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Passively synchronized Er-doped and Yb-doped mode-locked fiber lasers with a master–slave configuration are
theoretically investigated based on the pulse propagationmodel for simulating pulse collision in the common fiber
section and on the master equation model for simulating laser dynamics. Computational results indicate that the
central optical frequency of the slave Er laser will be shifted by the significant cross phasemodulation (XPM) effect
for the laser to become synchronized with the injected master Yb laser pulse train. Pulse duration change caused
by fiber dispersion in the common fiber section will distort the ideal anti-symmetric characteristics of the XPM-
induced frequency shift versus the relative timing position of the two color pulses. The relative timing jitter noises
of the two synchronized lasers can be minimized by adjusting the relative pulse timing position, and the predicted
dependence agrees well with the experimental observation. © 2014 Optical Society of America
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(270.2500) Fluctuations, relaxations, and noise.
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1. INTRODUCTION
Ultra-low timing synchronization between two independent
ultra-short mode-locked laser sources has many advantages
for applications including the high-precision measurement,
coherent pulse synthesis, precision timing distribution, and
photonic analog-to-digital conversion [1]. In these applica-
tions, the laser timing jitter has negative influences on the
sampling accuracy and will place limitations on the dynamic
measurement range or the bit-error-rate performance. In the
category of active synchronization techniques, precision
pulse timing detection combined with high-speed electronic
feedback control of the cavity length is utilized to achieve the
synchronization [1,2]. On the other hand, in the category of
passive synchronization techniques, the instantaneity of opti-
cal cross phase modulation (XPM) effect is utilized as the
high-speed synchronization mechanism with a shared cavity
or pulse injection configuration [3,4]. In the present work,
we choose to consider the pulse injection configuration in
favor of its simplicity compared to the cavity-sharing configu-
ration. We also choose to consider the synchronization of an
Er fiber laser at 1.5 μm and a Yb fiber laser at 1 μm, in view of
their important application for difference frequency genera-
tion in the mid-infrared [5]. The synchronization of the fiber
lasers can be achieved through the pulse collision inside a
shared fiber section. For modeling the two color pulses co-
propagation problems, the coupled nonlinear Schrödinger
equation (CNLSE) is employed [6,7]. There have been several
approaches developed to solve the nonlinear Schrödinger
equation (NLSE) type problems efficiently, such as the

split-step Fourier method (SSFM), which is based on the first
order approximation of Baker–Campbell–Hausdorff formula
[8], and the fourth-order Runge-Kutta in interaction picture
(RK4IP) method, which is based on the interaction picture
(IP) concept used in quantum mechanics and the RK4 algo-
rithm [9]. Recently the RK4IP method has been performed
to obtain excellent computational accuracy for sophisticated
light propagation problems. Examples include the super-
continuum generation in optical fibers [10] and the optical
fiber propagation problems with random birefringence effects
[11]. This is the numerical approach we will use in the present
work. Furthermore, since the theoretical modeling for the rel-
ative timing jitter of passively synchronized two-color lasers
can greatly help the understanding and improvement of their
performance, it is the objective of the present work to carry
out the relative timing jitter noise analysis for observing its
physical dependence.

For an individual passively mode-locked laser, an analytical
noise model has been developed by Haus and Mecozzi
based on the soliton perturbation theory [12]. The theory is
generalized to active amplitude modulation (AM) and phase
modulation (PM) mode-locked lasers in a later paper [13].
A numerical model for investigating the timing jitter of mode-
locked lasers has been developed by Paschotta [14,15]. There
are also various reported experimental results on the pas-
sively mode-locked Er fiber lasers [16,17] and Yb fiber lasers
[18,19]. In principle, the timing jitter directly induced by the
amplified spontaneous emission noises and indirectly induced
through the center frequency fluctuations can be reduced by
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the benefits of shorter pulse-width and smaller net intracavity
dispersion, respectively. The laser dynamics may also affect
the timing jitter under the same net cavity dispersion. Exam-
ples include the Yb-doped fiber lasers operated in the self-
similar regime showing larger timing jitter than those operated
in the stretched-pulse regime [18]. In contrast, for passively
synchronized mode-locked fiber lasers, theories for their rel-
ative timing jitter noises are still needed to be developed.

In this paper, we first numerically investigate the optical
frequency shift induced by the significant XPM effect when
the two color pulses collide in the common fiber section. This
is accomplished by employing the RK4IP method to simulate
cautiously the pulse propagation characteristics caused by
fiber dispersion effects and nonlinear effects. The effective
center frequency shift is a function of the relative timing
position of the two color pulses before the collision. For the
pulse injection configuration, we only need to consider the Er
laser under the influence of the Yb laser. The dynamics of this
passively synchronized Er laser can be simulated by using the
master equation model in combination with the above pulse
co-propagation model. Additionally, to theoretically analyze
the relative timing jitter properties, we derive the evolution
equations for the characteristic pulse parameters from the
variational solution of the master equation model [20]. The ba-
sic equations for the frequency fluctuations and timing posi-
tion fluctuations are further derived based on the linearization
approach around the steady state solution. Finally, the calcu-
lated relative jitter noise results are compared with the exper-
imental results to confirm the predicted dependence [21–23].

2. LASER DYNAMICS OF PASSIVELY
SYNCHRONIZED TWO-COLOR FIBER
LASERS
A. Laser Configuration
The schematic of the considered passively synchronized Er
and Yb mode-locked fiber lasers is illustrated in Fig. 1 [21–24].
Both fiber lasers are assumed to be passively mode-locked by
using the polarization additive pulse mode-locking (P-APM)
technique. Part of the mater Yb laser (1.03 μm) output is em-
ployed to perform the pulse injection into the slave Er laser

(1.56 μm). Therefore, the 1.03 μm pulses can interact with
1.56 μm pulses through the nonlinear XPM effects for achiev-
ing synchronization via the common single-mode fiber section
located between WDM1 and WDM2. Experimentally, the
relative timing jitter of the two color lasers can be measured
based on the nonlinear optical cross correlation method
[1,22]. The relative timing position between the 1.56 and
1.03 μm pulses before collision can be adjusted through the
control of the piezoelectric transducer (PZT).

B. Numerical Methods for Modeling the
Pulse Co-Propagation
Since the pulse injection configuration is considered, we have
to deal efficiently with the nonlinear optical and linear
dispersion effects in the common fiber section. The two color
pulse interaction can be conveniently described with the
following Dirac notation. Namely, given the two color pulse
fields u1 and u2, the joint field can be denoted as
jui � �u1; u2�T . The CNLSE can then be compactly expressed
as follows:

∂
∂z

jui � β̂1
∂
∂t
jui − j

2
β̂2

∂2

∂t2
jui � jn̂jui � 0: (1)

Here the physical meanings of the operators β1, β2, and n are
the first order dispersion regarding the inverse group velocity
difference, the second order dispersion regarding the pulse
broadening, and the nonlinear Kerr effects, respectively.
Exact definition of these operators is given below:

β̂i �
�
βi;u1

0
0 βi;u2

�
; i � 1 or 2 (2a)

and

n̂ �
�
γ�ju1j2 � 2ju2j2� 0

0 γ�ju2j2 � 2ju1j2�
�
: (2b)

Here, βi and γ are the dispersion and nonlinear coefficients.
Both the SPM and XPM effects are considered in the nonlinear
operator term. For the RK4IP numerical algorithm [9,10], we
will introduce the dispersion D and nonlinear N operators
from Eq. (1) as follows:

D̂ � −β̂1
∂
∂t

� j

2
β̂2

∂2

∂t2
; N̂ � −jn̂: (3)

By utilizing the IP transform juiI � Î†�z; z0�jui, the CNLSE
can be formally written as

∂
∂z

juiI � N̂I juiI ; N̂I � Î†�z; z0�N̂ Î�z; z0�; (4)

where

Î�z; z0� � exp��z − z0�D̂�:
The differential Eq. (4) can be numerically solved with typical
explicit schemes like the fourth-order Runge-Kutta method.
The dispersion operator is evaluated in the frequency domain,
and the necessary number of FFTs is reduced down to 16
FFTs per step in the present coupled equation case. To be
more explicit, the algorithm with the fourth order formula
evolves ju�z; t�i to ju�z� h; t�i with a spatial step h. If

Fig. 1. Schematic of the synchronized laser system. LD, laser diode;
WDM, wavelength division multiplexer (WDM1 and WDM2,
1560∕1030 nm; WDM3, 1560∕976 nm); ISO, isolator; PBS, polarization
beam splitter; FC, fiber collimator; QWP, quarter-wave plate; HWP,
half-wave plate; PZT, piezoelectric transducer.
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represented in the normal picture, the evolved ju�z� h; t�i is
given below:

juiI � exp
�
hD̂
2

�
ju�z; t�i (5a)

jk1i � exp
�
hD̂
2

�
�hN̂ju�z; t�i� (5b)

jk2i � hN̂
�
juiI �

jk1i
2

�
(5c)

jk3i � hN̂
�
juiI �

jk2i
2

�
(5d)

jk4i � hN̂ exp
�
hD̂
2

�
�juiI � jk3i� (5e)

ju�z� h; t�i � exp
�
hD̂
2

��
juiI �

jk1i � 2jk2i � 2jk3i
6

�
� jk4i

6
:

(5f)

There is a local error of fifth order in the above formula, and
hence in general it is a fourth-order accurate scheme. The
algorithm can provide sufficient precision to calculate the
nonlinear effects of the pulse collision. From our testing com-
putation and previous reports [9,10], employing a higher order
scheme like the fourth-order Runge-Kutta in interaction pic-
ture (RK4IP) method indeed helps to efficiently obtain more
precise results under the nonlinear optical effects. This is be-
cause the numerical convergence rate as a function of the step
size may not be steep enough for lower order schemes, which
will lead to a too small step size for achieving high accuracy.

C. Induced Frequency Shifts of the Pulse Collision
For checking the accuracy of our numerical model regarding
the induced center frequency shifts of significant XPM effects,
we first compare with the known analytic frequency-chirp
model based on the Gaussian pulse ansatz and with the exclu-
sion of the SPM and GVD effects [24]. By using the same
parameters considered in [24], the calculated center wave-
length shift of the green pulse versus the relative timing posi-
tion is shown in Fig. 2(a). The initial green pulse is with 25 ps,
1 nJ, and the infrared pulse is with 33 ps, 70.22 nJ. Parameters
for their assumed co-propagating fibers are listed in Table 1.
Our computational results evaluated by the phase derivative
(the blue line) and by the expected value definition E�λ� �R
λjΨ�λ�j2dλ∕ R jΨ�λ�j2dλ (the black line) both agree very well

with the known results.
After the above checking, we then begin to consider the

dispersion and SPM effects based on the parameters of our
assumed common fiber (HI-1060), as listed in Table 1. It should
be noted that the group velocity difference is experimentally
determined based on our previous work [4], and the frequency
shifts are evaluated by the expected value method. Employed
pulse durations and pulse energies are 0.2 ps and 0.2 nJ for
the Er laser and 0.2 ps, 0.74 nJ for the Yb laser, respectively.
The single-pass-induced center frequency shift as a function
of the relative timing positions (t0 � t0;Er − t0;Yb) is plotted in
Fig. 2(b), which is not exactly anti-symmetric, as in the case

caused by only the XPM effect. This is due to the pulse duration
broadening effect. As shown in Fig. 2(c), when injecting a
shorter 1.03 μm pulse, the pulse tends to broaden more in
the normal dispersion region, and thus the anti-symmetric char-
acteristics will be distorted more seriously. In contrast, for
adjusting the initial pulse duration of the soliton-like 1.56 μm
pulse in the anomalous region, the only obvious difference is
the peak center frequency change, as seen in Fig. 2(d).

D. Laser Dynamics of the Synchronized Er-doped
Fiber Laser
From the assumption of the pulse injection configuration, we
only need to consider the Er laser under the influence of the
Yb laser. The master equation for the Er-doped passively
mode-locked fiber laser without injecting can be expressed
as follows:

TR

∂u�T; t�
∂T

�
�

g0

1� R juj2dt∕Es

− l0

�
u� �dr � jdi�

∂2u
∂t2

� �kr − jki�juj2u: (6)

Fig. 2. (a) Comparison of calculated XPM-induced center wave-
length shifts of green pulses in [24] (without GVD and SPM) as a func-
tion of the input relative timing position between green pulses and
infrared pulses. Red circles are analytic results of Baldeck et al.
[24]. The blue line is our result evaluated by the derivative phase.
The black line is our result of E�λ� according to the calculated optical
spectrum data. (b), (c), (d) Calculated XPM-induced center frequency
shifts of 1.56 μm pulses after the common HI 1060 fiber versus
the initial relative timing position between the 1.56 and 1.03 μm
pulses. (b) Er, τFWHM � 0.2 ps, Ep � 0.2 nJ, and Yb, τFWHM � 0.2 ps,
Ep � 0.74 nJ. (c) Only adjusting Yb, τFWHM � 0.2 , 0.15, 0.1 ps. (d) Only
adjusting Er, τFWHM � 0.2 , 0.15, 0.3 ps.

Table 1. Common Fiber Parameters of
Numerical Simulations

Optical Fibera HI1060

Type Infrared Green Er Yb

β1 �ps∕m� 76 0b
−1.7 0b

β2 [ps2∕m] 0 0 −0.0112 0.0227
γ �W−1 km−1� 2.5 2.5 1.5 1.5

aFrom Baldeck et al. [24]
bHere by setting β1 � 0, we have chosen the moving coordinate to be

travelling at the group velocity of this wavelength. The β1 in other
wavelengths will thus represent the inverse group velocity difference
with respect to this wavelength.
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The physical meanings for the essential coefficients and their
estimated values for generating pulses of ∼0.2 ps and ∼0.2 nJ
are as follows: unsaturated gain g0 � 4; gain saturation energy
Es � 0.047 nJ; linear loss l0 � 0.8; optical gain bandwidth of
50 nm, dr ≈ 2.67 × 10−3 g ps2, g � g0�1�

R juj2dt∕Es�−1; net
cavity dispersion di � −0.025 ps2; equivalent fast saturable
adsorption by P-APM, kr � 2 × 10−4 W−1; SPM coefficient
ki � 4.55 × 10−3 W−1; and cavity fundamental repetition fre-
quency f Rep � 43 MHz. Additionally, T is the number of the
round-trip time and t is the short time scale. As shown in Fig. 3,
the calculated steady state results from the master equation
with the RK4IP numerical algorithm and from the pulse param-
eters evolution equations of our previous work based on the
variational analysis under the sech pulse shape ansatz in
Eq. (7) [20] agree very nicely with each other. The sech pulse
solution ansatz used in the variational method is given by

u�T; t� � a�T�sech
�
t − t0�T�
τ�T�

�
1�jC�T�

ejfω�T��t−t0�T���ϑ�T�g: (7)

Here a�T� is the pulse amplitude, τ�T� is the pulse-width, t0�T�
is the pulse timing, C�T� is the chirp, ω�T� is the pulse center
frequency, and ϑ�T� is the phase.

When considering the injection of the Yb laser pulses for
achieving the synchronization, we combine the master equa-
tion model of the Er laser cavity with the CNLSE pulse propa-
gation model to simulate the laser dynamics. The essential
schematic for the numerical modeling procedure is illustrated
in Fig. 4. Here the constant timing-shift R represents the timing
walk-off per round-trip caused by the cavity repetition rate
difference between the two lasers. It is imposed on the Er
laser pulse field after one round-trip calculation to model the
cavity mismatch. The Er laser pulse is input to interact with
the injected Yb laser pulse in the common fiber section by
using the pulse co-propagation model. After the pulse colli-
sion, we compensate the fixed time-shift β1L induced by
the group velocity term in the common HI-1060 fiber of
length L before moving to the master equation model. All
the simulation results for demonstrating passive synchroniza-
tion are essentially obtained by using the RK4IP algorithm. As

illustrated in Fig. 5(a), we set the Er laser to begin with a tim-
ing walk-off of −0.8 ps per round-trip due to the repetition rate
difference without the injection. Here the injected Yb laser
pulse train is used as the timing reference. When we switch
on the Yb laser pulse of ∼0.74 nJ and ∼0.2 ps for injection,
the Er laser pulse becomes synchronized with the Yb laser
pulse quickly to exhibit 0 timing walk-off as in Fig. 5(b).
The fundamental dynamics to achieve synchronization can
be described as follows. The collision of the Er laser pulse
with the injected Yb laser pulse induces some frequency shift
via the XPM effect. When the initial repetition rate of the Er
laser is higher than that of the Yb laser, for achieving synchro-
nization, the Er laser will require a red-shift of its center fre-
quency to decrease the pulse group velocity in the anomalous
dispersion cavity and thus its f Rep can be decreased. Since the
frequency shift via the XPM is dependent on the relative tim-
ing position of the two pulses, the Er laser will tend to get

Fig. 3. Comparisons of the calculated results for generating the Er
laser of ∼0.2 nJ pulse-energy and ∼0.2 ps pulse-width (FWHM) by
using the RK4IP algorithm from solving the master equation (the blue
lines) and from the evolution equations of the pulse parameters [20]
(the black lines).

Fig. 4. Schematic of the numerical modeling procedure.

Fig. 5. Calculated results of the ∼0.2 nJ and ∼0.2 ps Er laser pulse
evolution with the timing walk-off of −0.8 ps per round-trip caused by
the cavity repetition rate difference. (a) Unsynchronization without
injecting the Yb laser pulse. (b) Synchronization with injecting the
Yb laser pulse of ∼0.74 nJ; ∼0.2 ps.
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stabilized on a suitable relative timing position where the XPM
effect can induce the required red-shift. The final steady state
center wavelength with injection will be determined by the
balance of the XPM effect and the gain filtering effect.

For the above example, the calculated evolution plots for
different pulse parameters such as the pulse energy, the pulse-
width, the relative timing position, and the center frequency-
shift are shown in Fig. 6. It should be noted that the timing
position and the center frequency of the Er laser pulse are de-
termined by using the expected value definition. The steady
state laser center frequency-shift is smaller than the pulse
center frequency-shift after single-pass collision due to the
damping effect from the gain filtering, as can be seen from
Fig. 6(d). Furthermore, we gradually adjust the value of timing
walk-off R to observe the corresponding variation of the laser
operation, especially the relative timing position and the
steady state center frequency-shift. The results are shown
in Fig. 7. A larger timing walk-off would require a larger center
frequency-shift of the Er laser pulse to maintain synchroniza-
tion. In the above example, the allowable timing walk-off R is
from −0.24 to 0.27 ps for achieving synchronization. However,
when R approaches zero, the calculated results are not
located smoothly, as shown in the dots region of Fig. 7. We
will see in the following relative timing jitter noise analysis
that the relative timing jitter noises will also become worse in
this regime. Additionally, the XPM-induced center frequency
shift function m1�t0� for the Er laser pulse is illustrated in
Fig. 8(a) as a function of the initial relative timing positions,
t0 � t0;Er − t0;Yb. The derivative of this function �m0

1�t0�� is
also plotted in Fig. 8(b). The importance of m1�t0� and
m0

1�t0� on the relative timing jitter noises between the two
lasers will become clear in the following section.

3. RELATIVE TIMING JITTER NOISE
ANALYSIS
After successfully modeling the passive synchronization of
the two color lasers, we further investigate the relative timing
jitter noises between them. By employing the previously
mentioned pulse parameters evolution equations from the

variational analysis [20] for the Er laser, the coupled equations
for the center frequency ω and the pulse timing position t0 can
be expressed as below. The new term here is the XPM-induced
frequency-shift function m1�t0�:

TR

dω

dT
� m1�t0� −

4dr�1� C2�
3τ2

ω (8a)

TR

dt0

dT
� 2diω� 2drCω� R: (8b)

To proceed further, we utilize the linearization approach
around the calculated steady state solutions of Eqs. (8a)
and (8b) to derive the equations for the center frequency fluc-
tuations Δω and timing fluctuations Δt0.Er for the Er fiber-
laser. They can be written as below:

TR

dΔω
dT

� m0
1�t̄0��Δt0;Er − Δt0;Yb� −

4dr�1� C2�
3τ2

Δω

� TRSω�T� (9a)

Fig. 6. Calculated evolution plots of the Er laser pulse parameters
for achieving the synchronization with the injecting Yb laser pulse
train (∼0.74 nJ and ∼0.2 ps) with the initial timing walk-off
R � −0.8 ps. (a) Pulse energy. (b) Pulse-width. (c) Relative timing
position at the starting of the common fiber. (d) Center frequency
shift. Blue lines, at the inlet of the common fiber. Red lines, at the
outlet of the common fiber.

Fig. 7. Calculated steady state results of the Er laser pulse param-
eters when in synchronization with the injecting Yb laser pulse train.
The Yb laser pulse is with ∼0.74 nJ and ∼0.2 ps. (a) Frequency shift at
the inlet of the common fiber. (b) Relative timing position at the start-
ing point of the common fiber. (c) Pulse-width. (d) Pulse energy.

Fig. 8. (a) Induced center frequency shift function m1�t0� of Er laser
pulse regarding the initial relative timing positions, t0 � t0;Er − t0;Yb via
the pulse collision effect. The calculation is based on adjusting gradu-
ally the timing walk-off R for synchronizing with injecting the stable
f Rep, Yb laser pulse of ∼0.74 nJ and ∼0.2 ps. (b) First-order derivative
of the induced frequency shift function, m0

1�t0�.
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TR

dΔt0;Er
dT

� 2diΔω� 2drCΔω� TRSt0
�T�: (9b)

Here both equations are driven by the noise terms Sω;�T� and
St0�T� as in the individual laser case. Additionally, m0

1�t0� is
the first order derivative of the XPM induced frequency
shift function m1�t0�. The calculated m0

1�t0� is illustrated in
Fig. 8(b). There is the obvious asymmetry of m0

1�t0� between
the two different operating ranges of the negative and positive
m1�t0�. The timing jitter Δt0;Yb of the Yb laser pulse will also
have the influences on the Er laser pulse during the collision
process in the common fiber section, as seen in the Eq. (9a).
The relative timing jitter noise spectrum can be derived from
Eqs. (9a) and (9b) analytically with the assumption of a con-
stant chirp parameter C and by assuming un-correlated noise
terms. The final expressions are given below:

hjΔt0;Er�Ω� − Δt0;Yb�Ω�j2i

� 4�di � drC�2
T2
R

h�
Ω2 � 2�di�drC�m0

1�t̄0�
T2
R

�
2 �

�
Ωr�1�C2�

TR

�
2
i hjSω�Ω�j2i

� Ω2T2
R � r2�1� C2�2

T2
R

h�
Ω2 � 2�di�drC�m0

1�t̄0�
T2
R

�
2 �

�
Ωr�1�C2�

TR

�
2
i hjSt0

�Ω�j2i

�
Ω4 � �Ωr�1�C2�

TR
�2h�

Ω2 � 2�di�drC�m0
1�t̄0�

T2
R

�
2 �

�
Ωr�1�C2�

TR

�
2
i hjΔt0;Yb�Ω�j2i: (10)

Here r is defined as a unit-less parameter, r � 4dr∕3τ2. To
estimate the quantum-limited timing jitter, the noise terms
Sω; �T� and St0�T� can be assumed to be uncorrelated white
noises with the corresponding diffusion coefficients Dω, and
Dt0 [14]. It should be noted that when C, m0

1�t0� and Δt0 ;Yb are
ignored, one obtains the same results for an individual passive
mode-locked laser [12].

As a numerical example, the relative timing jitter in a root-
mean-square sense is calculated by integrating the above
spectrum from 1 kHz to half the repetition frequency
(21.5 MHz) under the above assumption of the laser cavity
parameters. The diffusion coefficients (Dω and Dt0) are evalu-
ated by using the following parameters: for the Er laser,
ℏωc ≈ 0.8 eV, TR ≈ 23 ns, the excess noise factor Θ ≈ 10
and others (τFWHM, gs and w0) from previously calculated re-
sults; for the Yb laser, ℏωc ≈ 1.2 eV, TR ≈ 23 ns, Θ ≈ 10,
τFWHM ≈ 0.2 ps, gs ≈ 0.76, and w0 ≈ 0.74 nJ. From experimen-
tal observation [18,19], the timing jitter spectrum of a pas-
sively mode-locked Yb laser shows the ∼1∕f 2 slope in the
low frequency regime probably originated from the pulse tim-
ing random walk directly caused by the noises in each round
trip and the ∼1∕f 4 slope in the higher frequency regime prob-
ably caused by the center frequency fluctuations indirectly.
These observations agree with the predictions based on the
master equation model for passive mode-locked lasers [12].
However, different lasers may have different scaling factors
compared to the ideal quantum noise limited prediction.
Therefore in the following calculation, the Yb timing jitter
spectrum (under di ≈ 0.0055 ps2 and dr ≈ 4.33 × 10−4 ps2) is
assumed to be given by the Haus and Mecozzi’s model with
a scaling excess noise factor Θ. It should also be noted that
the chirp parameter C is estimated by using the expected
value definition [25] based on the numerically calculated

steady state Er pulse solution. One typical result within the
red-shift regime is illustrated in Fig. 9(a), where the relative
timing jitter shows the dependence on the relative timing
position between the two color pulses. The physical reason
for this dependence can be seen from Eq. (9a). Because the
m0

1�t0� term works as a timing-to-frequency feedback term, the
relative timing jitter is expected to be suppressed more if
the magnitude of m0

1�t0� is larger. This dependence can be ob-
viously seen from Eq. (10) and verified by comparing Fig. 9(a)
with Fig. 8(b). This important dependence has been observed
in our previous experimental work [21,22]. The calculated
center wavelength-shift of the Er laser pulse is plotted in
Fig. 9(b), which also agrees reasonably with the experimental
results monitored at the inlet of the common fiber section [22].
The corresponding lasing wavelength-shift at the point with
minimum relative timing jitter is around 2 nm. Additionally,
the 3 dB bandwidth of the relative timing jitter can be reduced
from a few millihertz to the hundreds kilohertz as shown in
Fig. 10 for the t0 ≈ 0.218 ps case. When the chirp approaches
zero gradually, a peaking spectrum indicative of a pulse retim-
ing oscillation of the passive synchronization may be revealed.

Fig. 9. (a) Calculated relative timing jitter (normalized) versus the
relative timing position between the two color pulses in the beginning
of the collision. (b) The corresponding center wavelength shift of the
Er pulse at the inlet of the common fiber section.

Fig. 10. Normalized relative timing jitter spectrum under the relative
timing position t0 ≈ 0.218 ps, for different chirps: C ≈ 0 (the black
line), C ≈ −1.27 (the green line), C ≈ −1.7 (the purple line), and
C ≈ −2.5 (the blue line).
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To summarize, by employing the XPM effect for achieving
passive synchronization, the relative timing jitter of the two
lasers can be suppressed more effectively by appropriately
adjusting their cavity length difference. Zero free-running
pulse timing walk-off is not the best operating point. One
needs to search for the point where the slope of the XPM-
induced frequency shift is maximum. For the considered
example, the calculated relative timing jitter (∼0.34 fs within
1 kHz–21.5 MHz) is reduced by at least a factor of 15 in
comparison to that of the individual passive mode-locked
fiber laser (Er: ∼5.22 fs within 1 kHz–21.5 MHz, Yb: ∼5.45 fs
within 1 kHz–21.5 MHz). These results nicely demonstrate the
potential advantages of the investigated passive synchroniza-
tion scheme.

4. CONCLUSION
In conclusion, we have carried out a theoretical study for
investigating passively synchronized Er- and Yb-doped mode-
locked fiber lasers under the master–slave configuration for
the first time. The optical nonlinear interaction of the two-
color pulses co-propagating in the common fiber section is
simulated by numerically solving the CNLSE with the RK4IP
method. The slave passively mode-locked Er fiber laser with
the injection of the master Yb laser pulse train is modeled by
the master equation model in combination with the pulse
propagation model for the common fiber section to determine
the steady state pulse solution inside the cavity. The physical
mechanism for achieving passive synchronization is made
more clear through the modeling. It is found that the nonlinear
XPM effect induced by pulse collision causes a frequency shift
of the Er laser pulse and the magnitude of the frequency shift
is dependent on the relative timing position of the two pulses.
This serves as a feedback mechanism from the relative-pulse-
timing to the center-optical-frequency and then subsequently
to the laser repetition rate through the dispersion effect.
Passive synchronization of the two lasers is made possible
through such a feedback mechanism, and thus there will be
a center optical frequency shift when the synchronization is
achieved, which is determined by the balance of the XPM-
induced frequency shift and the damping effect of gain filter-
ing. This explains the lasing wavelength shift that has been
observed experimentally. After verifying that the passive
synchronization of two-color mode-locked fiber lasers can be
achieved, we then employ the variational method and the
linearization technique to derive the coupled equations for
the center frequency and the relative timing position fluctua-
tions from the pulse parameter evolution equations. The
relative timing jitter is found to exhibit the dependence on
the relative timing position of the two color pulses before
the collision. The predicted dependence and the correspond-
ing center optical wavelength shift for the Er laser agree rea-
sonably with our previous experimental observations. The
relative timing jitter between the two lasers can be minimized
by appropriately adjusting their cavity length difference. The
minimized relative timing jitter can be smaller than the timing
jitters of individual passive mode-locked fiber lasers by at
least a factor of 15 in the considered example. This revealed
dependence can provide one flexible approach to further
optimize the passively synchronized fiber laser systems for
achieving ultra-low timing performances and for developing
new applications.
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