section 4 reports the numerical results. The conclusions
are presented in Section 5.

2. Entropy models and portfolio selection models

We first introduce Shannon’s entropy, Yager’s entropy and the mini-max disparity model in this section. We then present
portfolio selection models.

2.1. Shannon’s entropy

Shannon’s entropy [16] is first developed to solve communication problems and later is applied in finance to measure the
amount of information given by observing the market. Simonelli [31] points out that Shannon’s entropy is more useful in
constructing a portfolio than using variance or other deviation measures. Using Shannon’s entropy in portfolio selection
can diversify the allocation on various assets, while meeting the requirement of investors.

The following is Shannon’s entropy:
H ¼ �
Xn

i¼1

wi ln wi;
Xn

i¼1

wi ¼ 1; i ¼ 1;2; . . . ; n; ð1Þ
wi the weight of security i (the probability of outcome i); n the number of invested securities (the number of states).
H has the maximum value, while wi ¼ 1

n; the larger the H, the more information is gained by the observations. The other
extreme case occurs when wi ¼ 1 for one i, and =0 for the rest, then H = 0. Therefore, Shannon’s entropy provides a measure
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of disorder in a system or expected information in a probability distribution. In addition, Shannon’s entropy measure can be
used to evaluate the degree of diversification of portfolios.

Ke and Zhang [7] used Shannon’s entropy to modify the mean–variance model and construct a diversified model as
follows:
Min wTXwþ
Xn

i¼1

wi ln wi; ð2Þ

s:t:
Xn

i¼1

riwi ¼ E i ¼ 1;2; . . . ; n; ð3Þ

Xn

i¼1

wi ¼ 1; ð4Þ

w : ðw1;w2; . . . ;wnÞT ;
ri the average return of asset i; X the covariance matrix; and E the default expected return of the portfolio.
By considering entropy and minimizing the objective, the model prevents the portfolio concentrate on a limited amount

of assets. Jiang et al. [18] combine Shannon’s entropy and the mean–variance model to contribute to the portfolio choice of
investors. Zheng et al. [32] use Shannon’s entropy to replace the variance in the portfolio selection problem:
Max �
Xn

i¼1

wi ln wi; ð5Þ

s:t:
Xn

i¼1

riwi ¼ E; ð6Þ

Xn

i¼1

Xm

t¼1

wi rit � �rið Þ2 6 Var; ð7Þ

Xn

i¼1

wi ¼ 1; ð8Þ
rit the return of asset i at time t; and Var variance assigned by investors.
Using the Lagrangian function /, where k; c1 and c2 are constants; wi can be obtained by the method proposed by Jiang

et al. [18]:
/ ¼ �
Xn

i¼1

wi ln wi þ c1

Xn

i¼1

riwi � E

 !
þ c2

Xn

i¼1

Xm

t¼1

wiðrit � �riÞ2 � Var

 !
þ k

Xn

i¼1

wi � 1

 !
; ð9Þ

wi ¼
e½c1�riþc2

Pm

t¼1
ðrit��riÞ2 �Pn

i¼1e½c1�riþc2

Pm

t¼1
ðrit��riÞ2 �

; i ¼ 1;2; . . . ;n: ð10Þ
2.2. Yager’s entropy

Yager’s entropy [22] aims to minimize the distance between the weight of the invested asset and 1/n in terms of the port-
folio selection. The budget allocates on securities more equally while Yager’s entropy is larger. Therefore, Yager’s entropy has
the minimum value if wi�1/n. The following is the definition of Yager’s entropy:
QðwÞ ¼ �
Xn

i¼1

wi �
1
n

����
����

z
 !1=z

; ð11Þ
where z is a constant and z P 1. While z = 1, Yager’s entropy can be transferred into a linear type [33]. The following is
Yager’s entropy as z = 1:
QðwÞ ¼ �
Xn

i¼1

wi �
1
n

����
����; ð12Þ
Yager’s entropy can be reformulated as the following optimization problem:
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Min
Xn

i¼1

ðeþi þ e�i Þ; ð13Þ

s:t: wi �
1
n
� eþi þ e�i ¼ 0; eþi P 0; e�i P 0; ð14Þ

Xn

i¼1

wi ¼ 1 i ¼ 1;2; . . . ;n; ð15Þ

wi 2 ½0;1�;
where eþi and e�i are the upside deviation and downside deviation between wi and 1/n respectively. When z!1 then
QðwÞ ¼ Max i½wi� �
1
n
: ð16Þ
Yager’s entropy allocates the budget onto assets equally by applying the maximum entropy principle.

2.3. Minimax disparity model

The minimax disparity model [23] is to minimize the maximum distance between weights. The following is the minimax
disparity model:
Min Max i2f1;...;n�1gjwi �wiþ1j
� �

ð17Þ

s:t: ornessðwÞ ¼ a ¼ 1
n� 1

Xn

i¼1

ðn� iÞwi; 0 6 a 6 1; ð18Þ

Xn

i¼1

wi ¼ 1; ð19Þ

0 6 wi 6 1; i ¼ 1; . . . ; n;
where a is a given value from the decision maker, and orness is a component with a value between [0,1]. Orness is used to
explain the aggregation between weights [34,35]. For this study, we do not consider the aggregation between each weight.
Specifically:
Min Max i2 1;...;n�1f gjwi �wiþ1j
� �

; ð20Þ

s:t:
Xn

i¼1

wi ¼ 1; ð21Þ

0 6 wi 6 1; i ¼ 1; . . . ; n:
The model can be transformed as a linear model:
Min d; ð22Þ

s:t:
Xn

i¼1

wi ¼ 1; ð23Þ

wi �wiþ1 � d 6 0; i ¼ 1; . . . ;n� 1; ð24Þ

wi �wiþ1 þ d P 0; i ¼ 1; . . . ;n� 1; ð25Þ

wi P 0; i ¼ 1; . . . ;n;
where d is the maximum distance between any two weights. Because the above is linearized, it can be solved directly by
linear programming. Given wi P 0 for any asset i in the above three entropy measures, these models cannot be applied
directly to the scenarios when short selling is allowed.
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2.4. Mean–variance model

The mean–variance model [1] aims to determine the composition for a portfolio of n securities, which minimizes risks,
while achieving a given level of expected returns, as follows:
Min rp ¼
Xn

i¼1

Xn

j¼1

rijwiwj; ð26Þ

s:t:
Xn

i¼1

riwi P l; ð27Þ

Xn

i¼1

wi ¼ 1; ð28Þ
n the number of available securities; wi the investment portion in security i, for i = 1, . . .,n; ri the return on security i; l the
portfolio expected return; r2

i the variance of the return of security i; and rij the covariance between the returns of securities i
and j.

The first constraint expresses the requirements of a portfolio return, while the second is the budget constraint. If wi P 0;
for i ¼ 1,2, . . .,n, short selling is prohibited. In our study, short selling is allowed. Therefore, in the proposed models, wi has an
unrestricted sign.

According to Yu and Lee [36], the mean–variance model can be regarded as a multiple objective problem. To enhance the
feasibility in portfolio selection, they consider transaction costs, short selling, skewness and kurtosis as criteria in determin-
ing portfolio rebalancing. Their results show that skewness and short selling are important criteria and the models with
higher moments or those that adopt short selling strategies perform better. We apply their mean, variance, transaction cost
and short selling (MVTS) model to rebalance portfolio as a foundation for our work on entropy.

2.5. The Mean–Variance-Short Selling-Transaction Cost (MVST) model [36]

There are four objectives in this model: maximization of the portfolio expected return, minimization of the portfolio var-
iance, minimization of the short selling proportion of the portfolio, and minimization of the transaction costs in the MVST
model. To incorporate short selling, wi is an unrestricted sign, which is decomposed into wþi �w�i as follows:
Max
Xn

i¼1

riðwþi �w�i Þ; ð29Þ

Min
Xn

i¼1

Xn

j¼1

rijðwþi �w�i Þðwþj �w�j Þ; ð30Þ

Min
Xn

i¼1

w�i ; ð31Þ

Min
Xn

i¼1

ðp1lþi þ p2l�i þ p3sþi þ p4s�i Þ; ð32Þ

s:t:
Xn

i¼1

ðwþi þ kw�i þ p1lþi þ p2l�i þ p3sþi þ p4s�i Þ ¼ 1; ð33Þ

wþi ¼ wþi;0 þ lþi � l�i ; ð34Þ

w�i ¼ w�i;0 þ sþi � s�i ; ð35Þ

0:05ui 6 wþi 6 0:2ui; ð36Þ

0:05v i 6 w�i 6 0:2v i; ð37Þ

ui þ v i ¼ yi; ð38Þ

for i ¼ 1;2; . . . ;n;
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wþi;0 the proportion of security i bought by investors prior to portfolio rebalancing; w�i;0 the proportion of security i sold short
by investors prior to portfolio rebalancing; wþi the total proportion of security i desired by the investors upon portfolio rebal-
ancing; and w�i the total proportion of security i sold short by investors upon portfolio rebalancing. For each rebalancing, lþi
the proportion of security i bought by investors; l�i the proportion of security i sold by investors; sþi the proportion of security
i sold short by investors; s�i the proportion of security i repurchased by investors; ui the binary variable that indicates
whether security i is selected for long; v i the binary variable that indicates whether security i is selected for short selling;
k the initial margin requirement for short selling; and pj for j = 1, 2, 3, and 4: the transaction costs of buying, selling, selling
short, and repurchasing, respectively.

k and pj are given constants. Eq. (33) defines the budget allocated to buying, short selling, and transaction costs. Eq. (34)
shows the current long position after rebalancing. Eq. (35) represents the current short selling position after rebalancing,
while Eqs. (36), (37) state the upper and lower bounds of the total positions of each security in buying and short selling,
respectively. The conventional portfolio model needs to set the upper bound of each weight, for example, such as Eq. (36)
and (37), to avoid the corner solutions, i.e., allocating portfolio in a limited number of assets. Chiou et al. [10] found that
setting weight upper bound would reduce the performance of the portfolio. However, the concept of entropy is employed
to achieve a diversified portfolio instead of setting the upper bound of the corresponding weight. Therefore, both constraints
can be eliminated since the entropy measure is taken into consideration. Eq. (38) shows the number of invested securities for
both buying and short selling.

MVST model is introduced to construct the diversified portfolio in the study. To see the impact of the entropy measure,
the transaction cost is incorporated into the portfolio return to become a single objective instead of two individual objec-
tives. To our best knowledge, most entropy measures cannot be applied to portfolio rebalancing when short selling is
allowed. The contribution of this paper is to introduce the portfolio rebalancing models with various entropy measures
allowing short selling.

3. Portfolio rebalancing method

In this study, we classify the models as various groups according to two conditions. Table 1 shows that the first criterion is
whether short selling is allowed and the second is what objectives are considered in model. We compare the portfolio per-
formance of twenty-three portfolio models that incorporate different entropy under various conditions. Among them, Model
V is the conventional mean–variance model which minimizes portfolio variance and serves as the benchmark in the short-
selling prohibited single-objective models. Model V_S is the benchmark in the short selling-allowed single-objective models.
For the two and three-objective models, we use Model MV and MV_S as benchmarks to evaluate the portfolio performance
after incorporate different entropy under different conditions.

For the group of short-selling allowed models, MV_S is the modified conventional mean–variance model with two objec-
tives. We further consider the other models with short-selling, such as portfolio return considering transaction cost and
Shannon’s entropy (MS_S), portfolio return considering transaction cost and Yager’s entropy (MY_S), and portfolio return
considering transaction cost and minimax disparity (MD_S). Short-selling is not set as an objective in these models.

3.1. Model MS_S

We exemplify Model MS_S to give readers an idea about the structure of our analyses. Model MS_S consists of two objec-
tives, as shown in Eqs. (39) and (40), namely, the maximization of Shannon’s entropy and the maximization of portfolio
Table 1
The criteria of each model.

Short selling prohibited Short selling allowed

Model Criteria of objective(s) Model Criteria of objective(s)

Single objective V Portfolio variance V_S Portfolio variance
S Shannon’s entropy S_S Shannon’s entropy
Y Yager’s entropy Y_S Yager’s entropy
D Minimax disparity D_S Minimax disparity

Two objectives MV Portfolio return-transaction cost
Portfolio variance

MV_S Portfolio return-transaction cost
Portfolio variance

MS Portfolio return-transaction cost Shannon’s entropy MS_S Portfolio return-transaction cost Shannon’s entropy
MY Portfolio return-transaction cost

Yager’s entropy
MY_S Portfolio return-transaction cost

Yager’s entropy
MD Portfolio return-transaction cost

Minimax disparity model
MD_S Portfolio return-transaction cost

Minimax disparity model
Three objectives MVS Portfolio return-transaction cost Portfolio variance

Shannon’s entropy
MVS_S Portfolio return-transaction cost Portfolio variance

Shannon’s entropy
MVY Portfolio return-transaction cost Portfolio variance

Yager’s entropy
MVY_S Portfolio return-transaction cost Portfolio variance

Yager’s entropy
MVD Portfolio return-transaction cost Portfolio variance

Minimax disparity model
MVD_S Portfolio return-transaction cost Portfolio variance

Minimax disparity model
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return considering transaction costs. In order to consider short selling, wi is set unrestricted sign, which is decomposed into
wþi �w�i : The details of Model MS_S are as follows:
Max
Xn

i¼1

riðwþi �w�i Þ �
Xn

i¼1

ðp1lþi þ p2l�i þ p3sþi þ p4s�i Þ; ð39Þ

Max
Xn

i¼1

wþi ln wþi þ
Xn

i¼1

w�i ln w�i ; ð40Þ

s:t:
Xn

i¼1

ðwþi þ kw�i þ p1lþi þ p2l�i þ p3sþi þ p4s�i Þ ¼ 1; ð41Þ

wþi ¼ wþi;0 þ lþi � l�i ; ð42Þ

w�i ¼ w�i;0 þ sþi � s�i ; ð43Þ

0 6 wþi 6 1v i; ð44Þ

0 6 w�i 6 1ui; ð45Þ

v i þ ui 6 1; ð46Þ

wþi P 10�9; ð47Þ

w�i P 10�9; ð48Þ

v i;ui 2 ð0;1Þ; ð49Þ

wþi ;w
�
i ;w

þ
i;0;w

�
i;0; l

þ
i ; l
�
i ; s

þ
i ; s

�
i P 0; for i ¼ 1;2; . . . ; n: ð50Þ
The objective function Max
Pn

i¼1wþi ln wþi þ
Pn

i¼1w�i ln w�i of entropy decomposes investing into buying and short selling;
therefore the entropy is calculated separately. Eqs. (47) and (48) define that all weights should be positive by taking natural
logarithm. No upper bounds are needed in this model since the principle of entropy has been already taken into consider-
ation in this model.

The above multiple criteria model can be solved by fuzzy multiple objective programming [37,38] and can be transformed
from multiple objectives to a single objective model. Fuzzy multiple objective programming is based on the concept of the
fuzzy set, which uses a minimization operator to calculate the membership function value of the aspiration level, k. The pro-
gram forces each goal to achieve its aspiration level and then provides a trade-off among the conflicting objectives or criteria.
The ideal and anti-ideal solutions must be obtained in advance. By employing fuzzy multiple objective programming, Model
MS_S can be reformulated as a single objective model, which allows the solution to be generated easily, as follows:
Max k; ð51Þ

s:t: k 6
ðr� � rlÞ
ðrg � rlÞ

; ð52Þ

k 6
ðx� �xlÞ
ðxg �xlÞ

; ð53Þ

r� ¼
Xn

i¼1

riðwþi �w�i Þ �
Xn

i¼1

ðp1lþi þ p2l�i þ p3sþi þ p4s�i Þ; ð54Þ

x� ¼
Xn

i¼1

wþi ln wþi þ
Xn

i¼1

w�i ln w�i ; ð55Þ
Eqs. (41)–(50),
r� the return of the portfolio minus transaction cost; rl the anti-ideal return of the portfolio minus transaction cost; rg the

ideal return of the portfolio minus transaction cost; x� Shannon’s entropy; xl the anti-ideal of Shannon’s entropy; xg the
ideal of Shannon’s entropy.

Eqs. (52)–(55) altogether achieve the goals of maximizing Shannon’s entropy and maximizing of portfolio returns. Both
ideal and anti-ideal values of the criteria are required from investors or from historical data. In our case, the ideal and
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anti-ideal solutions for portfolio returns are pre-specified by the best and the worst values in history, taken from the n secu-
rities at each rebalancing. The ideal solution for the variance of a portfolio is 0, and the anti-ideal default value is the variance
with the worst value according to the historical data. The ideal and anti-ideal solution of Shannon’s entropy are
1
n

Pn
i¼1 lnð1nÞ þ 1

n

Pn
i¼1 lnð1nÞ and 0, respectively. The transactions costs for purchasing stock (the percentage in terms of the

transaction value) are p1, selling stock p2, short-selling stock p3, and repurchasing short-sold stock p4. The rate of initial mar-
gin requirements for short selling, k, depends on the market condition. Since the sample size affects the ideal and anti-ideal
solution for each entropy measure, sample selection is critical in this model.

Models MY_S and MD_S are constructed according to the similar ideas. We further consider portfolio variance and model
three-objective portfolio. For our study, the performances of single-objective models are compared with Model V (or V_S)
and the performances of two and three-objective models are compared with Model MV (or MV_S).

3.2. Model MY_S

Model MY_S consists of two objectives, as shown in Eqs. (56) and (57), namely, the minimization of Yager’s entropy and
the maximization of portfolio return minus transaction costs. The major concept of Yager’s entropy regarding deviation in
portfolio weights is shown in Eq. (58). The model is as following:
Max
Xn

i¼1

riðwþi �w�i Þ �
Xn

i¼1

p1lþi þ p2l�i þ p3sþi þ p4s�i
� �

; ð56Þ

Min
Xn

i¼1

ðeþi þ e�i Þ; ð57Þ

s:t: ðwþi þw�i Þ �
1
n
� eþi þ e�i ¼ 0; eþi P 0; e�i P 0: ð58Þ
Eqs. (41)–(46), (49), and (50),
where eþi and e�i are the upside deviation and downside deviation between i-th security’s weight to 1/n. After incorporate
Eqs. (57) and (58), MY_S aims to allocate the same budget to assets. For our study, Yager’s entropy is used to allocate the
budget to assets instead of to deal with variance that is linearized in the model. This is also the difference between MV_S
and MY_S.

3.3. Model MD_S

Model MD_S consists of two objectives, as shown in Eqs. (59) and (60), namely, the maximization of portfolio return
minus transaction costs and the minimization of minimax disparity value. Here the concept of minimax disparity method
is used as linear entropy. Eqs. (61) and (62) are to incorporate the minimax disparity method that minimizes the distance
among weights. The formulation is as following:
Max
Xn

i¼1

riðwþi �w�i Þ �
Xn

i¼1

ðp1lþi þ p2l�i þ p3sþi þ p4s�i Þ; ð59Þ

Min d; ð60Þ

s:t: ðwþi �wþiþ1Þ þ ðw�i �w�iþ1Þ � d 6 0; i ¼ 1; . . . ;n� 1; ð61Þ

ðwþi �wþiþ1Þ þ ðw�i �w�iþ1Þ þ d P 0; i ¼ 1; . . . ;n� 1; ð62Þ
Eqs. (41)–(46), (49), and (50).
Eqs. (61) and (62) mean the difference among weights would be limit within d and mean the maximum distance among

weights. Specifically, Eqs. (60)–(62) altogether are to minimize the maximum distance among weights.

4. Numerical results

The 1380 daily returns of the stocks in Taiwan 50 index and Mid-Cap 100 index from the Taiwan Stock Exchange (TSE)
during a period of November 1, 2006 and June 19, 2012 are collected from the database of the Taiwan Economic Journal
(http://www.tej.com.tw/). We exclude the stocks of missing data during the sample period and use the data of 136 stocks
to demonstrate the numerical example. The market value of these stocks represents more than 80% of the overall capitali-
zation in Taiwan. Therefore our results should be free of illiquidity issue and should be useful to portfolio management. In
addition, the conclusion of the profitability of the models should be robust since the sample includes the period of financial

http://www.tej.com.tw/


Table 2
Summary statistics of ex ante Sharpe ratio of portfolio models.

Sharpe ratio

Mean Max Min % of Negative

Short selling prohibited
Single objective 1/n 0.099 0.651 �0.230 28.36

V 0.114 0.761 �0.468 32.84
S 0.072 0.606 �0.246 32.84
Y 0.071 0.611 �0.247 34.33
D 0.071 0.604 �0.247 34.33

Two objective MV 0.343 0.868 �0.094 4.48
MS 0.237 0.727 �0.152 8.96
MY 0.185 0.573 �0.192 14.93
MD 0.281 0.683 �0.115 2.99

Three objective MVS 0.264 0.741 �0.170 8.96
MVY 0.197 0.592 �0.204 13.43
MVD 0.339 0.857 �0.104 4.48

Short selling allowed
Single objective V_S 0.165 0.859 0.191 22.39

S_S 0.003 0.406 �0.486 47.76
Y_S 0.075 0.579 �0.245 32.84
D_S �0.071 0.247 �0.604 65.67

Two objective MV_S 0.513 0.900 0.250 0.00
MS_S 0.330 0.730 0.031 0.00
MY_S 0.265 0.604 �0.005 1.49
MD_S 0.331 0.709 0.061 0.00

Three objective MVS_S 0.380 0.738 0.083 0.00
MVY_S 0.290 0.607 0.064 0.00
MVD_S 0.453 0.898 0.106 0.00
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crisis. To compare the results of the portfolio models, we also present the Taiwan Stock Exchange Capitalization Weighted
Stock Index (TAIEX) as a proxy for the overall market portfolio.

We form and rebalance the optimal portfolios by using the models presented in Section 3. The portfolios are first formed
by using the data in the first 60 transaction days and are rebalanced every 20-trading-day by using a rolling window of the
previous 60 daily data. The initial investments are assumed to be $1 million. Investors can follow the strategies in our paper
by proportionally increasing their portfolios. According to the rules in Taiwan’s stock markets, the percentage of transaction
costs (including brokerage fee and taxes) of buying (p1), selling (p2), selling short (p3), and repurchasing (p4) are 0.1425% (the
brokerage fee charged over the total trading value for buying), 0.4425% (including the 0.1425% brokerage fee charged over
the total trading value and the Security Transaction Tax for selling 0.3%), 0.5225% (including the 0.1425% brokerage fee
charged over the total trading value and the Security Trading Tax for short-selling 0.38%), and 0.1425% (the brokerage fee
charged over the total trading value for repurchasing the short-sale position), respectively. The rate of initial margin require-
ments for short selling, k is 0.9.1 To compare the performance of naïve diversification, we also include a portfolio of 1/n weight
on each of assets [8]. The models are run on a Genuine Intel CPU T2400 1.83 GHz and a 1 GB RAM notebook computer, with
Lingo 11.0 software [39]. For our study, we rebalance each of portfolios 67 times over the sample period and compute their
return, volatility, trading costs, and the proportion of short selling to compare their performance.

Table 2 presents the over-time statistics of ex ante Sharpe ratio for each model, including mean, maximum, and minimum
of Sharpe ratio of each model over the sample period. The percentage of the negative Sharpe ratio over the period is reported.
For 1/n portfolio and single-objective models, they in general yield low mean–variance efficiency. One the other hand, the
risk-adjusted performance for the short-sale allowed portfolios is higher than their corresponding short-sale prohibited port-
folios. The portfolios with two or three objectives and with allowing short-selling seem yield higher in-the-sample effective-
ness in managing portfolio. This might attribute to the portfolio flexibility brought by short selling in asset management. The
addition of portfolio objectives and entropies increases the mean–variance efficiency.

The above results suggest that it is not necessary for the models with fewer objectives generate higher ex ante mean–
variance efficiency. Instead, the two and three-objective models seem to demonstrate higher Sharpe ratio than the single-
objective model. This is particularly significant for those portfolios allow asset short-selling. The multiple-objective models
with allowing short-sale also tend to generate positive Sharpe ratio over the sample period.
1 One may obtain the trading cost and taxes from the website of Taiwan Stock Exchange Corporation (TWSE) http://www.twse.com.tw/en/products/
trading_rules/costs.php.

http://www.twse.com.tw/en/products/trading_rules/costs.php
http://www.twse.com.tw/en/products/trading_rules/costs.php


Table 3
The summary statistics ex post performance for each model.

Model Mean of
realized return

Standard deviation of
realized return

Ex post
sharpe ratio

Average market
value ($)

Ending market
value ($)

Average number of
invested assets

Average
transaction cost
($)

t-value of difference in
market value

Short selling prohibited
Single objective 1/n �0.0186 0.2684 �0.0694 1,285,021 1,610,120 136 21 –

V �0.1385 0.1800 �0.7693 671,438 432,574 14 13,424 –
S 0.1357 0.2923 0.4644 1,335,669 1,640,038 136 236 13.65⁄⁄⁄

Y 0.1326 0.2925 0.4535 1,316,514 1,612,717 136 501 13.47⁄⁄⁄

D �0.1185 0.2847 �0.4162 677,980 421,331 136 13,800 0.20

Two objectives MV 0.1121 0.3051 0.3675 1,152,539 1,418,066 14 1502 –
MS 0.1059 0.3550 0.2984 1,065,768 1,256,630 136 905 �1.75⁄

MY 0.1329 0.3469 0.3832 1,188,280 1,474,488 114 796 0.63
MD 0.0844 0.4146 0.2036 872,800 1,001,369 7 1,285 �6.09⁄⁄

Three objectives MVS 0.1020 0.2975 0.3428 1,115,514 1,356,280 134 988 �0.79
MVY 0.1191 0.2943 0.4046 1,196,307 1,489,306 111 796 0.84
MVD 0.1110 0.3045 0.3643 1,094,640 1,411,244 14 1451 �1.15

Short selling allowed
Single objective V_S �0.2863 0.0688 �4.1638 485,713 208,833 81 8708 –

S_S �0.0715 0.1058 �0.6759 753,727 660,820 136 4991 8.99⁄⁄⁄

Y_S 0.0631 0.2674 0.2361 989,114 1,156,123 136 4092 13.09⁄⁄⁄

D_S �0.1829 0.3264 �0.5602 522,751 277,243 114 1903 0.89

Two objectives MV_S 0.1797 0.2911 0.6172 1,373,868 2,061,413 15 2348 –
MS_S 0.1485 0.3372 0.4404 1,464,589 1,619,451 111 1646 1.08
MY_S 0.1765 0.3060 0.5767 1,596,083 1,983,857 102 1373 2.36⁄⁄

MD_S 0.2362 0.4230 0.5585 1,965,464 2,180,131 13 3539 4.82⁄⁄⁄

Three objectives MVS_S 0.1465 0.2674 0.5479 1,503,702 1,802,904 136 1803 1.59
MVY_S 0.1580 0.2542 0.6217 1,585,368 1,952,982 120 1433 2.36⁄⁄

MVD_S 0.2045 0.2899 0.7056 1,548,374 2,370,631 23 2393 1.87⁄

⁄, ⁄⁄, and ⁄⁄⁄ represent p-value <0.1, 0.05, and 0.001 respectively.
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4.1. Realized portfolio performance

In the real world, what interest investors more is the profitability of executing these asset strategies. We further
discuss their ex post economic benefits in portfolio management. Table 3 shows the comparison of realization perfor-
mance between the diversification portfolio models with various entropy measures and multiple objectives. To evaluate
the benefit of the entropy models, our study includes various portfolio objectives, such as return, and variance respec-
tively with short-selling allowed or prohibited. For two or more objectives, the solution is generated from multiple
objective programming. We also generate the market value of the portfolio that is generated at the end of the each
rebalancing.

The models that allow portfolio short selling and consider multiple objectives, on average, yield higher ex post perfor-
mance than the others in most cases. The ex post risk-adjusted return for 1/n strategy and single-objective models, especially
those with short-sale allowed, is generally low. For multiple-objective models, the portfolio flexibility brought short-sale
seems enhance the mean–variance efficiency. For instance, among the models based on the minimax disparity, the Sharpe
ratio of MVD_S is 0.706 while MD_S and D_S are 0.559 and �0.560, respectively.

Similar results can be found from the portfolio market values. For the single-objective short-sale-prohibited models,
all models except Model D yield higher realization market value than the benchmark model (V). On the other hand, for
the multiple objective models, the models including Yager’s entropy (MY and MVY) outperform the benchmark MV
model. When short selling is allowed, the conclusion for the single-objective models is similar but the market values
are lower than the corresponding short-sale-prohibited models. For the two objectives models and three objectives
models, they generate superior average market value to the benchmark (MV_S). However, for the two and three
objective models, the short-selling allowed portfolios, in general, yield higher market value than the corresponding
short-selling prohibited portfolios. Taken together, the models that consider multiple objectives and allow short selling
demonstrate more significant ex ante diversification benefits than those do not incorporate both of them. Due to the lack
of predictability of parameters, the portfolios can be ex ante profitable though they suffer ex post loss, and vice versa. This
deviation of result between the realized performance and ex ante return is obvious for the portfolios without including
entropies.

Table 3 also shows that a high realization market value is not necessarily caused by low transaction costs of the portfolio
models. When short selling is allowed, Model D_S has the lowest transaction costs comparing to the other models with sin-
gle objective but yield a low market value. For the models with two objectives, Model MY_S has the lowest transaction costs
but has low realized market value. The low transaction costs of these models are attributed to their low rebalancing frequen-
cies but do not necessarily lead to outperformance in profitability.

Table 3 reports the summary t-value statistics of testing the differences of market value between the Model V (the
benchmark for the single objective models) or the Model MV (the benchmark for the two- and three-objective models)
and the other short-sale prohibited portfolio models. The null hypothesis is the tested portfolio model differs from the
ex post market value of benchmark (V or MV) portfolio in terms of realized portfolio value. The p-value shows that the
realization values of the entropy portfolios are higher than that generated by the benchmarks, though their outperfor-
mance is not always statistically significant. Similarly, among the short-selling allowed portfolios, Model V_S is used to
serve as the benchmark for the single objective models and the Model MV_S for the benchmark for the two- and
three-objective models. The t-values of all for the single objective models are statistically significant except Model
D_S. For the two- and three-objective models, there is statically significant outperformance in market value for the
short-selling allowed models, such as the Models MY_S, MD_S, MVY, S, and MVD_S, comparing to the benchmark
Model MV_S.

Our results also show that the models considering short selling and incorporating multiple objectives yield higher real-
ization market values than others in the most time. When short selling is allowed, the models incorporating Yager’s entropy
outperform the other models. Though the models with minimax disparity demonstrate higher market value than the model
with Yager’s entropy for two-objective model, the market value of the minimax disparity measure is more volatile
intertemporally.

Fig. 1 show the time-variation of the portfolio values of the short-sale prohibited models. We also demonstrate the overall
market index as the reference in each graph. The market experienced a significant downturn in 2008 and 2009. The market
values of the models which consider entropy in general generate positive return though the overall market yields loss during
the sample period. Comparing with the benchmark portfolios (Model V for the single-objective portfolios and Model MV for
the multiple-objective portfolios), the market values of the models incorporating Yager’s entropy (i.e., MY and MVY) are
higher than the other models in the same group. The performance of the multiple-objective models seem to be enhanced
by incorporating Yager’s entropy.

Fig. 2 shows the time-variation of portfolio value of short-sale allowed models. Among them, Models MD_S, MY_S and
MVY_S demonstrate higher market value than others. Furthermore, the difference between V_S and the other models that
incorporate entropy become more significant after early 2009. Intertemporarily, the performance of Yager’s entropy is more
stable than other entropy measures. The minimax disparity model, on the other hand, demonstrates superior performance to
the other models when short-selling is allowed. Therefore, the performance of the short-sale allowed models with multiple
objectives can be improved by incorporating entropy in portfolio modeling.



Fig. 1. Market values of short-selling prohibited portfolios. The market values of short-selling prohibited portfolios and Taiwan Stock Exchange
Capitalization Weighted Stock Index (TAIEX) are presented. The initial investment is assumed $1 million for each portfolio.
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4.2. Portfolio diversity and flexibility of adjustment

Table 4 presents the over-time statistics of the weight of short-sale position, the number of assets, and Herfindahl–
Hirschman index (HHI) of portfolio weights for different models. For the models that short-sales are prohibited, the negative
weight, of course, is zero. In general, among short-sales allowed models, the single-objective portfolios tend to have higher
negative weight, except D_S model, than the models of two or three objectives. For our benchmark models, such as V, MV,



Fig. 2. Market values of short-selling allowed portfolios. The market values of short-selling allowed portfolios and Taiwan Stock Exchange Capitalization
Weighted Stock Index (TAIEX) over the sample period are presented. The initial investment is assumed $1 million for each portfolio.
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Table 4
Concentration of asset and portfolio weight.

Short selling proportion Number of assets Herfindahl–Hirschman index

Mean Max Min Mean Max Min

1/n 0.0000 136.0 136 136 0.0095 0.0131 0.0073
V 0.0000 14.0 29 7 0.1959 0.5019 0.0771
S 0.0000 136.0 136 136 0.0074 0.0074 0.0073
Y 0.0000 136.0 136 136 0.0073 0.0074 0.0073
D 0.0000 136.0 136 136 0.0071 0.0073 0.0069

MV 0.0000 13.6 22 5 0.1403 0.2758 0.0694
MS 0.0000 136.0 136 136 0.0595 0.1228 0.0374
MY 0.0000 114.4 126 97 0.0580 0.0995 0.0274
MD 0.0000 7.5 11 4 0.1551 0.2479 0.1092

MVS 0.0000 134.3 136 100 0.0472 0.0861 0.0264
MVY 0.0000 111.4 122 94 0.0391 0.088 0.0142
MVD 0.0000 13.9 20 7 0.1182 0.2027 0.0717

V_S 0.5510 81.2 136 19 0.0528 0.1345 0.0111
S_S 0.5854 135.9 136 132 0.0108 0.0174 0.0082
Y_S 0.0382 136.0 136 136 0.0073 0.0074 0.0073
D_S 0.9291 114.0 114 114 0.0076 0.0076 0.0073

MV_S 0.2843 15.5 24 8 0.1410 0.2517 0.0686
MS_S 0.1809 111.1 136 5 0.0494 0.1202 0.0208
MY_S 0.1610 102.2 128 5 0.0448 0.0984 0.0165
MD_S 0.1779 13.0 43 7 0.1127 0.2236 0.0369

MVS_S 0.2242 135.8 136 129 0.0505 0.2032 0.0231
MVY_S 0.1741 120.3 134 102 0.0422 0.0983 0.014
MVD_S 0.2166 23.2 38 9 0.0826 0.1518 0.0334
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V_S, and MV_S, they tend to generate portfolios that concentrate on smaller number of assets and are of lower diversity than
other models.

The performance of a portfolio model is affected by its sensitivity and extent of adjustment of asset holding to the market
movement. The change between a long proportion and short proportion in a portfolio can be viewed as the model’s response
to a change from bull market to bear market or from bear market to bull market. That is, if the bull (bear) market is about to
turn into a bear (bull) market, some long (short) position of the portfolio would be shifted as short selling (buying) propor-
tions speedily.

Fig. 3 shows the short selling weight of various portfolio models. The models that incorporate entropy seem capture the
change in market better than Model V_S. The weights in the portfolios that incorporate entropy adjust rapidly as the market
condition changes. In addition, these models had higher short selling position than V_S during the bear market, e.g., in 2008.
The models incorporating entropy outperform the V_S because these portfolio models are sensitive to the change in the
market.

In sum, the portfolio values of the models incorporating entropy are the higher than their corresponding benchmarks.
Interestingly, these entropy portfolios also respond to movement of the overall market speedily when short selling is
allowed. Specifically, the short-selling weight of the models with entropy decrease (increase) rapidly when the market turns
to bullish (bearish). The models incorporating entropy also have higher short selling position than benchmark models do
during the market downturn. It seems that the entropy models, particularly those allowing short selling, respond to the
change in the market effectively.

The results of numerical example suggest that asset managers need to consider the following issues when they
exercise these portfolio models. First, the Shannon’s entropy measure is non-linear in portfolio selection since its
weights take natural logarithm. This can result in yielding small positive weights for some asset in the portfolio.
Second, the models with minimax disparity may outperform the model with Yager’s entropy under certain scenarios.
In Table 3, the ranking of average market value shows MD_S > MY_S > MS_S > MV_S but MY > MV > MS > MD and
MVY > MVS > MVD. From the average market value perspective, using minimax disparity measure may cause higher
fluctuation in market value than other models. Third, the linearization of Yager’s entropy can directly obtain a diver-
sified portfolio because of the linear feature of Yager’s entropy. It is clear to see that the models with Yager’s entropy
can effectively cope with the market change especially under the bear market. Hence, the Yager’s entropy measure is
suggested.



Fig. 3. Weights of short selling in portfolios and market trend. The overall weight of short sales for short-selling allowed portfolios and Taiwan Stock
Exchange Capitalization Weighted Stock Index (TAIEX) over the sample period are presented.
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4.3. Comparing 1/n portfolio

The effectiveness of portfolio models to improve the out-of-sample performance is still questionable. DeMiguel et al. [8]
use a naïve portfolio, or 1/n strategy, as a benchmark and find that the gain from portfolio optimization in risk portfolio mod-
els is offset by estimation error. We study the difference of realization benefits in managing portfolio between using entropy
measures and adapting the naïve strategy. The null hypothesis is the tested portfolio model (V, MV, etc.) differs from the 1/n
strategy in terms of realization portfolio value.

Table 5 presents the summary statistics of the comparisons of market value between the value of 1/n portfolio and those
generated by the other models. The negative (positive) t-value represents that the portfolio value of the 1/n strategy is higher



Table 5
Difference of market value between each portfolio and 1/n strategy portfolio.

Model t-Statistics

Short selling prohibited
Single objective V �13.32⁄⁄⁄

S 0.87
Y 0.55
D �13.12⁄⁄⁄

Two objectives MV �2.49⁄⁄

MS �4.15⁄⁄⁄

MY �1.63
MD �8.36⁄⁄⁄

Three objectives MVS �3.39⁄⁄⁄

MVY �1.61
MVD �3.58⁄⁄⁄

Short selling allowed
Single objective V_S �16.58⁄⁄⁄

S_S �12.79⁄⁄⁄

Y_S �6.15⁄⁄⁄

D_S �15.00⁄⁄⁄

Two objectives MV_S 1.22
MS_S 2.56⁄⁄

MY_S 3.79⁄⁄⁄

MD_S 5.99⁄⁄⁄

Three objectives MVS_S 3.26⁄⁄⁄

MVY_S 3.91⁄⁄⁄

MVD_S 3.26⁄⁄⁄

p-Value <0.1, 0.05, and 0.001 are indicated as ⁄, ⁄⁄, and ⁄⁄⁄ respectively

62 J.-R. Yu et al. / Applied Mathematics and Computation 241 (2014) 47–63
(lower) than that of the risk model portfolio. When short selling is prohibited, the 1/n strategy significantly outperforms the
majority of the portfolio models with entropies. However, when short selling is allowed, the model with entropies and multi-
ple objectives dominates 1/n strategy significantly in terms of realization market value. The finding suggests that greater
portfolio flexibility brought by short-sale grant portfolios with entropy measures higher out-of-sample performance. The
above finding also supports the conclusion of DeMiguel et al. [8] that no model consistently demonstrates higher perfor-
mance than the naïve portfolio.

5. Conclusions

In this paper, we evaluates the performance of the portfolio models that are used to rebalance with allowing or prohib-
iting short selling, considering transaction cost of the portfolio, minimizing portfolio risk, and applying entropy in modeling
asset allocation. The existence of transaction costs and the estimation error may affect the ability to reflect mean–variance in
portfolio optimization. To enhance feasibility in the real world, we directly incorporate real transaction costs in the
optimization procedure. The introduction of entropy in the multi-objective optimization will help to avoid under-diversified
portfolios (due to corner solutions) and to reduce the impact of the estimation risk.

The numerical test using the most liquid 136 stocks in the Taiwan Stock Exchange shows that the models with Yager’s
entropy yield the higher economic value of diversification than other portfolio models, such as Shannon’s entropy, the mini-
max disparity model, minimal-variance model, and mean–variance model. This is because the portfolio models constructed
by Yager’s entropy respond the change in market by reallocating assets effectively. In addition, including entropy in models
also enhance diversity of the portfolios.

In practice, fund managers need to deal with over-diversification occurs in the model with Shannon or Yager entropy. To
control the number of the invested assets, the upper bound of the invested assets,

Pn
i¼1v i þ ui, can be set in the correspond-

ing models.
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