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We study the quantum phases and phase transitions of the Kane-Mele Hubbard (KMH) model on a zigzag
ribbon of honeycomb lattice at a finite size via the weak-coupling renormalization group (RG) approach. In the
noninteracting limit, the Kane-Mele (KM) model is known to support topological edge states where electrons
show helical property with orientations of the spin and momentum being locked. The effective interedge hopping
terms are generated due to finite-size effect. In the presence of an on-site Coulomb (Hubbard) interaction and
the interedge hoppings, special focus is put on the stability of the topological edge states (TI phase) in the KMH
model against (i) the charge and spin gaped (II) phase, (ii) the charge gaped but spin gapless (IC) phase, and
(iii) the spin gaped but charge gapless (CI) phase depending on the number (even/odd) of the zigzag ribbons,
doping level (electron filling factor) and the ratio of the Coulomb interaction to the interedge tunneling. We
discuss different phase diagrams for even and odd numbers of zigzag ribbons. We find the TI-CI, II-IC, and II-CI
quantum phase transitions are of the Kosterlitz-Thouless (KT) type. By computing various correlation functions,
we further analyze the nature and leading instabilities of these phases. The relevance of our results for graphene
is discussed.
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I. INTRODUCTION

Recently, there has been growing interest in topological in-
sulators (TIs) and superconductors which support gapless edge
(surface) states while the bulk remains insulating [1,2]. These
surface states come as a consequence of the spin-orbit (SO)
couplings, and are protected by the time-reversal symmetry
(TRS) [1,2]. The topological nature of TIs lies in the nontrivial
topological Z2 invariant [3], while it becomes trivial for an
ordinary band insulator (BI). The theoretical predictions [4–6]
of TIs have been soon observed experimentally in various
insulators with strong SO couplings [7]. In two-dimensional
systems, these topological states have been predicted in
the framework of the quantum spin Hall insulator (QSHI)
[3,8–12], and have been realized experimentally soon after in
HgTe/CdTe quantum well structures [4]. Unlike the integer
quantum Hall insulator where the chiral (one propagating
mode of electrons with a single spin species) edge states
are generated by an external magnetic field which breaks
TRS, the TRS preserving QSHI systems lead to helical edge
states in the absence of a magnetic field in which propagation
direction at one edge is opposite for opposite spins [12]. These
one-dimensional helical edge state electrons are protected by
TRS [3] and are free of spin-flip backscatterings [2]. As a
result, they lead to perfect transmission in charge transport
along the edge [13].

A simple theoretical model was first introduced by Hal-
dane [8] and later proposed by Kane and Mele [3,9] (the KM
model) to capture the helical edge states of QSHIs. The KM
model was aimed to describe edge states in graphene. Though
the SO coupling in graphene is expected to be too small to
observe the edge states, the KM model is regarded as a generic
model for 2D TIs. The existence of the helical edge states in
KM model has been well studied. Recently, more attention
has been put on the stability, exotic quantum phases and

phase transitions of the helical edge states and possible exotic
quantum phases in the correlated Kane-Mele Hubbard [14–21]
model upon including the on-site Coulomb repulsions (the
Hubbard U > 0 term) in the KM model. In a pioneering work
by Meng et al. in Refs. [14,15] via quantum Monte Carlo
(QMC) and dynamical mean-field approaches, the helical edge
states are stable up to a finite Hubbard interaction, and a gaped
spin-liquid phase was predicted in the phase diagram of the
KM Hubbard model at half filling for small to intermediate
range of U . The authors in Ref. [19] have studied the effects
of long-range Coulomb interactions on the edge states of a
finite-sized zigzag KM ribbon. The 1D Luttinger liquid physics
with power-law correlations for the helical edge states in the
presence of a finite on-site electron-electron interaction has
been addressed in the framework of the KM Hubbard model
analytically via bosonization in Refs. [22,23] and numerically
via QMC in Ref. [18]. Meanwhile, the doping effect on the
KM Hubbard model was addressed in Ref. [24] where the spin
liquid phase was argued to become a superconducting state.

In this paper, we present a theoretical analysis on the KM
Hubbard model at half-filling and away from half-filling from
a different perspective: we analyze the model on a finite-sized
zigzag ribbon (where the helical edge states have been realized
numerically in the tight-binding KM model [17]) with a ribbon
width L = (N − 1)b (N being the number of zigzag chain in a
ribbon and b is defined in Fig. 1) in the weak-coupling (weak
on-site Coulomb U ) limit via perturbative renormalization
group (RG) combined with the bosonization approaches. Note
that at a general level, the on-site Hubbard interaction U

term considered here can take either positive (repulsive) or
negative (attractive) values although the repulsive Hubbard
interactions are more likely to be realized in QSHIs. Note
also that one can alternatively study the model on an armchair
ribbon, which was suggested to support edge states in graphene
(equivalent to the KM model without SO coupling) [25]. We
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FIG. 1. (Color online) Honeycomb lattice of a finite-sized zigzag
ribbon of the tight-binding Kane-Mele model with the ribbon size
N = 4 (N being the number of zigzag chains along x axis) along
y axis. The honeycomb lattice consists of two interpenetrating
triangular lattices denoted by sublattice A (dark circles) and sublattice
B (open circles) with lattice vectors a1 and a2 (dashed arrows).
The zigzag ribbon shows translational symmetry along x axis. The
nearest-neighbor lattice vectors between nearest-neighbor A and
B sites are denoted by ei=1,2,3 with a lattice constant a. The red
(black) arrows within sublattice A(B) represent the directions of the
next-nearest-neighbor hopping term λSO in the KM model (see text).
The gray shaded region represents for the super unit cell of the zigzag
ribbon, which repeats itself along x axis.

shall emphasize here the stability of the helical edge states
against the combined short-ranged on-site Coulomb (Hubbard)
interaction and finite-size effect of the zigzag KM ribbon, as
well as possible other emerged quantum phases and phase
transitions (QPTs) [26] among them.

The finite-size effect manifests itself in the structure of the
energy spectrum and in an effective interedge tunneling term.
We further find that these behaviors for even number of zigzag
KM ribbons (N = even) are different from those for N = odd.
For N = even, a finite energy gap is found at half-filling
where the Fermi energy is at the Dirac point ka = π . This
small gap is due to breaking of the sublattice translational
invariance at the boundaries, and can be explained in terms of
an effective finite single-particle interedge tunneling, which
decays exponentially with increasing L. Away form half-
filling, the energy dispersion becomes gapless at the Fermi
level. For N = odd, however, the energy spectrum is gapless
and the single-particle interedge tunneling vanishes for both
half-filling and away from half-filling. Nevertheless, for both
N = even and N = odd, two-particle processes, effective
interedge two-particle spin-flip and interedge umklapp (two-
particle backscattering) terms, are generated via second-order
interedge hoppings.

Our stability analysis of the KMH ribbon is summarized
as follows. For N = even, the energy gap at half-filled at the
Dirac point gives rise to a charge and spin gaped (insulating)
(II) phase [22]; at a generic filling, however, the two-particle
processes when combined with the effect of the Hubbard
U term lead to the instabilities of the helical edge states
towards a charge gapless but spin gaped (CI) phase [22] in
the RG analysis via the Kosterlitz-Thouless type of quantum
phase transitions. When L → ∞, the interedge hopping term
vanishes, the TI phase at half-filling is unstable against the
charge gaped but spin gapless (IC) phase [22] for arbitrary

U > 0, while it is stable away from half-filling. For N = odd,
the single-particle interedge tunneling is absent, while the
combined two-particle interedge hoppings and the on-site
Coulomb interactions make the TI unstable for any finite U or
interedge tunneling. As a result, the TI phase moves towards CI
or IC or II phase depending on the ratio of Coulomb interaction
and the interedge tunneling. The phase transitions for II-IC and
II-CI are of the KT type.

By computing various correlation functions, we further
analyze the instabilities of the helical edge states, the CI
and IC phases towards the charge-density-wave (CDW), spin-
density-wave (SDW) as well as the singlet (SS) and triplet
(TT) superconducting states.

The remaining parts of the paper is organized as follows. In
Sec. II, the Kane-Mele Hubbard at a finite size is introduced.
The model is re-expressed in terms of the scalar and vector
current operators. In Sec. III, the stability of the helical edge
states is addressed via weak-coupling RG analysis. We also
address the nature of the quantum phase transitions between
the TI and other quantum phases. We conclude in Sec. IV.

II. MODEL HAMILTONIAN

A. The noninteracting Kane-Mele zigzag ribbon

Before studying the interacting Kane-Mele Hubbard model,
we summarize the main results for the noninteracting Kane-
Mele (KM) model on a zigzag ribbon of honeycomb lattice
given by the following Hamiltonian [3]:

HKM = −t
∑
〈ij〉,σ

c
†
iσ cjσ + iλSO

∑
〈〈ij 〉〉,σ

νij c
†
iσ szcjσ + H.c.,

(1)

where 〈i,j 〉 and 〈〈i,j 〉〉 refer to the nearest-neighbor (NN) and
next-nearest-neighbor (NNN) sites, respectively. The NN and
NNN lattice vectors for the honeycomb lattice are denoted
respectively by ei=1,2,3 and ai=1,2 [17]:

e1 = ā(0,1), e2 = ā/2(
√

3,−1), e3 = ā/2(−
√

3,−1),

a1 = ā/2(
√

3,3), a2 = ā/2(−
√

3,3) (2)

with ā being the lattice constant between nearest-neighbor
A and B. The spin-orbit coupling term is represented by the
imaginary NNN hopping λSO term within the same sublattice
where νij = 1 for i,j ∈ A (red counterclockwise arrows in
Fig. 1) and νij = −1 for i,j ∈ B (blue clockwise arrows in
Fig. 1). In the absence of the SO coupling, the KM model on
zigzag ribbon reduces to the tight-binding Hamiltonian of a
2D zigzag graphene nanoribbon (ZGNR) [27], which shows
two inequivalent Dirac points located at k ≡ kx = ± 2π

3a
with

kx being momentum along x axis with a ≡ √
3ā. Meanwhile,

there exists a zero-energy flat band extended in the interval of
2π/3 � ka � 4π/3, known to correspond to the edge state of
ZGNR [27,28]. It has been shown that the magnitudes of the
edge state wave functions decay exponentially with distance
away from the two edges, and the edge states are completely
localized at the edges for ka = π [29,30].

In the presence of SO coupling, the KM Hamiltonian
HKM for a finite-sized zigzag ribbon (see Fig. 1) on honey-
comb lattice supports helical edge states �

↑(↓)
R,1(2),�

↓(↑)
L,1(2) with
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topological nature [3,17]. Here, �
↑(↓)
R,1(2) stands for the wave

function of the right-moving edge state electron with spin up
(spin down) along the edge 1 (2), respectively. The indices 1
and 2 refer to the top and bottom edge, respectively. Similarly,
�

↓(↑)
L,1(2) stands for the wave function of the left-moving edge

state electron with spin down (spin up) along the edge 1
(2), respectively. The helical nature of these topological edge
states manifest itself in the lock-in between the electron spin
configuration and the direction of its momentum.

In the limit of large ribbon size N � 1, the electron operator
cσ
i (x) near the edge is decomposed approximately in terms of

these well-localized edge states as

c
↑(↓)
1(2) (x) ≈ �

↑(↓)
R,1(2)(x)eikF x, c

↓(↑)
1(2) (x) ≈ �

↓(↑)
L,1(2)(x)e−ikF x .

(3)

The Hamiltonian of the edge Hedge is therefore given by

Hedge = −ivF

∫
dx(�†↑

R,1∂x�
↑
R,1 − �

†↓
L,1∂x�

↓
L,1

+�
†↓
R,2∂x�

↓
R,2 − �

†↑
L,2∂x�

↑
L,2)

with vF being the Fermi velocity.
At a finite system size, however, the edge state electron

wave functions acquire an additional functional dependence
on y axis [c↑(↓)

1(2) (x,y)] and are found to extend over a finite
range in bulk via diagonalizing the tight-binding KM ribbon.
The Hamiltonian of the edge states in this case is given by

Hedge = vF

∫
dk

∫
dyk[�̄†↑

R,1(k,y)�̄↑
R,1(k,y)

− �̄
†↓
L,1(k,y)�̄↓

L,1(k,y)

+ �̄
†↓
R,2(k,y)�̄↓

R,2(k,y) − �̄
†↑
L,2(k,y)�̄↑

L,2(k,y)], (4)

where �̄
↑(↓)
R/L,1(2)(k,y) are the edge state electron operators for a

KM ribbon at a given momentum k and y obtained via partially
Fourier transforming c

↑(↓)
1(2) (x,y) along the x axis:

�̄
↑(↓)
R,1(2)(k,y) =

∫
dxe−ikxc

↑(↓)
1(2) (x,y),

(5)

�̄
↓(↑)
L,1(2)(k,y) =

∫
dxe−ikxc

↓(↑)
1(2) (x,y).

Note that �̄
↑(↓)
R/L,1(2)(k,y) can be obtained numerically as the

eigenstates of the Dirac dispersed helical edge states via
diagonalizing the finite-sized zigzag KM ribbon. As shown
in Figs. 2 and 3, we numerically diagonalize the KM model
at N = even (N = 4,16) and N = odd (N = 5,15) zigzag
ribbon [17,31]. Two pairs of Dirac dispersed edge states
(�̄↑(↓)

R,1(2),�̄
↓(↑)
L,1(2)) emerge in the energy spectrum of a finite-

sized KM zigzag ribbon, and they tend to intersect at the Dirac
points ka = ±π . However, at the Dirac points, a finite energy
gap is developed for N = even, while no gap is seen for all
N = odd (see Fig. 2). We shall focus on this even-odd effect
in more details below.

Similar to the case for ZGNR, for 2π/3 � ka � 4π/3,
we find the square magnitude of the two degenerate edge
state eigenfunctions |�(y)|2 = |�̄L/R,i(k,y)|2 (except for N =
even and ka = ±π ) show a symmetrical exponential decay

0 π 2π
ka

-2

-1

0

1

2

E/t

0 π 2π
ka

-2

-1

0

1

2

E/t

(a) (b)

FIG. 2. (Color online) Energy spectrum of the finite-sized Kane-
Mele model on a zigzag ribbon for (a) N = 4 and (b) 5 of honeycomb
lattice. Here, we set t = 1 and λSO/t = 0.2.

from one edge to the other with respect to the ribbon center
(y = L/2) from both edges into the bulk as a function of
the distance to the corresponding edge. Here, y measures the
distance to the edge along y axis and y = 0 corresponds to
the first (top) zigzag chain. Also, to simplify the discussions,
we use an integer index y/b + 1 = Ni = 1,2, . . . ,N with
y = (Ni − 1)b for labeling the Ni th zigzag chain along y axis
for a ribbon with N zigzag chains; y = 2b corresponds to
the position of the third (Ni = 3) zigzag chain. As shown in
Figs. 4(b) and 5, the decay of these edge states is well fitted
by the following exponential form:

|�̄L/R,i(k,y)|2 ∝ e−βy/b, (6)

where β is the decay constant depends on the momentum k.
For N = even and at the Dirac point ka = π , we find the right
and left moving edge states get hybridized so that the square
magnitudes |�(y)|2 = |�̄hy,i(y)|2 of the two degenerate edge
states are maximized on both edges [see Fig. 4(a)]. Note that we
find, via eigenvector analysis of our numerical results through

0 π 2π
ka

-2

-1

0

1

2

E/t

0 π 2π
ka

-2

-1

0

1

2

E/t

(a) (b)

FIG. 3. (Color online) Energy spectrum of the finite-sized Kane-
Mele model on a zigzag ribbon for (a) N = 16 and (b) 15 of
honeycomb lattice. Here, we set t = 1 and λSO/t = 0.2.
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FIG. 4. (Color online) The square magnitude of the edge state
wave function |�|2 of the KM zigzag ribbon at half-filling as a
function of y/b + 1 (defined in text) for N = 14 and (a) for ka = π

and (b) for ka = π ± 0.2π . Here, |�|2 (blue circles and red squares)
represent for the square magnitude of the two edge state wave
functions, which are degenerate eigenstates at the corresponding
wave vector k. In (a), the two hybridized degenerate edge state wave
functions � = �hyb,i=1,2 (red and blue symbols) lead to the same
square magnitude, |�hyb,1|2 = |�hyb,2|2, in (b), we make the following
identifications: �(y) = �

↑
R,1 (blue) and �(y) = �

↑
L,2 (red). The solid

lines are guides to the eyes in (a), and in (b) they are fits to the
exponential form in Eq. (6). We set λSO/t = 0.1.

exact diagonalization of the finite-sized KM ribbon, that these
distinct two hybridized edge state wave functions: �̄hy,1(y) �=
�̄hy,2(y) show the same magnitudes, |�̄hy,1(y)| = |�̄hy,2(y)|.
Numerically, the values of |�(y)|2 as a function of y for a given
edge state are obtained approximately by summing over the
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FIG. 5. (Color online) The square magnitude of the edge state
wave function |�|2 of the KM zigzag ribbon at half-filling as
a function of y/b + 1 for (a) N = 15 and ka = π and (b) for
N = 15 and ka = π ± 0.2π . Here, |�|2 (blue circles and red squares)
represents for the square magnitude of the two edge state wave
functions, which are degenerate eigenstates at the corresponding wave
vector k. The solid lines are fits to the exponential form in Eq. (6). We
set λSO/t = 0.1. Note that in (a) |�|2 is shown for only even values
of y/b (see text).

square of the matrix elements of the corresponding edge-state
eigenvector contributed from both sublattices:

|�(y)|2 = |�A(y)|2 + |�B(y + ā/2)|2.
We also find that the square magnitude |�(y)|2 at ka = π

for N = even [see Fig. 4(a)] oscillate along y axis. Similar
oscillations are found for N = odd but not shown in Fig. 5(a) as
the values of |�(y)|2 for N = odd near edges are vanishingly
small and go beyond the logarithmic scale shown there.
This oscillatory behavior agrees qualitatively with that shown
in Ref. [19]. The reason why the energy dispersion at the
Dirac point for N = even is gapped, while it is gapless for
N = odd is due to the change of interference patterns of
the overlap in edge state wave functions between different
sublattice structures in these two cases. For N = even, the
hard-wall boundary condition breaks one of the sublattice
discrete translational invariance along the y direction (see
Fig. 1), which opens up a gap in the energy spectrum by
introducing a finite interedge hopping [19]. For N = odd,
however, this symmetry is preserved and the t⊥ term vanishes
by destructive quantum interference. These results are further
confirmed numerically via Eq. (9) below based on eigenvector
analysis of the zigzag KM ribbon.

Based on our numerical results, the edge states are much
more localized at the Dirac point ka = ±π : β(k = π/a) > 1
compared to that at other values of k. For 2π/3 < ka < π ,
however, the edge state wave functions extend over a finite
region in the bulk [see Fig. 4(b)]. In both cases, a weak but
finite overlap between edge and bulk electron wave functions
is expected to be present in the zigzag KM ribbon, which
generates an effective interedge hoping t⊥ term approximately
as (see Fig. 6 and Sec. II B):

Ht⊥ = t⊥
∑

σ=↑,↓

∫
dx

[
c
†σ
1 cσ

2 + H.c.
]

≈ t⊥
∫

dxe2ikF x(�†↑
R,1�

↑
L,2 + �

†↓
R,2�

↓
L,1) + H.c. (7)

with x = na and n = ±1,±2, . . . . The value of t⊥ in Eq. (7)
can be estimated numerically via diagonalizing the finite-sized
KM ribbon:

Ht⊥ = t⊥
∑

σ=↑,↓

∫
dx

∫
dy

[
c
†σ
1 (x,y)cσ

2 (x,y) + H.c.
]

≈ t⊥
∫

dy[�̄†↑
R,1(kF ,y)�̄↑

L,2(kF ,y)

+ �̄
†↓
R,2(kF ,y)�̄↓

L,1(kF ,y)] + H.c. (8)

⊥t ⊥t

1

2

bulk

FIG. 6. (Color online) Schematic diagram for the interedge hop-
ping term t⊥ (red or blue dashed line).
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The Ht⊥ turns out to be important in our RG analysis on
the stability of the helical edge states (see below). The
magnitude of t⊥ can be estimated via the overlap integral [32]
of the opposite edge state wave functions through exact
diagonalization of the tight-binding KM model at a finite-sized
ribbon [see Eq. (8)] [33]:

t⊥ ≈ t

∫ L

0
dy[�̄∗↑

R,1(y)�̄↑
L,2(y) + �̄

∗↓
L,1(y)�̄↓

R,2(y) + c.c.],

(9)
where we have dropped the kF dependence in �̄σ

L/R,α(kF ,y) in
Eq. (9). At half-filling, kF a = ±π , hence e2ikF x = 1 and Ht⊥
can in general survive. However, N = even and N = odd lead
to different results in this case as explained below.

For N = even, breaking of the sublattice translational
invariance at the boundaries results in a finite t⊥. This leads
to opening up a gap 
 in the excitation spectrum at the Dirac
point when combining Eqs. ((4)) and (7):

ε(k − π/a) ≈ ±
√

v2
F (k − π/a)2 + (
/2)2 (10)

with 
 = 2t⊥. We numerically analyzed the gap 
 as shown
in Fig. 7. The existence of a finite t⊥ not only agrees with the
energy gap at the Dirac point, it also explains the hybridization
of the left and right moving edge states that we found in
numerics as the eigenstates of the edge states in the presence
of t⊥ are linear combinations of left and right moving edge
states. It is clear from Fig. 7(a) that the magnitude of the gap
decreases with increasing the ribbon size L. In fact, it shows
an exponential decay [see Fig. 7 (b)]:


 ≈ 
0e
−αL (11)

with α being the decay constant.
Note that the decay of the small gap 
 was found to be

power-law fashion in Ref. [19] by a different (analytical)
approach based on the analytical eigenstates for KM model

14π/15 π 16π/15
ka

-0.2

-0.1

0

0.1

0.2

   
  /

 t

  4-ZGNR
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10-ZGNR
12-ZGNR

4 6 8 10 12
N

10
-10

10
-8
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-6

10
-4

10
-2

10
0

Δ 
 / 

t

λ/t = 0.1
λ/t = 0.2
λ/t = 0.3
λ/t = 0.4
λ/t = 0.5

(a) (b)

ε

FIG. 7. (Color online) (a) Energy spectrum ε vs momentum k

of the topological edge states of the finite-sized (N zigzag chains)
Kane-Mele model on a zigzag ribbon of honeycomb lattice near the
Dirac point ka = π for different ribbon sizes. Here, we set t = 1,
λSO/t = 0.5. (b) Energy gap 
 at the Dirac point as a function of N

for different values of λSO.

on 2D honeycomb lattice. With increasing λSO, we find the
magnitude of 
 increases with increasing λSO, which comes
as a result of the increase in bulk band gap 
SO. We show in
Sec. IV that this gaped phase corresponds to the charge and
spin insulating (or II) phase. In the limit of infinite ribbon width
L → ∞, the gap 
 vanishes and the gapless Dirac spectrum is
recovered. However, for N = odd, the sublattice translational
symmetry at boundaries leads to cancellations in the overlap
integral Eq. (9) between sublattices A and B.

At a generic filling away from half-filled, the oscillatory
phase factor e2ikF x in t⊥ term results in cancellations upon
averaging over x and Ht⊥ hence vanishes. As shown below,
we also numerically confirmed this result via Eq. (9). Though
the Ht⊥ term survives only for N = even and at half-filling,
as shown below, additional two-particle scattering terms are
generated via second-order interedge tunnelings, which play
an important role in all above-mentioned cases in our stability
analysis of the helical edge states in KMH ribbon.

B. The Kane-Mele Hubbard model on a zigzag ribbon

Based on the above results for the noninteracting KM
model on a finite-sized zigzag ribbon, we now perform
an analytical analysis via perturbative RG approach on the
weakly interacting KM model (the KM Hubbard model) by
including a weak on-site Hubbard U term in HKM. Upon
including the on-site Hubbard U term, the Hamiltonian of
the Kane-Mele-Hubbard (KMH) model reads

HKMH = HKM + HU,

HU = U

∫
dx

∫
dy[n↑(x,y)n↓(x,y)], (12)

nσ (x,y) = c†σ (x,y)cσ (x,y).

To simplify our calculations, we consider HKM approximately
as three different contributions: (i) the well-localized edge
state Hedge, (ii) the insulating bulk states Hb, and (iii) a weak
coupling between edge and the bulk states Ht ′ due to the finite-
size effect:

HKM ≈ Hedge + Hb + Ht ′ , (13)

where the edge part Hedge is defined in Eq. (4), the bulk part
Hb of HKM is given by

Hb =
∑

k,α=↑,↓
HKM

(
cα
b (k),c†,αb (k)

)
, (14)

and the edge-bulk overlap term Ht ′ reads

Ht ′ = t ′
∫

dx[e−ikF x�
†↑
R,1c

↑
b,1(x) + eikF x�

†↓
L,1c

↓
b,1(x)

+ e−ikF x�
†↓
R,2c

↓
b,2(x) + eikF x�

†↑
L,2c

↑
b,2(x)], (15)

where t ′ ∼ O(t,λSO). where cσ
b,1(2)(x) stands for the bulk

electron operators near edge 1(2). We further sim-
plify the Hubbard U term HU in Eq. (12), and de-
compose it into the edge HU,e and the bulk HU,b
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contributions as

HU = HU,e + HU,b,

HU,e = U

∫
dx

∑
i=1,2

[n↑
i (x)n↓

i (x)], (16)

HU,b = U

∫
dx

∫
dy[n↑

b (x,y)n↓
b (x,y)].

Here, i = 1(2) refers to the top (bottom) edge, cα
b (k) is

the electron destruction operator in the bulk. Also, the Hb

term, representing the KM model of the bulk electrons,
shows an energy dispersion Eb(k) with an energy gap 
so ∼
6
√

3λSO [17]. For the periodic 2D KM model, Eb(k) has been
shown to be (see Ref. [17])

Eb(k) = ±
√

|gk|2 + γ 2
k ,

gk = t

√
3 + 2 cos(

√
3ky) + 4 cos(

√
3ky/2) cos(3kx/2),

γk = λSO[− sin(
√

3ky) + 2 cos(3kx/2) sin(
√

3ky/2)].

(17)

To simplify our analysis, we assume here the bulk bands are
well-separated by the bulk gap 
SO in the presence of a finite
spin-orbit coupling λSO, and |U | � λSO. We rewrite the on-site
Hubbard U term along the edges, HU,e, by the current operators
defined below for the ease of renormalization group analysis
in the bosonization language [34,35]:

J
ρ

L(R) =
∑
i=1,2

J
ρ

L(R),i , J
ρ

L,1(2) = �
†↓(↑)
L,1(2)�

↓(↑)
L,1(2),

(18)
J

ρ

R,1(2) = �
†↑(↓)
R,1(2)�

↑(↓)
R,1(2),

�J a=x,y,z

L(R) = �
†α
L(R) �σa

αβ�
β

L(R).

In this bases, HU,e is written as

HU,e = Hρ + Hz
σ , Hρ = gρ

∫
dxJ

ρ

LJ
ρ

R ,

(19)

Hz
σ = gz

σ

∫
dx �J z

L
�J z
R,

where J
ρ

R/L is the U(1) scalar current operator and �J z
L(R) =

1
2 [�†↑

L,2(R,1)�
↑
L,2(R,1) − �

†↓
L,1(R,2)�

↓
L,1(R,2)] is the z component

of the SU(2) vector current operator �J a=x,y,z

L(R) . gρ and gz
σ take the

following bare (initial) values in the context of renormalization
group analysis: gρ(μ0) ≡ gρ,0 = U/2, gz

σ (μ0) ≡ gz,0
σ = −2U

with μ0 being the bandwidth of the tight-binding KM model.
We now turn our attention to Ht ′ term in Eq. (13).

Integrating out the bulk electrons cα
b in Eqs. (14) and (15),

an effective interedge tunneling term Ht⊥ as shown in Eq. (7)
is generated where t⊥ ∼ Dbulk(t ′)2/
SO with Dbulk being the
average electron density of states in the bulk. The estimation
for t⊥ here can be compared to that in Eq. (9) via numerical
diagonalization of the KM ribbon. Note that the interedge
hopping t⊥ (or the bulk gap 
SO) is enhanced with increasing
spin-orbit coupling λSO: t⊥ ∝ (t ′)2/
SO ∝ λ2

SO/
SO ∝ λSO

[see Fig. 7(b)]. Apart from Ht⊥ , the linear term in t⊥, for both
half-filling and away from half-filling cases, Ht⊥ term will
generate through the second order perturbation theory [36] the
following two two-particle scattering terms which turn out to

(a) (b)

1

2

bulk

1

2

bulk

g
um gσ

FIG. 8. (Color online) Schematic diagrams for (a) the interedge
umklapp gum (red and blue arrows) and (b) the interedge spin-flip g⊥

σ

processes.

be important in the stability analysis of topological edge states:

H̃t⊥ = Hum + H⊥
σ ,

Hum = gum

∫
dx

[
ei4kF x

[
�

†↑
R,1�

†↓
R,2�

↑
L,2�

↓
L,1

+ 1

2
(�†↑

R,1(x)�†↑
R,1(x + a)�↑

L,2(x)�↑
L,2(x + a)

+�
†↓
R,2(x)�†↓

R,2(x + a)�↓
L,1(x)�↓

L,1(x + a))
]

+ H.c.
]
,

H⊥
σ = g⊥

σ

∫
dx(J+

L J−
R + H.c.), (20)

where Hum and H⊥
σ represent for the interedge umklapp and

interedge spin-flip terms, respectively (see Fig. 8), and the
transverse components of the SU(2) vector current operators
J+

L/R , J−
L/R are defined as

J+
L(R) ≡ �J x

L(R) + i �J y

L(R) = �
†↑
L,2(R,1)�

↓
L,1(R,2),

(21)
J−

L(R) ≡ �J x
L(R) − i �J y

L(R) = �
†↓
L,1(R,2)�

↑
L,2(R,1).

Similar to Eq. (8), the bare couplings for H⊥
σ and Hum,

gum(μ0) ≡ g0
um and g⊥

σ (μ0) ≡ g⊥,0
σ can be estimated numeri-

cally as

g0
um ≈ t

4

∫ L

0
dy

[
�

∗↑
R,1(y)�∗↓

R,2(y)�↑
L,2(y)�↓

L,1(y)

+ 1

2
(�∗↑

R,1(y)�∗↑
R,1(y)�↑

L,2(y)�↑
L,2(y)

+�
∗↓
R,2(y)�∗↓

R,2(y)�↓
L,1(y)�↓

L,1(y)) + c.c.

]
,

g⊥,0
σ ≈ t

2

∫ y

0
dy[�∗↑

L,2(y)�↓
L,1(y)�∗↓

R,2(y)�↑
R,1(y) + c.c.].

(22)

Note that the interedge umklapp term Hum depends sensi-
tively on the electron filling factor. At half-filling, ei4kF x = 1,
Hum therefore in general survives. For N = even, we find
−g0

um = g⊥,0
σ = t2

⊥/t via the energy gap 
 at the Dirac point.
For N = odd, by substituting the edge state wave functions
that we numerically obtained based on the tight-binding KM
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t/

FIG. 9. (Color online) The exponential decay of t̄⊥ as a function
of odd number of zigzag chains N .

ribbon into Eq. (22), we find −g0
um = g⊥,0

σ ≡ t̄2
⊥/t , where

t̄2
⊥ ≈ t2

∫ L

0
dy|�↑

R,1(y)|2|�↑
L,2(y)|2. (23)

Note that though the first-order interedge hopping t⊥ term
for N = odd vanishes due to sublattice symmetry mentioned
above, the second order interedge hopping processes with
bare couplings defined in Eq. (23) can, in general, survive
due to constructive quantum interference between edge state
wave functions in the overlap integral. This result has been
confirmed numerically via Eq. (24) based on eigenvector
analysis of the KM ribbon. We further find numerically that t̄⊥
shows an exponential decay with increasing the ribbon width
L, similar to the case for N = even:

t̄⊥ ∝ e−γkL (24)

with γk being the decay constant (see Fig. 9). Note that at half-
filling, γk=π/a � 1 (or t⊥/t � 1) due to the well-localized
edge states.

When the system is away from half-filling, however, the
oscillatory factor ei4kF x in Hum leads to cancellations upon
summing over x, and therefore Hum term vanishes completely.
Nevertheless, H⊥

σ term still survive: g⊥,0
σ ≡ t̄2

⊥/t .
Note that similar two-particle scattering processes H⊥

σ and
Hum terms have been considered in Ref. [22] in the context
of the tunneling between helical edge states in a quantum
point contact (QPC) as well as in Ref. [37]. However, the
authors in Ref. [22] studied the effect of interedge single-
and two-particle scattering processes on the helical edge
states for a fixed electron-electron interactions (or Luttinger
parameter K), while in Ref. [37], the authors did not specify
the origins of these two-particle scattering terms. By contrast,
the two-particle scatterings we consider here come as a result of
second-order interedge tunnelings. Furthermore, we treat the
combined effects of the interedge two-particle scatterings H⊥

σ ,
Hum contributed from the interedge hopping Ht⊥ as well as Hρ ,
Hz

σ terms via on-site Hubbard U term in the weak-coupling
limit on equal-footing.

Combining Eqs. (7) and (19)–(21), the effective Hamilto-
nian of two weakly coupled helical edge states is therefore

given by

H eff
edge = Hedge + Ht⊥ + HU,e + H̃t⊥

= Hedge + Ht⊥ + H⊥
σ + Hz

σ + Hρ + Hum, (25)

where Hedge can be re-expressed in terms of the scalar and
vector current operators, similar to that for an one-dimensional
noninteracting electrons at half-filling [34,35]:

Hedge =
∫

dx

[
π

2
vc

F

∑
i=1,2

(
J

ρ

L,iJ
ρ

L,i + J
ρ

R,iJ
ρ

R,i

)

+ 2π

3
vs

F ( �JL · �JL + �JR · �JR)

]
(26)

with the bare values for the Fermi velocities in the charge
and spin sectors given by vc

F = vs
F = vF . Note that our

effective Hamiltonian for the edges Eq. (25) describes two
weakly coupled helical Luttinger liquids. In particular, Hedge,
describing two noninteracting helical edge states, exhibits
U (1) × SU (2) symmetry; while as the combined transverse
and z component of the vector current operator product
H⊥

σ + Hz
σ term, describing the couplings between (H⊥

σ ) and
within (Hz

σ ) the two edges, breaks the SU(2) spin rotational
symmetry down to Z2 symmetry as gum �= g⊥

σ in general
[see Eqs. (20) and (21)]. Our effective model for the weakly
coupled helical Luttinger liquids Hedge can be characterized
as a one-dimensional fermionic Hubbard model with SU(2)
spin-anisotropic interactions [17,34,35]. The breaking of the
SU(2) symmetry of the model comes as a result of the Hubbard
U or interedge hopping term at the edges [see Eq. (12)].

III. RG ANALYSIS AND PHASE DIAGRAM OF THE
KMH MODEL

We now analyze Eq. (25) via renormalization group
approach to understand the stability of the edge states in
the presence of Hubbard interactions. Note that the Hamil-
tonian (25) is closely related to the spin anisotropic Hubbard
model for one-dimensional electrons where electron-electron
interactions break the SU(2) symmetry [34,35]. Following the
similar RG analysis to Refs. [34,35], we may separate the four
couplings (gρ,gum,g⊥

σ ,gz
σ ) into two pairs belonging to the spin

sector (gz
σ ,g⊥

σ ) and the charge sector (gum,gρ), respectively.
Under RG transformations, these couplings exhibit the prop-
erty of spin-charge separation, i.e., the renormalization of the
couplings in the spin and charge sectors will remain in its
own sector. We shall also analyze the single-particle interedge
hopping Ht⊥ term under RG. Below, we separately discuss the
RG scaling equations for the half-filled and for a generic filling
away from half-filling for both N = even and N = odd.

We summarize our results in Table I. For width of the
ribbon L → ∞, the interedge hopping term vanishes. The
relevant perturbations are given by Eq. (19) only. In this
two-dimensional limit, the TI phase at half-filling is unstable
against the charge gaped but spin gapless (IC) phase [22]
for arbitrary U > 0, while it is stable away from half-filling.
Details for this case are discussed in Ref. [22].
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TABLE I. Summary of RG analysis on the Kane-Mele Hubbard model on a zizag ribbon. “?” refers that the phase transition type is not
specified in this work.

Category Phase Transition Critical Point/Line Phase transition type RG flow figure

N = even, at half-filling TI↔II U = t⊥ = 0 ? Fig. 10
N = even, away from half-filling TI↔CI t2

⊥/t = 2U KT Fig. 12
TI↔CI U = t̄⊥ = 0 ?
CI↔II t̄2

⊥/t = −U/2 KT
N=odd, at half-filling II↔IC t̄2

⊥/t = 2U KT Fig. 15
IC↔TI U = t̄⊥ = 0 ?
TI↔II U = t̄⊥ = 0 ?

N = odd, away from half-filling TI↔CI t̄2
⊥/t = 2U KT Fig. 17

A. N = even

1. At half-filling

As shown previously, at half-filling (kF a = ±π ), the KM
model for a finite-sized zigzag ribbon induces a finite interedge
hopping term, t⊥ �= 0. It can be shown that under RG
transformation [34], Ht⊥ in Eq. (7) is a relevant operator with
scaling dimension [t⊥] = −1. Hence, the RG scaling equation
reads [34]

dt⊥
d ln μ

= −t⊥, (27)

where μ is the running cutoff in energy. Under RG transfor-
mation, the running cutoff scale μ is lowered from μ0 > 0 to
zero. It is clear that t⊥ flows to a strong coupling fixed point,
t⊥(μ = 0) = ∞. As a result, both g⊥

σ and gum become relevant
under RG as their magnitudes are proportional to t2

⊥. When the
two-particle spin-flip processes g⊥

σ term becomes relevant, a
spin gap is opening up, while a charge gap develops when
the two-particle backscattering gum term becomes relevant.
Therefore the t⊥ → ∞ fixed point corresponds to the charge
and spin gaped (or charge and spin insulating II) phase (see
Fig. 10).

2. Away from half-filling

We now proceed to address the case of finite doping
away from half-filling, kF a �= π . In this case, the interedge
hopping term Ht⊥ and umklapp term Hum vanish due to the
oscillatory exponential factors e2ikF x and e4ikF x , respectively
(see Sec. II). The RG scaling equations for both finite-sized and

t 2
⊥  / t

TI
U / t

II

charge gaped, spin gaped

FIG. 10. Quantum phase diagram of the Kane-Mele Hubbard
model at half-filling for N = even as a function of U/t and t2

⊥/t . The
helical topological edge states (TI phase) is stable only at U = t⊥ = 0
(dark circle). For a finite ribbon size, t⊥ �= 0, the system flows to a
charge and spin gaped (charge and spin insulating or II) phase.

infinite-sized ribbons are reduced to [34,35]

dgρ

d ln μ
= 0, (28)

in the charge sector with g0
ρ = U and

dg⊥
σ

d ln μ
= −g⊥

σ gz
σ ,

dgz
σ

d ln μ
= −(g⊥

σ )2, (29)

in the spin sector with (gz,0
σ ,g⊥,0

σ ) = (−2U,t2
⊥/t). Due to the

absence of Ht⊥ and Hum terms in this case, the coupling gρ is
marginal under RG up to the second order in gum [see Eq. (32)],
which is at the level of accuracy in our RG analysis for all other
couplings.

Via Eq. (28), it is clear that the system will not develop a
charge gap under RG as gρ does not diverge: gρ(μ) = g0

ρ � 1.
The RG flows in the spin sector, however, suggest that the
topological edge states may undergo the Kosterlitz-Thouless
transition upon increasing t⊥ to a charge gapless but spin gaped
(CI) phase characterized by the following fixed point:

CI : g⊥,0
σ + gz,0

σ > 0, gz
σ (μ → 0), g⊥

σ (μ → 0) → ∞,

gρ(μ → 0) = 0, gum(μ → 0) = g0
um � 1. (30)

The TI-CI phase boundary is set by the separatrix g⊥
σ + gz

σ = 0
(or when t2

⊥/t = 2U , see Fig. 11). The helical edge states are
therefore stable for t2

⊥/t < 2U , while it is unstable against the

CI phase for U <
t2
⊥

2t
. Combing RG flows in both charge and

spin sectors, this spin gaped phase corresponds to the charge
conducting but spin insulating (or CI) phase (see Fig. 12).

B. N = odd

1. At half-filling

At half-filling, kF a = ±π and t⊥ = 0, all the four couplings
(gρ,gum,g⊥

σ ,gz
σ ) exist in general under RG transformations.

Their initial (bare) couplings at μ = μ0 are given by:
(g0

um,g0
ρ) = (−t̄2

⊥/t,U/2), (gz,0
σ ,g⊥,0

σ ) = (−2U,t̄2
⊥/t). The RG

scaling equations in this case can be casted in a spin-charge
separated form [34,35] and are readily obtained via the
operator product expansion (OPE) for the current algebra in the
one-dimensional Hubbard model with broken SU(2) symmetry
(see, for example, Appendix in Chap. 17 of Ref. [34]):

dgρ

d ln μ
= −g2

um,
dgum

d ln μ
= −gumgρ, (31)
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g

g

TI

σ

z
σ

CI

t2(−2U, t   /     )

FIG. 11. (Color online) The RG flows of the Kosterlitz-Touless
type for the spin sector (g⊥

σ ,gz
σ ) of the zigzag Kane-Mele Hubbard

ribbon for N = even away from half-filling. The black circle stands
for the initial (bare) couplings. The arrows indicate the directions
of the RG flows upon decreasing the curt-off scale μ from μ0. The
red line represents a line of fixed points in the TI phase, the TI-CI
phase boundary is defined by the separatrix line (thick black arrow).
Note that the coupling gρ does not flow under RG in this case [see
Eq. (34)].

in the charge sector and

dg⊥
σ

d ln μ
= −g⊥

σ gz
σ ,

dgz
σ

d ln μ
= −(g⊥

σ )2, (32)

in the spin sector.
As shown in Figs. 13 and 14, the generic RG flows of

Eqs. (31) and (32) are of the Kosterlitz-Thouless (KT) type.
In the charge sector, the RG flows for gum and gρ with the
bare couplings (g0

um,g0
ρ) = (−t̄2

⊥/t,U/2) are always towards
either the strong-coupling charge and spin gaped II phase for
−2t̄2

⊥/t < U < 1
2 t̄2

⊥/t or towards the charge conducting and
spin insulating CI phase for U < −2t̄2

⊥/t . Similarly, in the
spin sector, the TI phase is unstable against either the II phase

t
2

t
2

U / t

/  t

KT

CI

TI

0

/ t = 2 U 

FIG. 12. (Color online) Quantum phase diagram of the Kane-
Mele Hubbard model away from half-filling for N = even as
functions of t2

⊥/t and U/t . The helical topological edge states (TI
phase) are unstable towards the charge conducting and spin insulating
CI phase for t2

⊥/t > 2U . The TI-CI quantum phase transition set by
the boundary t2

⊥/t = 2U is of the Kosterlitz-Thouless (KT) type (red
dashed arrows).

gρ

−g  um

2
_

t(U/2,  t    /   )

TICI

II

FIG. 13. (Color online) The RG flows of the Kosterlitz-Touless
type for the charge sector (gρ,gum) of the zigzag Kane-Mele Hubbard
ribbon at half-filling for N = odd. The black circle stands for the
initial (bare) couplings at (g0

ρ, −g0
um) = (U/2,t̄2

⊥/t). The arrows
indicate the directions of the RG flows upon decreasing the curt-off
scale μ from μ0. The red line represents a line of fixed points in the CI
phase, the CI-II boundary is defined by the separatrix line (thick black
arrow) and its quantum transition is of the Kosterlitz-Thouless (KT)
type. The topological TI phase is stable only at the origin U = 0 = t̄⊥.

for −gz,0
σ < g⊥,0

σ (i.e., t̄2
⊥/t > 2U ) or against a charge gaped

but spin gapless IC phase for −gz,0
σ > g⊥,0

σ (i.e., t̄2
⊥/t < 2U )

(see Fig. 14). Therefore the TI phase is unstable against
any infinitesimal U �= 0 and t̄⊥ �= 0. The II-IC and II-CI
quantum phase transitions are of the KT type. Combining
the RG flows for both spin and charge sectors, we obtain the
global phase diagram shown in Fig. 15 for N = odd and at

g

gσ

z
σ

_

t2(−2U, t   /    )

TIIC

II

FIG. 14. (Color online) The RG flows of the Kosterlitz-Touless
type for the spin sector (g⊥

σ ,gz
σ ) of the zigzag Kane-Mele Hubbard

ribbon for N = odd at half-filling. The black circle stands for the
initial (bare) couplings at (gz,0

σ ,g⊥,0
σ ) = (−2U,t̄2

⊥/t). The arrows
indicate the directions of the RG flows upon decreasing the curt-off
scale μ from μ0. The red line represents a line of fixed points in the IC
phase, the II-IC phase boundary is defined by the separatrix line (thick
black arrow) and its quantum transition is of the Kosterlitz-Thouless
(KT) type. The topological TI phase is stable only at the origin
U = 0 = t̄⊥.
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t
2

t
2_

/ t = 2 U 

t
2_

/ t = − U /2 

KT

U / t

/  t

KT

IC

_

CI

II

TI

FIG. 15. (Color online) Quantum phase diagram of the zigzag
Kane-Mele Hubbard ribbon for N = odd at half-filling as a function
of U/t and t̄2

⊥/t . The helical topological edge states (TI) are unstable
against any U �= 0 or t̄⊥ �= 0, and towards the IC, CI, and II phases for
U > t̄2

⊥/(2t), U < −2t̄2
⊥/t and −2t̄2

⊥/t < U < 1
2 t̄2

⊥/t , respectively.
The II-IC and II-CI phase transitions are of the Kosterlitz-Thouless
(KT) type (red dashed arrows).

half-filling:

II : −2t̄2
⊥/t < U <

1

2
t̄2
⊥/t,

gρ(μ → 0), gum(μ → 0) → ∞,

t̄2
⊥/t > 2U, gz

σ (μ → 0), g⊥
σ (μ → 0) → ∞;

IC : U >
1

2
t̄2
⊥/t > 0,

gz
σ (μ → 0), g⊥

σ (μ → 0) → 0, (33)

gρ(μ → 0), gum(μ → 0) → ∞;

CI : U < −2t̄2
⊥/t < 0,

gz
σ (μ → 0), g⊥

σ (μ → 0) → ∞,

gρ(μ → 0), gum(μ → 0) � 1.

The topological edge states (TI) are unstable against the
charge and spin insulating II phase for −2t̄2

⊥/t < U < 1
2 t̄2

⊥/t ,
against the charge insulating abd spin conducting IC phase for
U > 1

2 t̄2
⊥/t > 0, and against the charge conducting and spin

insulating CI phase for U < −2t̄2
⊥/t < 0. Therefore the TI

phase is unstable for any U �= 0 or t̄⊥ �= 0. The II-IC and II-CI
quantum phase transitions are of the KT type. Our results on
the stability of the TI phase for KM Hubbard model on a zigzag
ribbon are different from those in Ref. [22] through bosonizing
the infinite-sized helical Luttinger liquid at a fixed interaction

strength set by the Luttinger parameter K =
√

1− U
2πvF

1+ U
2πvF

. There,

they showed that TI is stable for 1/2 < K < 2. The difference
lies in the fact that the interedge tunneling t⊥ arising from
the finite-size effect plays an important role here while it was
absent in Ref. [22].

2. Away from half-filling

We now proceed to address the case of finite doping away
from half-filling, kF a �= π . In this case, the umklapp term Hum

vanishes as mentioned in Sec. II. The RG scaling equations

g

g

TI

σ

z
σ

CI

2_
t(−2U, t   /    )

FIG. 16. (Color online) The RG flows of the Kosterlitz-Touless
type for the spin sector (g⊥

σ ,gz
σ ) of the zigzag Kane-Mele Hubbard

ribbon away from half-filling for N = odd. The black circle stands
for the initial (bare) couplings. The arrows indicate the directions
of the RG flows upon decreasing the curt-off scale μ from μ0. The
red line represents a line of fixed points in the TI phase, the TI-CI
phase boundary is defined by the separatrix line (thick black arrow).
Note that the coupling gρ does not flow under RG in this case [see
Eq. (34)].

reduce to

dgρ

d ln μ
= 0, (34)

in the charge sector with g0
ρ = U and

dg⊥
σ

d ln μ
= −g⊥

σ gz
σ ,

dgz
σ

d ln μ
= −(g⊥

σ )2, (35)

in the spin sector with (gz,0
σ ,g⊥,0

σ ) = (−2U,t̄2
⊥/t). Note that

via the same argument that leads to Eq. (29), the coupling gρ

here is marginal under RG up to the second order in gum.
Via Eq. (34), it is clear that the system will not develop a

charge gap under RG as gρ does not diverge: gρ(μ) = g0
ρ � 1.

The RG flows in the spin sector [see Eq. (35)], however,

t
2

t
2

U / t

/  t

KT

CI

TI

0

_

_

/ t = 2 U 

FIG. 17. (Color online) Quantum phase diagram of the zigzag
Kane-Mele Hubbard ribbon away from half-filling for N = odd as
functions of t̄2

⊥/t and U/t . The helical topological edge states (TI
phase) are unstable towards the charge conducting and spin insulating
CI phase for t̄2

⊥/t > 2U . The TI-CI quantum phase transition set by
the boundary t̄2

⊥/t = 2U is of the Kosterlitz-Thouless (KT) type (red
dashed arrows).
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suggest that the topological edge states may undergo the
Kosterlitz-Thouless transition upon increasing t̄⊥ to a spin
gaped phase. Combing RG flows in both charge and spin
sectors, this spin gaped phase corresponds to the charge
conducting but spin insulating (or CI) phase (see Fig. 16). The
TI-CI phase boundary is set by the separatrix g⊥

σ + gz
σ = 0

(or when t̄2
⊥/t = 2U , see Fig. 16). The helical edge states are

therefore stable for t̄2
⊥/t < 2U , while it is unstable against the

CI phase for U <
t̄2
⊥

2t
(see Fig. 17).

IV. INSTABILITIES, ORDERINGS, AND CORRELATION
FUNCTIONS OF THE KANE-MELE-HUBBARD MODEL

We now investigate further the nature of the TI, CI,
IC, and II phases. In particular, we focus on instabil-
ities towards various orderings and correlation functions
in these phases. Various correlation functions with spe-
cific orderings can be defined for this purpose: (i) the
charge-density-wave OCDW correlation, (ii) the spin-density-
wave Oa=x,y,z

SDW correlation, and (iii) the singlet OSS

and triplet Oa=x,y,z

TS superconducting pairing operators,
where [35]

OCDW = �
†↑
R,1(x)�↑

L,2(x) + �
†↓
R,2(x)�↓

L,1(x),

Ox
SDW = �

†↑
R,1(x)�↓

L,1(x) + �
†↓
R,2(x)�↑

L,2(x),

Oy

SDW = −i[�†↑
R,1(x)�↓

L,1(x) − �
†↓
R,2(x)�↑

L,2(x)],

Oz
SDW = �

†↑
R,1(x)�↑

L,2(x) − �
†↓
R,2(x)�↓

L,1(x),
(36)

OSS = �
†↑
R,1(x)�†↓

L,1(x) + �
†↑
L,2(x)�†↓

R,2(x),

Ox
TS = �

†↑
R,1(x)�†↑

L,2(x) + �
†↓
L,1(x)�†↓

R,2(x),

Oy

TS = −i[�†↑
R,1(x)�†↑

L,2(x) − �
†↓
L,1(x)�†↓

R,2(x)],

Oz
TS = �

†↑
R,1(x)�†↓

L,1(x) − �
†↑
L,2(x)�†↓

R,2(x).

Note that some of the operators defined above involve helical
electrons on both edges, different from those defined for a
standard Luttinger liquid in one-dimensional interacting elec-
trons where all electrons are along the same one-dimensional
wire [34,35]. To investigate the above correlation functions, it
is useful to bosonize the Hamiltonian Eq. (25) as [22]

H eff
edge =

∫
dx

[ ∑
α=c,s

vα

2

(
Kα(∂x�α)2+ 1

Kα

(∂x�α)2

)

+ t⊥
2πa0

cos(
√

2π�c + 2kF x) cos(
√

4π�s)

+ g⊥
σ

(2πa0)2
cos(2

√
2π�s) + 1

8π

gz
σ

(2πa0)2

×(∂x�s − ∂x�s) + gum

(2πa0)2
cos(2

√
2π�c + 4kF x)

+ 1

4

gρ

(2πa0)2

∑
α=c,s

((∂x�α)2 − (∂x�α)2)

]
,

where via bosonization formulas [22,34,35],

�Lσ = 1√
2πa0

ησ e−i
√

4πφLσ ,

�Rσ = 1√
2πa0

ησ ei
√

4πφRσ ,

and the bosonic fields defined as

�σ = φLσ + φRσ , �σ = φLσ − φRσ ,

�c(s) = 1√
2

(φ↑ ± φ↓) , �c(s) = 1√
2

(�↑ ± �↓).

with ησ being the Klein factor and a0 being the short-distance
cutoff. In terms of these boson fields, the correlation functions
mentioned above are given by

OCDW = e−2ikF x

πa0
e−i

√
2π�c cos(

√
2π�s),

Ox
SDW = e−2ikF x

πa0
e−i

√
2π�c cos(

√
2π�s),

Oy

SDW = −e−2ikF x

πa0
e−i

√
2π�c sin(

√
2π�s),

Oz
SDW = i

e−2ikF x

πa0
e−i

√
2π�c sin(

√
2π�s),

(37)

OSS = 1

πa0
ei

√
2π�c cos(

√
2π�s),

Ox
TS = 1

πa0
ei

√
2π�c cos(

√
2π�s),

Oy

TS = − 1

πa0
ei

√
2π�c sin(

√
2π�s),

Oz
TS = 1

πa0
ei

√
2π�c sin(

√
2π�s).

Based on the phase diagram via weak-coupling RG and the
bosonized form of the Hamiltonian, we analyze below the
instabilities and the behaviors of various correlation functions
for (i) the charge and spin gapless (TI) topological edge states,
(ii) the CI phase, (iii) the IC phase, and (iv) the II phase.

1. The topological edge states (TI) phase

In the gapless topological edge states—the charge and
spin conducting state—various correlation functions can be
computed via correlation functions of the boson fields, given
by

〈O†
CDW(0)OCDW(r)〉 ∼ e−2ikF x

(
1

r

)Kc+Ks

∼ e−2ikF x

(
1

r

)1/K+K

,

〈
O†x

SDW(0)Ox
SDW(r)

〉 ∼ e−2ikF x

(
1

r

)Kc+1/Ks

∼ e−2ikF x

(
1

r

)2K

,
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〈
O†y

SDW(0)Oy

SDW(r)
〉 ∼ e−2ikF x

(
1

r

)Kc+1/Ks

∼ e−2ikF x

(
1

r

)2K

,

(38)〈
O†z

SDW(0)Oz
SDW(r)

〉 ∼ e−2ikF x

(
1

r

)Kc+Ks

∼ e−2ikF x

(
1

r

)1/K+K

,

〈O†
SS(0)OSS(r)〉 ∼

(
1

r

)1/Kc+Ks

∼
(

1

r

)2/K

,

〈
O†x

TS(0)Ox
TS(r)

〉 ∼
(

1

r

)1/Kc+1/Ks

∼
(

1

r

)K+1/K

,

〈
O†y

TS(0)Oy

TS(r)
〉 ∼

(
1

r

)1/Kc+1/Ks

∼
(

1

r

)1/K+K

,

〈
O†z

TS(0)Oz
TS(r)

〉 ∼
(

1

r

)1/Kc+Ks

∼
(

1

r

)1/(2K)

with Kc = K and Ks = 1/K in the helical Luttinger liq-
uid [22]. Note that in the conventional spinful Luttinger liquids
where Ks = 1, the above correlation functions get modified
accordingly [23,34,35].

2. The CI phase

Now, we analyze instability and correlation functions in the
charge conducting and spin insulating (CI) phase. As shown
in Eqs. (30) and ((37)), g⊥

σ ,gz
σ → ∞ while gρ,gum → 0 in

this phase. In the bosonized form of the Hamiltonian, this
implies that �s is pinned to a constant value [22,34,35]:
�s ∼ nπ/

√
8π . As a result, its conjugate variable �s is

disordered and exhibit exponentially decaying correlation
functions [34,35]. The corresponding leading correlation
functions have the following power-law behaviors:

〈O†
CDW(0)OCDW(r)〉 ∼

(
1

r

)Kc

∼
(

1

r

)K

,

(39)

〈O†
SS(0)OSS(r)〉 ∼

(
1

r

)1/Kc

∼
(

1

r

)1/K

.

Note that due to the disordered nature of the �s field, the
SDW as well as the TS orderings vanish: 〈O†x,y,z

SDW Ox,y,z

SDW〉 →
0,〈O†x,y,z

TS Ox,y,z

TS 〉 → 0. Therefore we find the leading instabil-
ities of the CI phase are towards the CDW and superconduc-
tivity (SC). For repulsive interactions K < 1 (or U > 0) that
we consider here, the CDW order is dominating over the SC
order as CDW correlators decay more slowly than that for SC
orders. However, for attractive interactions K > 1 (or U < 0),
it is the SC order that dominates the CI phase.

3. The IC phase

We now analyze the instability of the charge insulating
but spin conducting (IC) phase. It is clear from Eq. (37) that
�c field is pinned to a constant value in this phase: �c ∼
nπ/

√
8π . The correlation functions for the CDW and SDW

orderings are given by

〈O†
CDW(0)OCDW(r)〉 ∼

(
1

r

)Ks

∼
(

1

r

)1/K

,

〈
O†x

SDW(0)Ox
SDW(r)

〉 ∼
(

1

r

)1/Ks

∼
(

1

r

)K

,

(40)〈
O†y

SDW(0)Oy

SDW(r)
〉 ∼

(
1

r

)1/Ks

∼
(

1

r

)K

,

〈
O†z

SDW(0)Oz
SDW(r)

〉 ∼
(

1

r

)Ks

∼
(

1

r

)1/K

.

On the other hand, due to the pinning of the �c field,
its conjugate field �c is completely disordered. Hence
the SS and TS orderings are suppressed: 〈O†

SSOSS〉 → 0,
〈O†x,y,z

TS Ox,y,z

TS 〉 → 0. For repulsive Hubbard term U > 0 (or
K < 1), the SDW orderings along x− and y− directions
are the leading instabilities of this phase as their correlation
functions decay more slowly compared to the others. The
system shows quasi-long-ranged magnetic order. This phase
shares similarities to the Mott insulating phase in the sense
that interactions lead to a metal-insulator transition and at
the same time to a state with magnetic order. In fact, this
phase corresponds to the SDW phase found in the mean-field
approach of the KM Hubbard in Ref. [17]. For the attractive
Hubbard model U < 0 (or K > 1), however, the leading
instabilities go towards the CDW and SDW along the z axis.

4. The II phase

Finally, we analyze the charge and spin insulating II phase.
This phase occurs for a finite-sized ribbon at half-filling
where all the couplings—the interedge hopping term t⊥, the
umklapp term gum, scalar density-density interaction gρ , the
two-particle spin scattering terms g⊥,z

σ –become relevant under
RG, t⊥,gum,ρ,g

⊥,z
σ → ∞. From the bosonized Hamiltonian

Eq. (37), this phase requires the pinning of both �c and
�s fields at �c,s ≈ nπ/

√
2π , leading to exponential decay

of all the correlation functions associated with the orderings
in Eq. (36) except for the CDW ordering with a constant
correlator. Whether or not the II phase found here is related
to the spin-gaped, charge-gaped (similar to II phase) spin-
liquid phase found numerically via QMC in Refs. [14,15] or
furthermore to the Anderson’s resonant-valence-bond (RVB)
spin liquid need further investigations.

V. DISCUSSIONS AND CONCLUSIONS

Before we conclude, we would like to make a remark on
the possible realization of our system in experiments. Though
graphene has been originally proposed to be a candidate for
QSHIs [3,8,9], its negligible SO coupling makes it unpractical.
Nevertheless, there has been proposals based on density
functional theory and tight-binding simulations to significantly
increase the intrinsic spin-orbit coupling of the KM type
in graphene by doping heavy adatoms, such as indium or
thallium [38]. The KM Hubbard model and our results here
are therefore relevant for these adatom-doped graphene where
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a weak Coulomb repulsive interaction is expected and the
doping level is controllable via applying gate voltages.

In summary, we have studied the stability of the helical
edge states and quantum phases and phase transitions of
the Kane-Mele Hubbard (KMH) model on a finite-sized
zigzag ribbon of honeycomb lattice. We first focused on the
finite-size effect of the Kane-Mele (KM) zigzag ribbon in the
absence of the on-site Hubbard interaction. We reproduced
in the energy excitation spectrum the well-known Dirac-
dispersed topological edge states. In additions, due to the finite
ribbon size, we have shown that a finite interedge hopping
between two edge states exist, which falls off exponentially
with increasing ribbon width. This interedge hopping term
generates via second-order perturbation two important two-
particle scatterings: the interedge spin-flip and the interedge
backscattering (or the umklapp) terms. These three terms
lead to instabilities of the topological edge states. We further
analyzed the instabilities of the topological edge states, as
well as possible quantum phases and phase transitions upon
including a weak on-site repulsive Hubbard interaction on the
zigzag KM ribbon. Via perturbative RG approach we found the
combined effects from the interedge hopping and the on-site
Coulomb interactions lead to the instabilities of the topological

edge states (TI phase) against (i) the charge and spin insulating
II phase, (ii) the charge insulating but spin conducting IC
phase, and (iii) the charge conducting but spin insulating
CI phase, depending on N = even/odd, the electron density
(filling factor), and on the ratio of the Coulomb interaction
U and the interedge tunneling t⊥, U/t⊥. Via RG analysis we
found that the quantum phase transitions for TI-CI, II-IC, and
II-CI are of the Kosterlitz-Thouless type. Via bosonization
approach, we furthermore investigated the instabilities towards
new orderings, including the CDW, SDW and superconducting
orders by computing correlation functions of these orderings
in the helical edge states, as well as in the CI, IC, and II phases.
Our theoretical results can serve as a basis to investigate further
both theoretically and experimentally correlation effects or
Mott physics in interacting topological insulators.
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L. W. Molenkamp, X.-L. Qi, and S. C. Zhang, Science 318,
766 (2007); D. Hsieh, D. Qian, L. Wray, Y. S. HOr, R. J. Cava,
and M. Z. Hasan, Nature (London) 452, 970 (2008); D. Hsieh,
Y. Xia, L. Wray, D. Qian, A. Pal, J. H. Dil, F. Meier,
J. Osterwalder, G. Bihlmayer, C. L. Kane, Y. S. Hor, R. J. Cava,
and M. Z. Hasan, Science 323, 919 (2009); Y. Xia, D. Qian,
D. Hsieh, L. Wray, A. Pal, H. Lin, A. Bansil, D. Grauer, Y. S.
Hor, R. J. Cava, and M. Z. Hasan, Nat. Phys. 5, 398 (2009);
Y. L. Chen, J. G. Analytis, J.-H. Chu, Z. K. Liu, S.-K. Mo, X. L.
Qi, H. J. Zhang, D. H. Lu, 1 X. Dai, Z. Fang, S. C. Zhang, I. R.
Fisher, Z. Hussain, and Z.-X. Shen, Science 325, 178 (2009);
P. Roushan, J. Seo, C. V. Parker, Y. S. Hor, D. Hsieh, D. Qian,
A. Richardella, M. Z. Hasan, R. J. Cava, and A. Yazdani, Nature
(London) 460, 1106 (2009); D. Hsieh, Y. Xia, D. Qian, L. Wray,
J. H. Dil, F. Meier, L. Patthey, J. Osterwalder, A. V. Fedorov,
H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z.
Hasan, ibid. 460, 1101 (2009).

[8] F. D. M. Haldane, Phys. Rev. Lett. 61, 2015 (1988).
[9] C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 226801 (2005).

[10] B. A. Bernevig and S. C. Zhang, Phys. Rev. Lett. 96, 106802
(2006).

[11] L. Fu, C. L. Kane, and E. J. Mele, Phys. Rev. Lett. 98, 106803
(2007).

[12] C. Wu, B. A. Bernevig, and S. C. Zhang, Phys. Rev. Lett. 96,
106401 (2006); C. Xu and J. E. Moore, Phys. Rev. B 73, 045322
(2006).

[13] X.-L. Qi and S. C. Zhang, Phys. Today 63, 33 (2010).
[14] Z. Y. Meng, T. C. Lang, S. Wessel, F. F. Assaad, and

A. Muramatsu, Nature (London) 464, 847 (2010).
[15] M. Hohenadler, Z. Y. Meng, T. C. Lang, S. Wessel,

A. Muramatsu, and F. F. Assaad, Phys. Rev. B 85, 115132 (2012).
[16] Z. Y. Meng, H.-H. Hung, and T. C. Lang, Mod. Phys. Lett. B

28, 1430001 (2014).
[17] S. Rachel and K. Le Hur, Phys. Rev. B 82, 075106 (2010).
[18] M. Hohenadler and F. F. Assaad, Phys. Rev. B 85, 081106

(2012).
[19] M. Zarea, C. Büsser, and N. Sandler, Phys. Rev. Lett. 101,

196804 (2008).
[20] D. Zheng, G. M. Zhang, and Congjun Wu, Phys. Rev. B 84,

205121 (2011).
[21] S-L. Yu, X. C. Xie, and J.-X. Li, Phys. Rev. Lett. 107, 010401

(2011).
[22] Jeffrey C. Y. Teo, and C. L. Kane, Phys. Rev. B 79, 235321

(2009).
[23] B. Braunecker, C. Bena, and P. Simon, Phys. Rev. B 85, 035136

(2012).
[24] Jun Wen, Mehdi Kargarian, Abolhassan Vaezi, and Gregory

A. Fiete, Phys. Rev. B 84, 235149 (2011).
[25] P. A. Maksimov, A. V. Rozhkov, and A. O. Sboychakov, Phys.

Rev. B 88, 245421 (2013).
[26] S. Sachdev, Quantum Phase Transitions (Cambridge University

Press, Cambridge, UK, 2000); S. L. Sondhi, S. M. Girvin, J. P.
Carini, and D. Shahar, Rev. Mod. Phys. 69, 315 (1997).

035116-13

http://dx.doi.org/10.1103/RevModPhys.82.3045
http://dx.doi.org/10.1103/RevModPhys.82.3045
http://dx.doi.org/10.1103/RevModPhys.82.3045
http://dx.doi.org/10.1103/RevModPhys.82.3045
http://dx.doi.org/10.1103/RevModPhys.83.1057
http://dx.doi.org/10.1103/RevModPhys.83.1057
http://dx.doi.org/10.1103/RevModPhys.83.1057
http://dx.doi.org/10.1103/RevModPhys.83.1057
http://dx.doi.org/10.1103/PhysRevLett.95.146802
http://dx.doi.org/10.1103/PhysRevLett.95.146802
http://dx.doi.org/10.1103/PhysRevLett.95.146802
http://dx.doi.org/10.1103/PhysRevLett.95.146802
http://dx.doi.org/10.1126/science.1133734
http://dx.doi.org/10.1126/science.1133734
http://dx.doi.org/10.1126/science.1133734
http://dx.doi.org/10.1126/science.1133734
http://dx.doi.org/10.1103/PhysRevB.76.045302
http://dx.doi.org/10.1103/PhysRevB.76.045302
http://dx.doi.org/10.1103/PhysRevB.76.045302
http://dx.doi.org/10.1103/PhysRevB.76.045302
http://dx.doi.org/10.1038/nphys1270
http://dx.doi.org/10.1038/nphys1270
http://dx.doi.org/10.1038/nphys1270
http://dx.doi.org/10.1038/nphys1270
http://dx.doi.org/10.1126/science.1148047
http://dx.doi.org/10.1126/science.1148047
http://dx.doi.org/10.1126/science.1148047
http://dx.doi.org/10.1126/science.1148047
http://dx.doi.org/10.1038/nature06843
http://dx.doi.org/10.1038/nature06843
http://dx.doi.org/10.1038/nature06843
http://dx.doi.org/10.1038/nature06843
http://dx.doi.org/10.1126/science.1167733
http://dx.doi.org/10.1126/science.1167733
http://dx.doi.org/10.1126/science.1167733
http://dx.doi.org/10.1126/science.1167733
http://dx.doi.org/10.1038/nphys1274
http://dx.doi.org/10.1038/nphys1274
http://dx.doi.org/10.1038/nphys1274
http://dx.doi.org/10.1038/nphys1274
http://dx.doi.org/10.1126/science.1173034
http://dx.doi.org/10.1126/science.1173034
http://dx.doi.org/10.1126/science.1173034
http://dx.doi.org/10.1126/science.1173034
http://dx.doi.org/10.1038/nature08308
http://dx.doi.org/10.1038/nature08308
http://dx.doi.org/10.1038/nature08308
http://dx.doi.org/10.1038/nature08308
http://dx.doi.org/10.1038/nature08234
http://dx.doi.org/10.1038/nature08234
http://dx.doi.org/10.1038/nature08234
http://dx.doi.org/10.1038/nature08234
http://dx.doi.org/10.1103/PhysRevLett.61.2015
http://dx.doi.org/10.1103/PhysRevLett.61.2015
http://dx.doi.org/10.1103/PhysRevLett.61.2015
http://dx.doi.org/10.1103/PhysRevLett.61.2015
http://dx.doi.org/10.1103/PhysRevLett.95.226801
http://dx.doi.org/10.1103/PhysRevLett.95.226801
http://dx.doi.org/10.1103/PhysRevLett.95.226801
http://dx.doi.org/10.1103/PhysRevLett.95.226801
http://dx.doi.org/10.1103/PhysRevLett.96.106802
http://dx.doi.org/10.1103/PhysRevLett.96.106802
http://dx.doi.org/10.1103/PhysRevLett.96.106802
http://dx.doi.org/10.1103/PhysRevLett.96.106802
http://dx.doi.org/10.1103/PhysRevLett.98.106803
http://dx.doi.org/10.1103/PhysRevLett.98.106803
http://dx.doi.org/10.1103/PhysRevLett.98.106803
http://dx.doi.org/10.1103/PhysRevLett.98.106803
http://dx.doi.org/10.1103/PhysRevLett.96.106401
http://dx.doi.org/10.1103/PhysRevLett.96.106401
http://dx.doi.org/10.1103/PhysRevLett.96.106401
http://dx.doi.org/10.1103/PhysRevLett.96.106401
http://dx.doi.org/10.1103/PhysRevB.73.045322
http://dx.doi.org/10.1103/PhysRevB.73.045322
http://dx.doi.org/10.1103/PhysRevB.73.045322
http://dx.doi.org/10.1103/PhysRevB.73.045322
http://dx.doi.org/10.1063/1.3293411
http://dx.doi.org/10.1063/1.3293411
http://dx.doi.org/10.1063/1.3293411
http://dx.doi.org/10.1063/1.3293411
http://dx.doi.org/10.1038/nature08942
http://dx.doi.org/10.1038/nature08942
http://dx.doi.org/10.1038/nature08942
http://dx.doi.org/10.1038/nature08942
http://dx.doi.org/10.1103/PhysRevB.85.115132
http://dx.doi.org/10.1103/PhysRevB.85.115132
http://dx.doi.org/10.1103/PhysRevB.85.115132
http://dx.doi.org/10.1103/PhysRevB.85.115132
http://dx.doi.org/10.1142/S0217984914300014
http://dx.doi.org/10.1142/S0217984914300014
http://dx.doi.org/10.1142/S0217984914300014
http://dx.doi.org/10.1142/S0217984914300014
http://dx.doi.org/10.1103/PhysRevB.82.075106
http://dx.doi.org/10.1103/PhysRevB.82.075106
http://dx.doi.org/10.1103/PhysRevB.82.075106
http://dx.doi.org/10.1103/PhysRevB.82.075106
http://dx.doi.org/10.1103/PhysRevB.85.081106
http://dx.doi.org/10.1103/PhysRevB.85.081106
http://dx.doi.org/10.1103/PhysRevB.85.081106
http://dx.doi.org/10.1103/PhysRevB.85.081106
http://dx.doi.org/10.1103/PhysRevLett.101.196804
http://dx.doi.org/10.1103/PhysRevLett.101.196804
http://dx.doi.org/10.1103/PhysRevLett.101.196804
http://dx.doi.org/10.1103/PhysRevLett.101.196804
http://dx.doi.org/10.1103/PhysRevB.84.205121
http://dx.doi.org/10.1103/PhysRevB.84.205121
http://dx.doi.org/10.1103/PhysRevB.84.205121
http://dx.doi.org/10.1103/PhysRevB.84.205121
http://dx.doi.org/10.1103/PhysRevLett.107.010401
http://dx.doi.org/10.1103/PhysRevLett.107.010401
http://dx.doi.org/10.1103/PhysRevLett.107.010401
http://dx.doi.org/10.1103/PhysRevLett.107.010401
http://dx.doi.org/10.1103/PhysRevB.79.235321
http://dx.doi.org/10.1103/PhysRevB.79.235321
http://dx.doi.org/10.1103/PhysRevB.79.235321
http://dx.doi.org/10.1103/PhysRevB.79.235321
http://dx.doi.org/10.1103/PhysRevB.85.035136
http://dx.doi.org/10.1103/PhysRevB.85.035136
http://dx.doi.org/10.1103/PhysRevB.85.035136
http://dx.doi.org/10.1103/PhysRevB.85.035136
http://dx.doi.org/10.1103/PhysRevB.84.235149
http://dx.doi.org/10.1103/PhysRevB.84.235149
http://dx.doi.org/10.1103/PhysRevB.84.235149
http://dx.doi.org/10.1103/PhysRevB.84.235149
http://dx.doi.org/10.1103/PhysRevB.88.245421
http://dx.doi.org/10.1103/PhysRevB.88.245421
http://dx.doi.org/10.1103/PhysRevB.88.245421
http://dx.doi.org/10.1103/PhysRevB.88.245421
http://dx.doi.org/10.1103/RevModPhys.69.315
http://dx.doi.org/10.1103/RevModPhys.69.315
http://dx.doi.org/10.1103/RevModPhys.69.315
http://dx.doi.org/10.1103/RevModPhys.69.315


CHUNG-HOU CHUNG, DER-HAU LEE, AND SUNG-PO CHAO PHYSICAL REVIEW B 90, 035116 (2014)

[27] K. Nakada, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus,
Phys. Rev. B 54, 17954 (1996).

[28] M. Fujita et al., J. Phys. Soc. Jpn. 65, 1920 (1996).
[29] L. Brey and H. A. Fertig, Phys. Rev. B 73, 235411 (2006).
[30] Y. W. Son, M. L. Cohen, and S. G. Louie, Phys. Rev. Lett. 97,

216803 (2006).
[31] V. N. Do and T. H. Pham, Adv. Nat. Sci.: Nanosci. Nanotechnol.

1, 033001 (2010).
[32] N. W. Ashcroft and D. N. Mermin, Solid State Physics

paperback edition (Thomson Press, India, 2003).
[33] D. H. Lee and C. H. Chung (unpublished).
[34] A. O. Gogolin, A. A. Nersesyan, and A. M. Tsvelik, Bosoniza-

tion and Strongly Correlated Systems (Cambridge University
Press, Cambridge, 1998).

[35] T. Giamarchi, Quantum Physics in One Dimension (Oxford
University Press, Oxford, 2004); J. von Delft and H. Schoeller,
Ann. Phys. 7, 225 (1998).

[36] The derivation of Eq. (20) involves going back from second
quantization to the first quantization representation in the edge
state model Hamiltonian (5) and treats interedge hopping Eq. (8)
as the perturbation term Ht⊥ . Energy shift in the second-order
perturbation gives 〈H 2

t⊥〉/〈H0〉 ∼ t2
⊥/t as the hopping along the

same edge is determined by scale t . Writing first quantization
results back to second quantization gives Eq. (21).

[37] Y. Tada, R. Peters, M. Oshikawa, A. Koga, N. Kawakami, and
S. Fujimoto, Phys. Rev. B 85, 165138 (2012).

[38] C. Weeks, J. Hu, J. Alicea, M. Franz, and R. Wu, Phys. Rev. X
1, 021001 (2011).

035116-14

http://dx.doi.org/10.1103/PhysRevB.54.17954
http://dx.doi.org/10.1103/PhysRevB.54.17954
http://dx.doi.org/10.1103/PhysRevB.54.17954
http://dx.doi.org/10.1103/PhysRevB.54.17954
http://dx.doi.org/10.1143/JPSJ.65.1920
http://dx.doi.org/10.1143/JPSJ.65.1920
http://dx.doi.org/10.1143/JPSJ.65.1920
http://dx.doi.org/10.1143/JPSJ.65.1920
http://dx.doi.org/10.1103/PhysRevB.73.235411
http://dx.doi.org/10.1103/PhysRevB.73.235411
http://dx.doi.org/10.1103/PhysRevB.73.235411
http://dx.doi.org/10.1103/PhysRevB.73.235411
http://dx.doi.org/10.1103/PhysRevLett.97.216803
http://dx.doi.org/10.1103/PhysRevLett.97.216803
http://dx.doi.org/10.1103/PhysRevLett.97.216803
http://dx.doi.org/10.1103/PhysRevLett.97.216803
http://dx.doi.org/10.1088/2043-6254/1/3/033001
http://dx.doi.org/10.1088/2043-6254/1/3/033001
http://dx.doi.org/10.1088/2043-6254/1/3/033001
http://dx.doi.org/10.1088/2043-6254/1/3/033001
http://dx.doi.org/10.1002/(SICI)1521-3889(199811)7:4<225::AID-ANDP225>3.0.CO;2-L
http://dx.doi.org/10.1002/(SICI)1521-3889(199811)7:4<225::AID-ANDP225>3.0.CO;2-L
http://dx.doi.org/10.1002/(SICI)1521-3889(199811)7:4<225::AID-ANDP225>3.0.CO;2-L
http://dx.doi.org/10.1002/(SICI)1521-3889(199811)7:4<225::AID-ANDP225>3.0.CO;2-L
http://dx.doi.org/10.1103/PhysRevB.85.165138
http://dx.doi.org/10.1103/PhysRevB.85.165138
http://dx.doi.org/10.1103/PhysRevB.85.165138
http://dx.doi.org/10.1103/PhysRevB.85.165138
http://dx.doi.org/10.1103/PhysRevX.1.021001
http://dx.doi.org/10.1103/PhysRevX.1.021001
http://dx.doi.org/10.1103/PhysRevX.1.021001
http://dx.doi.org/10.1103/PhysRevX.1.021001



