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ABSTRACT: The analytical expression for the trajectory entropy of the overdamped
Langevin equation is derived via two approaches. The first route goes through the
Fokker−Planck equation that governs the propagation of the conditional probability
density, while the second method goes through the path integral of the Onsager−
Machlup action. The agreement of these two approaches in the continuum limit
underscores the equivalence between the partial differential equation and the path
integral formulations for stochastic processes in the context of trajectory entropy. The
values obtained using the analytical expression are also compared with those calculated with numerical solutions for arbitrary
time resolutions of the trajectory. Quantitative agreement is clearly observed consistently across different models as the time
interval between snapshots in the trajectories decreases. Furthermore, analysis of different scenarios illustrates how the
deterministic and stochastic forces in the Langevin equation contribute to the variation in dynamics measured by the trajectory
entropy.

■ INTRODUCTION
Consider very generally a system that interacts with its
environment and evolves over time. Let x be some continuous
order parameter of interest (or an experimental or computa-
tional observable) that characterizes the spatial configuration
and represents the state of the system. For example, x could be
a molecule-scale observable in single-molecule experiments,
such as the orientation-averaged dipole−dipole distance in a
single-molecule Förster-type resonance energy transfer experi-
ment,1 the constant-force extension in a laser tweezers/atomic
force pulling experiment,2 or a collective coordinate from
molecular dynamics simulations,3 even a state variable in a
quantum-control experiment.4

In many problems of this type, including the examples given
above, the time evolution of x can be described by the
overdamped Langevin equation,5

= +x DF x t D Wd ( ) d 2 dt t t

where the subscript in xt is time. In the Langevin equation, D is
the diffusion coefficient specifying the magnitude of the
stochastic forces modeled by the Wiener process, dWt,
satisfying ⟨dWtdWt′⟩ = δ(t − t′) dt. On the other hand, the
deterministic component of the Langevin equation comes from
the potential of mean force (PMF), V(x), and the mean force is
F(x) = −dV(x)/dx. Here, we consider the PMF as non-
dimensionalized by kBT, where kB is the Boltzmann constant
and T is the temperature.
Suppose in one realization that the system is at an initial

configuration x0 at time zero. Then propagating the Langevin
equation will trace out a trajectory X(t), a continuous but

nondifferentiable function that gives a value of xt at time t, with
t varying between 0 and the finite period of observation, tobs.
For stationary processes, the system reaches equilibrium and
the probability density of obtaining a particular value of X(t) =
x along the trajectory is given by peq(x) = exp(−V(x))/Zeq,
where Zeq = ∫ dx exp(−V(x)) is the equilibrium partition
function.6 In this work, we consider an ensemble of trajectories
realized at equilibrium with the probability density distribution
of x0 being peq(x0). This initial-state distribution in the
trajectories is associated with the equilibrium entropy, Seq,
determined solely by the PMF as Seq = −∫ dx peq(x) ln peq(x)
and contains no information regarding the dynamics.7−11 In
addition to the variability in the trajectories due to peq(x0),
stochastic forces in the Langevin equation would also make one
observation of trajectory different from the others even when
they have exactly the same starting configuration of time
propagation. Therefore, a trajectory X(t) is essentially a random
variable.
A key question in the understanding of the system dynamics

is thus how does the spread of trajectories depend on the
parameters in the equation of motion. In this regard, we
employ an entropy measure for the quantification:
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Here, [X(t)] is the probability density of observing the
trajectory X(t), [X(t)] is the probability density of reaching
the same observation via a reference dynamics, and the
integration X(t) is a path-integral over all continuous
functions of X(t) realizable from the system dynamics. The
definition of trajectory entropy in eq 1 is in fact the negative of
Kullback−Leibler (KL) divergence that represents the extra
information required for encoding [X(t)] relative to that for
representing [X(t)]. is thus negative and becomes zero
only when the queried distribution is identical to that of the
reference. KL divergence for entropy evaluation is often used to
characterize the relaxation of nonequilibrium states back to
equilibrium and the entropy production involved.12−14 KL
divergence has also been employed in studying dynamic
trajectories for extracting information on reaction coordi-
nates.15,16

In a recent work,17 we illustrate that an analytical expression
of as a functional of the Langevin parameters can be obtained
from the definition of eq 1 in the continuum limit of time
resolution, Δt → 0+,
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In that work, a path integral is used to directly evaluate the
trajectory probability densities, for example, [X(t)], as well as
the trajectory entropy itself in eq 1. Such an integration-based
approach provides a transparent route to utilizing the statistical
mechanics framework. The expectation operation, moment
generation function, and other well-established tools are readily
accessible through this machinery. A fully detailed derivation of
eq 1 via this method is also included here to illustrate the stated
merits. The path-integral approach of evaluating the trajectory
entropy, however, does not lead to a straightforward way of
conducting numerical analysis.
The primary objective of this paper is to provide an

alternative derivation of eq 2 by relating the trajectory entropy
to the entropy of the probability density of time propagation;
that is, a differential equation-based approach. Fundamentally,
this dual derivation underscores the equivalence of the path-
integral and differential-equation formulation of stochastic
dynamics18,19 via trajectory entropy. Following the differ-
ential-equation “based” analysis of the trajectory entropy also
affords the implementation of very efficient numerical schemes
for the evaluation of the trajectory entropy at arbitrary time
resolutions. By combining the analytical and numerical analysis
of trajectory entropy for several different dynamic models, we
illustrate how the deterministic and stochastic components in
the Langevin motion contribute to the observed variability and
spread of equilibrium trajectories.

■ DIFFERENTIAL-EQUATION APPROACH TO
DERIVING THE TRAJECTORY ENTROPY

The continuous function of a stochastic trajectory X(t), t ∈
[0,tobs], can be realized at specific instances in time separated by
a time resolution Δt to result in a segmented recording of X =
[x0, xΔt, x2Δt, ..., xtobs]. This vector has a spatial dimensionality of
N = tobs/Δt, in which the coordinates can be equivalently
indexed as X = [xτ; τ = 0, ..., N]. The calculation of trajectory

entropy via eq 1 can then be achieved by performing the
evaluation first in this time segmentation form with an
integration conducted at each time point of recording and
then taking the limit of Δt → 0. As such, the trajectory entropy
is expressed as

∫ ∫ ∫= −
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An important property of Markovian processes such as the
Langevin dynamics is factorization of the probability density of
trajectories with the conditional probability density of time
propagation as P(X) = p(x0)∏τ=0

N p(xτ+1|xτ). Applying the same
factorization to the reference dynamics, Q(X) =
q(x0)∏τ=0

N q(xτ+1|xτ), which is also assumed to be Markovian,
we can simplify eq 3 to
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Here, the limΔt→0 action is dropped for now for clarity.
By grouping the logarithm terms in eq 4 and bringing the

summation outside the integral, we can reorganize this equation
to
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For the products in this equation grouped by parentheses that
do not contain the coordinates in the logarithms, integrations
over the corresponding variables can be readily obtained via the
relation of ∫∏τ′≠τ,τ+1

N dxτ′ p(x0)p(xτ′+1|xτ′) = p(xτ). In this work,
we consider the stochastic process to be stationary. It can thus
be recognized that the nontrivial integrals that remain are
invariant to the choice of index τ, leaving N = tobs/Δt equivalent
terms in the trajectory entropy:
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Although this result has been reached for different formatting of
the dynamic process,20,21 the procedure is reproduced here for
completion.
For the Langevin equation considered in this work, dynamics

parameters in the equation of motion are time invariant, and
because p(x0) = peq(x), the marginal probability of finding the
system at a specific state at a given time is the equilibrium
probability density. Discarding the time-independent term
coming from the entropy of the reference distribution (the −ln
q(x0) part) because it only contributes an offset irrelevant to
dynamics, we see that the second term in eq 6 is the
equilibrium entropy, Seq. The trajectory entropy defined in eq 1
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for systems that follow the Langevin equation is now simplified
to

∫= −
Δ
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A similar expression can in fact be obtained for the trajectory
probability density of Markovian processes in general,22 and the
derivation for the continuous time and continuous space
Langevin dynamics is shown here for completion.
The second term in eq 7 can be viewed as the entropy of the

conditional probability density of time propagation and is
defined as the Caliber by Jaynes.23−25 Caliber was proposed
originally for finite-state Markov models as the conditional
entropy of time propagation probabilities, S(Δt) = −∑i,j

Nπiri,j log
ri,j.

26 The transition probability from state i to state j per unit of
time Δt is ri,j and the equilibrium probability of state i is πi.
More details of this subject can be found in the recent review of
Presse ́ and co-workers.21

Generalizing the caliber to the continuous space domain of
the Langevin equation by letting ri,j → p(xΔt|x0) and πi →
peq(x0) leads to the second term of eq 7, except the ratio with
respect to the reference probability density of time propagation,
q(xΔt|x0). Due to the nondifferentiability of the Weiner process
in the Langevin equation, the conditional probability density of
time propagation diverges at a rate of ∼ln(DΔt).27,28 To
overcome this difficulty, the KL divergence form of the caliber
provides a way to secure a finite value for the trajectory entropy
in the continuum limit of Δt → 0+. For example, we may
choose the force-free Brownian dynamics with the same
diffusion coefficient as the reference dynamics. Throughout
this work, the reference dynamics model for calculating the
trajectory entropy is set to the Brownian dynamics whose
diffusion coefficient is labeled Dref, and the second term in eq 7
is defined as SKL(Δt):

∫Δ = −
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Δ

Δ
S t x x p x x

p x x
q x x

( ) d d ( , ) ln
( )
( )t t

t

t
KL 0 0

0

0 (8)

The trajectory entropy can thus be condensed into
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Equation 9 is the starting point for deriving the analytical
expression of the trajectory entropy. In the short time limit of
Δt → 0+, the conditional probability densities of the Langevin
and Brownian dynamics are equivalent in that one recovers the
initial condition in both cases, that is, p(xΔt|x0) = q(xΔt|x0) =
δ(xΔt − x0). Consequently, the remaining expectation in eq 8 is
taken over ln(δ(xΔt − x0)/δ(xΔt − x0)) = 0 as Δt → 0+ and
limΔt→0 SKL(Δt) = 0. According to eq 9, what remains to be
developed is how SKL(Δt) reacts when there is a competing
factor of Δt in the denominator in the continuum limit:
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By application of the L’Hopitals rule, the central quantity for
evaluating the trajectory entropy is identified to be
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Here, it is considered that Δt = t − 0. In the last line of this
equation, the p(x0) weighted integration over x0 is represented
by the shorthand notation of p x( )0

[·]. After the time derivatives
are taken and the relation of p(xt|x0) = q(xt|x0) = δ(xt − x0) is
applied in the zero time limit, this term becomes
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The time derivatives present in eq 12 are given by the
Fokker−Plank equation (FPE) corresponding to Langevin
dynamics:6
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To facilitate the calculation of eq 12 via eq 13, a variable
transformation using ρ(xt, x0) = p(xt|x0)(peq(x0)/peq(xt))

1/2 is
applied to both sides of eq 13. As a result, the FPE takes a
symmetric form in terms of spatial derivatives:
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The relation of (peq(x))′ = F(x)(peq(x)) is imposed in arriving
at this equation. For the reference dynamics, the time derivative
in eq 12 can be obtained from eq 14 by setting F(xt) to zero.
Therefore, for the case that the same diffusion coefficient is

used for the reference dynamics and the process of interest,
their second derivative terms of ρ(xt, x0) cancel out each other.
As a result, the calculation of trajectory entropy via eq 12
becomes
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Furthermore, the delta function initial condition in the zero-
time continuum limit (p(xt|x0) → δ(xt − x0) as t → 0) was
applied in arriving at this equation. The integration over xt can
thus be conducted trivially to give
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Imposing integration by parts for the first term on the
righthand side and recognizing that (peq(x))′ = F(x)(peq(x))
gives one of the main results of this work:
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In this equation, the condition of the reference BD for the
functional of the Langevin parameters, F(x) and D, is made
explicit in SKL(Δt) with [F(x), D; D]. Since the deterministic
force for BD is zero, it is not specified on the righthand side of
the semicolon for simplicity. Finally, we can reach the
conclusion via eq 9 that the trajectory entropy of Langevin
dynamics referencing to BD has the following analytical
expression:

= − ⟨ ⟩F x D D S t
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F x[ ( ), ; ]
4

( )eq obs
2

eq (18)

■ INTEGRATION-BASED APPROACH TO DERIVING
THE TRAJECTORY ENTROPY VIA THE
ONSAGER−MACHLUP (OM) ACTION

As shown in ref 17, the result of eq 18 can also be obtained by
performing path integral over the continuous functions with the
integrand of the OM action of the Langevin equation. This
approach does not require referring to the FPE. Therefore, the
trajectory entropy provides an alternative platform for
illustrating the equivalence between the partial differential
equation and the path integral formulation of stochastic
processes. For the completeness of comparing the two
approaches of deriving the trajectory entropy, the procedure
of evaluating the trajectory entropy via the OM action is briefly
reconstructed here. The functional-derivative approach adopted
in the following serves to deduce how the velocity-squared term
in the OM action contributes to the trajectory entropy that is
divergent in the continuum limit. The only assumption
imposed here is that the initial states of trajectories follow
the distribution at equilibrium.
The probability density of a trajectory X(t) following the

Langevin equation is described by the OM action:29−31
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Applying the above expression of [X(t)] into the calculation
of the trajectory entropy in eq 3, imposing the BD reference,
and discarding the scalar offsets due to Vref and (Zeq)ref
irrelevant to dynamics collecting terms leads to
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In this equation, the dynamic parameters of reference
dynamics are labeled with the subscript of “ref” to explicitly

illustrate the term cancelation discussed later. Furthermore, we
also employ the ⟨g[X(t)]⟩X(t) = ∫ X(t) [X(t)]g[X(t)]
notation for an arbitrary functional of the trajectory X(t),
g[X(t)]. Because the path-integral expectation of single-time
functions can be obtained by switching the order of integrating
over time ∫ dt and path ∫ X(t), ⟨∫ dt g(xt)⟩X(t) becomes ∫ dt
∫ dxt g(xt)peq(xt) = tobs⟨g(x)⟩eq.

32 Therefore, the terms in eq 22
can reach the same factorization of the trajectory entropy as
discussed in eq 6. Utilizing this fact with the definition of
⟨V(x)⟩eq + ln Zeq = Seq and integration by parts of ⟨F′(xt)⟩eq =
−⟨F2(x)⟩eq, eq 22 becomes
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Although the velocity square term in eq 23 can be conveniently
removed by having Dref = D, it is instructive to retain this
quantity here for revealing how the final result is achieved with
an analytical expression of ⟨xṫ

2⟩X(t). To achieve this goal, the
analytical expressions for and ref are needed.
For BD, the partition function of trajectories is6

π= Δ Δ
D D t( ) 4

t t
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For the trajectory partition function of the Langevin dynamics,
we probe by inspecting its functional derivative with respect
to the mean force profile via eq 20:
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Here, the functional derivative of the OM action can be
obtained by the Euler−Lagrange equation:
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Therefore, the functional dependence of EOM and on the
mean force profile F(x) is fully considered. Because the
functional derivative contains only terms that are local in time,
the ∫ xdx′ δ(x′ − y) terms are equivalent and cancel each other.
Moreover, the resulting trajectory expectation reduces to an
expectation over the equilibrium distribution:
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Applying integration by parts on the term containing the delta
function derivative and recalling again that dpeq(x)/dx = F(x)
peq(x) for the domain x ∈  and recognizing that for the
equilibrium probability density peq|−∞,∞ = 0 to discard the
boundary terms of F(x)peq(x)|−L,L = 0, we finally arrive at the
cancellation of

δ
δ

= − − =
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t
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F y F y p y
( ) 2

( ( ) ( )) ( ) 0.obs eq (28)

This means that the trajectory partition function is independent
of the mean force. That is, is simply the trajectory partition
function of the corresponding zero-force dynamics, that is, that
of the reference Brownian dynamics in eq 24:

π= Δ Δ
D D t( ) 4

t t( / )obs
(29)

This result is also consistent with the fact that it is the random
forces in the Langevin equation, the same as those of BD, that
impose stochasticity in dynamics. The mean forces, on the
other hand, give rise to deterministic behaviors.
Therefore, the term in eq 23 involving the ratio of the two

trajectory partition functions is zero as long as the same
diffusion coefficient is employed for both dynamics. Fur-
thermore, the result of eq 29 also informs the velocity-squared
terms in eq 23. Because is the cumulant generator of the
OM action defined in eq 21, taking d(ln )/d(1/D) to the
righthand side of eq 29 and imposing eq 21, one can obtain an
expression for the path integral of the velocity square term as

⟨ ̇ ⟩ =
Δ

− ⟨ ⟩x
D
t

D F x
2

( )t X t
2

( )
2 2

eq (30)

Indeed, the issue due to the nondifferentiability of Langevin
trajectories on making the velocity-squared term diverging in
the continuum limit can be removed by having Dref = D. It is
also clear that the result eq 17 and hence eq 18 can be derived
through the route of analyzing the OM action by applying the
results of eqs 29 and 30 to eq 23. The final expression is the
result stated earlier in eq 2.

■ DEPENDENCE OF THE TRAJECTORY ENTROPY ON
DIFFUSION COEFFICIENT

By referencing to BD with the same diffusion coefficient, we
show that the trajectory entropy takes the form of eq 18. This
choice of setting the reference diffusion coefficient can in fact
be relieved to allow Dref to assume an arbitrary value. The
derivation and analytical expression presented in this section
illustrate how the trajectory entropy of the Langevin equation
depends on the diffusion coefficient.
After the explicit contribution of F(x) to trajectory entropy

in eq 18 is established, the remaining component of diffusion
can be evaluated by comparing two stochastic processes with
constant mean forces and diffusion coefficients although the
values of one process can be different from another. BD is thus
a special case that the constant force takes the zero value. For
the two processes, letting the constant forces be F and Fref and
diffusion coefficients be D and Dref, we set the process
designated by the subscript to be the reference dynamics for

calculating the trajectory entropy. The probability density of
time propagation of the constant-force diffusion in the zero-
time limit is known as6

π
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(31)

Here, both [X(t)] and [X(t)] defined in eq 1 follow the
functional form of eq 31. The corresponding result of BD can
be retrieved by setting F = Fref = 0 in the analytical expression
derived via eq 31. When eq 31 is applied to eq 8, the two-
dimensional integral for evaluating the SKL(Δt) is
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After imposing the results of calculating the expected moments
of Gaussian processes, ⟨xΔt − x0⟩ = FDΔt and ⟨(xΔt − x0)

2⟩ =
(FDΔt)2 + 2DΔt, we arrive at
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Therefore,
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Equation 34 is for two BD processes with different diffusion
coefficients after dropping the force-containing term in eq 33
and can be employed for calculating trajectory entropy via eq 9.
In the continuum limit of Δt → 0+, the trajectory entropy thus
diverges as ∝1/Δt due to the stochastic diffusion in the
Langevin equation.
In the coming section, the values of SKL(Δt)[F(x), D; Dref]

will be calculated numerically and compared with the results of
combining the analytical expressions of eqs 17 and 34:
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The third line of eq 35 is only strictly valid in the zero time
limit. The manner by which it approaches the analytical
expression will be demonstrated in the next section.
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■ NUMERICAL ANALYSIS OF THE TRAJECTORY
ENTROPY

Without loss of generality, the three dynamics models with the
mean force F(x) and Peq(x) profiles shown in Figure 1 are

considered for the comparison between analytical and
numerical results. Model 1 has a single minimum in the
PMF, while models 2 and have two and three minima,
respectively. In the context of protein folding and protein
conformational changes, these models may correspond to
scenarios with different numbers of intermediate states. The
PMFs shown in Figure 1 are also devised to have biologically
relevant energetics of reaction barriers, (5−10)kBT, and
identical values of equilibrium entropy. As such, the well of
model 1 is wider than those of models 2 and 3. This section will
show that the resulting dynamics of the three models are
different as characterized via the trajectory entropy (eq 9),
despite their equivalence in equilibrium entropy.
To calculate the caliber via eq 8, the FPE of the Langevin

equation (eq 13) are solved to determine p(xt|x0) with the
initial condition p(xt|x0)|t=0 = δ(xt − x0) and the zero-flux
boundary conditions J(xt = L) = J(xt = −L) = 0. The same
initial and boundary conditions are also used to obtain q(xt|x0)
of the reference BD with an arbitrary diffusion coefficient. Our
numerical solution of the FPE follows the procedure outlined in
Gardiner,6 performing an eigen-decomposition of the time
propagation operator of p(xt|x0). Expressing the solution of eq
13 as p(x,t) with the initial condition implied and dropping the
subscript for the spatial variable, the eigen-decomposition uses

a time dependent exponent with scale λ and the spatial function
Ψ(x):

= Ψ λ−p x t x( , ) ( ) e t
(36)

The following eigen-value problem then emerges after applying
this form of solution to the FPE:

λΨ − Ψ = ΨD
x

x
DF x x

x
x

d ( )
d

d( ( ) ( ))
d

( )
2

2 (37)

Although any numerical method for solving eigen-value
problems can be applied, we obtained the family of
eigenvectors ψi(x) for eigenvalue λi via a spectral finite element
method,33 where the form of the eigenfunction is assumed to
be a linear combination of low order polynomials uj(x)
localized in spatially resolved elements.

∑ψ =x c u x( ) ( )i
j

i j j,
(38)

Convergence of the numerical solution was reached with 500
elements of seventh order polynomials. The required number
of elements and polynomial order in each element to reach
convergence certainly depend on the PMF profile and D value.
Selection of the aforementioned level of numerical accuracy was
conducted in a trial-and-error manner by ensuring convergence
of all three models listed in Figure 1. This scheme allows
numerical analysis of eq 35 to be very close to the continuum
limit of Δt → 1 × 10−7 s.
Figure 2a shows the RMS (root-mean-square) difference of

the first 128 eigenvalues (δλ128) with respect to the values
obtained with 500 elements of seventh order polynomials. The
behavior of spectral convergence33 of δλ128 for the three models
shown in Figure 1 is clearly seen in this figure.
The resulting set of eigenfunctions form a basis for the

Fokker−Plank operator with the orthogonality property of

∫ δΨ Ψ =x x x p xd ( ) ( )/ ( )i j i jeq , (39)

The general solution for the FPE is then a linear combination
of eigenfunctions with coefficients ai:

∑= Ψ λ−p x t a x( , ) ( ) e
i

i i
ti

(40)

The conditional probability density of time propagation, p(xt|
x0), is then found by resolving the initial condition of p(xt|
x0)|t=0 = δ(xt − x0):

∑ δΨ = −a x x x( ) ( )
i

i i t t 0
(41)

By application of the orthogonality property, ai is simply
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By applying eq 42 to eq 40, we obtain the numerical solution
for the FPE:

∑ ψ
ψ

λ| = − ΔΔ Δp x x x
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exp( )t

i
i t

i
i0

0

eq 0 (43)

The numerical solution is employed to calculate SKL(Δt)/Δt via
eq 8 and compared with the values provided by the analytical
expression shown in eq 35. The convergence of SKL at Δt =

Figure 1. Profiles for the mean force and equilibrium probability
density of the three model systems considered in this work. All
physical variables are in dimensionless units.
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10−5 s with the number of eigenvalues used in the calculation is
shown in Figure 2b. The values of δSKL are the RMS differences
with respect to the entropy calculation of using 500 elements of
seventh order polynomials. In this convergence test, D = Dref =
1 in the dimensionless unit.
Figure 3 shows SKL(Δt)/Δt as a function of Δt for the three

models in Figure 1 in the special case of D = Dref. The
contribution from stochastic diffusion via the second term in
the righthand side of eq 35 thus vanishes for the results based
on the analytical expression. It can be seen from the numerical
solutions that as Δt increases, the differences in the three
models due to dynamics disappear. The magnitudes of
SKL(Δt)/Δt also decrease with Δt, indicating the reduction of
dynamics information with lowering of the time resolution of
trajectory recording. The quantitative agreement between
numerical and analytical solutions seen in the short time limit
of Figure 3 validates eq 17.
When D ≠ Dref, the stochastic diffusion alone contributes to

the value of SKL(Δt)/Δt as eq 35 indicates. In Figure 4, the
values of SKL(Δt)/Δt are shown for two such cases. As
expected, the numerical values of SKL(Δt)/Δt monotonically
decrease with Δt. However, the profiles are highly nonlinear.
The three models show clear differences at intermediate Δt
values and unite at the high and low time resolution limits. In

the limit of low time resolution, the conditional probability
density of time propagation in eq 8 becomes peq(x) and all
three models have the same Seq value as mentioned earlier. In
the continuum limit of high time resolution, on the other hand,
the divergence of the stochastic diffusion term dominates the
value of SKL(Δt)/Δt in eq 35. Figure 4 shows that the
numerical values of SKL(Δt)/Δt of all three models converge as
Δt → 0 and provides a cross-validation of eq 34.
Figure 4 also shows that the analytical expression of eq 35

can describe SKL(Δt)/Δt over a significant range in the finite Δt

Figure 2. Convergence of the numerical calculations of SKL(Δt). (a)
The root-mean-square (RMS) difference of the first 128 eigenvalues,
δλ128, as a function of the spectral elements used in solving the FPE.
The values of using 500 elements were used as the reference for
comparison. All elements are represented via a seventh order
polynomial. (b) The RMS difference of the calculated SKL at Δt =
10−5s as a function of the number of eigenvectors used in the
calculation. 500 elements of seventh polynomials were used for
conducting the eigenbasis expansion.

Figure 3. Values of SKL(Δt)/Δt obtained by numerical calculations
(○, □, ◇) and the analytical expression of eq 35 (lines). For the three
models shown in Figure 1, we employ D = Dref = 2.0 in this plot. All
physical variables are nondimensionalized.

Figure 4. Values of SKL(Δt)/Δt obtained by numerical calculations
(○, □, ◇) and the analytical expression of eq 35 (lines). For the three
models shown in Figure 1, we employ D = 1.5, Dref = 2.0 in panel a
and D = 3, Dref = 2.0 in panel b. All physical variables are
nondimensionalized.
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regime. Model 3 is the most complex of the three models
considered here; its profile shows the earliest onset of deviation
between the analytical and numerical values among the three.
Appearance of this discrepancy for model 2 occurs at a larger
Δt, and that for model 1 is the latest because it has the least
complexity of the three, having only one well in the PMF. For
the case with different values of the reference diffusion, Dref, the
time scale at which eq 35 starts to deviate from the numerical
solution varies. On the other hand, the D = Dref option
eliminates the contribution of eq 34 to SKL(Δt)/Δt, and the
quantitative distinction of the three models becomes clear in
Figure 3 in the continuum limit. This analysis illustrates that the
KL divergence relative to a reference dynamics can be used to
overcome the issue of stochastic divergence in the continuum
limit for evaluating the trajectory entropy.
Another approach of removing the arbitrariness in the values

of SKL(Δt)/Δt due to the BD reference is letting Dref to go to
infinity. With D/Dref approaching zero and the constant
becoming negligible in this limit, only the ln D term in eq 34
contributes to the trajectory entropy. The universal inverse
scaling of SKL(Δt)/Δt with respect to Δt in using large values of
Dref can be seen in Figure 5, in which the values of SKL(Δt)/Δt

for the three model systems at D = 1.3 and Dref = 1000 are
presented to illustrate the behaviors of using a large Dref.
Therefore, after discarding the scaling constant of Dref in this
approach of choosing the reference dynamics, the contribution
of stochastic diffusion to the trajectory entropy in the
continuous time limit has the functional form of ln √D/Δt.

■ CONCLUSION
In this work, we show that the trajectory entropy expression for
the Langevin equation can be derived through two alternative
routes via analyzing the partial differential equation of the time
propagation as well as the path integral over all continuous
functions of realizable trajectories. The equivalence of the path
integral and partial differential equation formulation of
stochastic dynamics is thus observed in the evaluation of the
trajectory entropy. The derivation is conducted in the
continuum limit at which the interval of trajectory recording
is approaching zero. Although the conditional probability
density of time propagation converges to the delta function
initial condition, p(xΔt|x0) = δ(xΔt − x0) as Δt → 0+, we show
that the rate of change of p(xΔt|x0) dictates how the

information on dynamics is encoded in trajectories. The
derivation is based on the fact that the entropy of the
probability density of time propagation, or the caliber, is the
rate-of-change element of the trajectory entropy as shown in eq
9. In addition to the contribution of the deterministic mean
forces in the Langevin equation represented via eq 17, an
expression of eq 34 is also developed for quantifying how
random diffusion alone adds to the values of the trajectory
entropy. Therefore, our framework of analysis can be used to
systematically extract how the deterministic and stochastic
forces of the equation of motion affect dynamics. The
combined expression of eq 35 also allows a direct comparison
of the values of entropy obtained via numerical calculations and
those according to the analytical formula. In the continuum
limit, we show that the numerical results approach the
analytical expression. Through the numerical studies, we also
show how the different features in the potential of mean force
may manifest themselves in the dynamics, giving rise to
different extents of complexity. This quantitative agreement
also serves as a way of validating the analytical results developed
in this work. Even though the three model systems have
identical levels of complexity in their static distributions in the
sense that the equilibrium entropy calculation from peq(x) has
identical values for these models, trajectory entropy can be used
to reveal the differences in dynamics. For biomolecular systems
and others for which the Langevin equation is employed for
modeling the dynamics, the results of this work provide a
theoretical foundation for quantitative analysis of data,
including adopting the methods of statistical learning,34 and
for development of dynamic models.35
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