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Abstract Issues concerning the structural instability of an

oscillating micro-bead chain are addressed based on sys-

tematic experiments. The patterns of rupture are catego-

rized into two distinct regimes, referred to as a weak

ductile fracture and a strong ductile fracture. A weak

ductile fracture describes a more rigid rupture, which often

occurs in a pronounced oscillation driven by strong field

strengths. The position of the rupture usually favors toward

the two sides of the chain. An interesting phenomenon of a

reversed rupture, wherein the ruptured segments oscillate

in opposite directions, is observed when there is excessive

field strength. An important consequence of the reversed

rupture is to cause permanent failure of the chaining

structure. On the other hand, a strong ductile fracture,

featuring significant deformation before rupture, is favored

in a more viscous solvent fluid. The positions of the

breakages in this regime favor the central region of the

chain. The prominence of rupture instability is enhanced by

a weaker directional field or by a longer chain, which is in

agreement with quantitative assessments by the normal

forces acting between the interfaces of beads. In addition,

results of the present experiments provide further valida-

tions of the global criterion for rupture instability given by

Mn1=2 � N [ 1:7; where Mn and N, respectively, represent

the dimensionless Mason number and the number of beads

in the chain.

1 Introduction and experimental setups

A magnetorheological (MR) suspension is an artificial and

functionalized fluid containing paramagnetic solid particles

suspended in a non-magnetic solvent. MR suspension has

been actively applied in the so-called magnetofluidics

(Nguyen 2012). A popular application is chaining the nano-

sized or micro-sized particles as micro-devices to be

effectively manipulated by external fields, such as micro-

mechanical sensors (Goubault et al. 2003; Cebers 2005),

micro-swimmers (Dreyfus et al. 2005; Cebers 2005; Li

et al. 2012b, 2013c), micro-mixers (Biswal and Gast 2004;

Kang et al. 2007; Roy et al. 2009) and micro-electro-

mechanical systems (MEMS) (Petousis et al. 2007; Lach-

arme et al. 2009; Weddemann et al. 2011; Karle et al.

2011; Wittbracht et al. 2012). The aggregation processes

and the dynamics of micro-chains in motion subjected to

different field configurations, e.g., a rotational field (Melle

et al. 2000, 2002a, b, 2003; Melle and Martin 2003; Vuppu

et al. 2003; Biswal and Gast 2004; Cebers and Javaitis

2004; Cebers and Ozols 2006; Erglis et al. 2008; Frka-

Petesic et al. 2011; Banerjee et al. 2012) and an oscillating

field (Li et al. 2012a, b, 2013a, b, c), have also been sub-

jects of intensive studies.

Driven by the external fields, a magnetic chain in a

rotating field either remains in its chaining formation or is

ruptured into multiple sub-chains (ruptured segments). A

flexible chain can be bent and rotates synchronously with

the overall external field under the critical frequency.

When an excessive frequency is applied, the dynamics

become asynchronous, with back-and-forth motions. It is

well understood that the mechanism for chaining instability

in a dynamical field involves competition between the

induced viscous torque (Mv) and the magnetic torque (Mm),

which define the dimensionless Mason number (Mn).
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When a chain composed of N beads is exposed to an

overall external field strength H, the magnetic torque, the

induced viscous torque and the corresponding Mason

number are given as (Biswal and Gast 2004)

Mm ¼ l0

4p
3m2N2

2ð2aÞ3
sinð2DhLÞ; ð1Þ

Mv ¼ 4pa3N

3

2N2

lnðN=2Þ gx; ð2Þ

Mn ¼ 32gx
l0v2H2

; ð3Þ

where l0 and a represent the vacuum permeability and the

radius of beads, respectively. The magnetic susceptibility

of the magnetic beads and the viscosity of solvent fluid are

denoted as v and g, respectively. The dipolar moment, m,

of a single bead is given by m ¼ 4pa3

3
vH. The instantaneous

angular speed of the chain is expressed as x, and DhL is

phase lag of the chain to the external field. When the

parameters exceed certain critical values, rupture occurs

within the early transient time, mainly near center of the

chain. The critical length for the prevention of a rupture is

inversely proportional to the square root of the Mason

number. Recently, verified by experimental results, a

sophisticated method is developed (Gao et al. 2012), which

is capable to accurately determine the dynamics of a

rotational particle chain. A new dimensionless parameter

RT (Gao et al. 2012), which includes both effects of the

Mason number and length of the chain, is derived to

characterize the special region of interest. It is proposed

that this dimensionless parameter RT is the sole control

parameter for the dynamics of the rotational bead chain.

The magnetic torque is balanced by the viscous torque at

RT \ 1, so that the bead chain rotates as a rigid rod fol-

lowing the field. On the contrary, the chain appears

breaking and reforming behaviors if value of this parameter

exceeds unity (RT [ 1).

On the other hand, the condition of an oscillating field

differs from the rotational field by two major factors, such

as its strong transient phenomena and the distinct field

configuration. The strong transient phenomena are char-

acterized by significant variations in instantaneous angular

speeds and overall field strengths within a period of

oscillation. In the conventional rotational cases, the

strength of the overall external field is constant, so that the

transient behavior occurs only within the initial stage

when the chain starts to move. Afterward, the chain

commonly rotates with the external field by an identical

period. Because of the constant field strength and the

known angular speed, important parameters, e.g., the

Mason number or the forth mentioned parameter RT (Gao

et al. 2012), can be predetermined. However, in the

oscillating cases, the field strength varies significantly

with sign changed. The chain would reverse its oscillating

orientation after the crossover of the trajectories of the

overall external field and the chain (Li et al. 2012a).

These facts lead to a strong unsteady motion with both

acceleration and deceleration within one period of oscil-

lation. As a result, neither the actual oscillating amplitude

nor the exact instantaneous angular speed can be prede-

termined. It is known the local acceleration or decelera-

tion leads to unsteady forces (Crowe et al. 2012),

including the virtual mass effects as well as the so-called

Basset force. The virtual mass effect relates to the force

required to accelerate the surrounding fluids, while the

Basset term describes the force due to the lagging

boundary layer development with changing velocity. More

details about these unsteady forces can be referred to

Crowe et al. (2012). It is believed the strong unsteady

effects might result in significant distinctions between the

oscillating chain and its rotational counterpart. In addition,

the overall field configuration in an oscillating field con-

dition is composed of two components (Li et al. 2012a,

2013a), i.e. the static directional field and the dynamical

perpendicular field. The effects of these two components

to the structural chaining instability are inconsistent. In

general, stable chaining structure is favorable in a stronger

directional field strength, while the perpendicular field

tends to destabilize the chaining structure. Besides, the

interplays between the two components decide the maxi-

mum oscillating amplitude and local instantaneous angular

speeds. As a result, careful consideration of the field

components, rather than the overall field strength applied

in a conventional rotational chain, is essential.

To unveil the behaviors of an oscillating chain, Li et al.

(2012a) discussed its detailed dynamics, including the

synchronicity of the phase angle trajectories between the

chain and the overall external field. Under increasing value

of the Mason number (Mn) or number of beads consisted in

the chain (N), different oscillating behaviors, from rigid

body motion, bending distortions to chaining ruptures, had

been demonstrated. Verified in certain particular experi-

mental conditions (Li et al. 2012a, 2013a), a criterion of

Mn1/2*N & 1.7 was proposed for the prediction of chaining

rupture. In a condition of Mn1/2*N \ 1.7, a chain would

oscillate periodically as a whole even its chaining structure

could be deformed to an S-shape. If the instantaneous value

of Mn1/2*N exceeds the threshold at around 1.7, the

chaining stability can no longer be sustained and point

breakages evolved. After breakages, the ruptured segments

commonly undergo reattachments and detachments within

oscillations. Furthermore, a phenomenon referred to as

trajectory shift, which is analogous to the asynchronous

forth-and-back behavior in a rotating field, was identified if

the instantaneous phase lag is greater than p/2 (Li et al.
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2013a). Using such an oscillating field configuration, a re-

dispersible artificial micro-swimmer can be designed by

simply chaining beads of different sizes (Li et al. 2012b,

2013c). Swimmers are effectively driven forward, and their

swimming orientations are steered by applying the phe-

nomenon of trajectory shift (Li et al. 2013a, c).

In this study, two major issues that affect the chaining

instability are emphasized. Even the global criterion that

leads to structural fracture of Mn1/2*N [ 1.7 is well veri-

fied by quantitative data in particular experimental situa-

tions (Li et al. 2012a, 2013a), these experiments were

conducted in limited conditions, e.g., a single size of

magnetic beads with a diameter d = 4.5 lm in distilled

water whose viscosity is g = 1.05 cp. The robustness of the

proposed rupture criterion is firstly re-examined by sys-

tematic experiments over a range of parameters to ensure

their universal applicability. Another issue of interest is the

rupture patterns, which depend strongly on the character-

istics of oscillation. We like to emphasize that, even though

it seems straightforward to carry out experiments in a more

viscous environment, an interesting and distinct pattern of

fracture, which differs from the early findings (Li et al.

2012a), is identified. A thorough discussion is presented to

categorize these distinct regimes of the chaining instability

and their consequences, such as the timings and positions

of breakups as well as the possibility of re-attachments

after breakups.

A sketch of the experimental apparatus is shown in

Fig. 1. In order to form a micro-chain, micro-sized super-

paramagnetic beads are initially dispersed in a solvent

fluid. The solvent fluid used in the experiments is a mixture

of distilled water and sodium dodecyl sulfate (SDS) sur-

factants. The viscosity of this solvent fluid is g = 1.75 cp.

Two types of superparamagnetic beads are used, with a

mean diameters of d = 4.5 and 2.3 lm whose

susceptibilities are v = 1.6 and 1.0, respectively. A static

directional magnetic field, denoted as Hd, is applied to

chain the micro-beads. To allow the easy identification of

each bead, a chain formed by N beads (N = 2n ? 1) is

labeled from -n to n and the center is denoted as the zeroth

bead. It is noticed that, there is no zeroth bead if N is an

even number. An additional dynamical field (Hv) is applied

perpendicularly, to oscillate the bead chain. This dynamical

field is sinusoidal, given by Hv = Hpsin(2pft), with a

maximum field strength Hp and a frequency f. It results in

an overall external field of H = Hd i ? Hv j, in which i and

j are unit vectors in the directional (x-direction) and per-

pendicular (y-direction) axis, respectively. Under the

present configuration, the trajectory of the phase angle of

the overall external field, denoted as hf, is prescribed as

hf(t) = tan-1[(Hp/Hd)sin(2pft)]. The motion of the micro-

chain is recorded using an optical microscope that is con-

nected to a digital camera (Silicon Video 643C), whose

maximum shooting rate is 200 frames/s. Representative

snapshot images, which are modified from the original

recorded movies by improving their contrast and resolu-

tion, are presented in the following sections to identify the

distinct behaviors of micro-chains subjected to various

experimental conditions.

2 Results and discussion

2.1 Reference cases

Figure 2 shows images of a representative chain that con-

sists of 15 beads (referred to as a P15 chain therein) sub-

jected to an increasing strength of dynamical field of Hp =

11.44 Oe, 18.73 Oe and 21.83 Oe. The size of the micro-

beads is d = 4.5 lm. The chaining field strength and the

Fig. 1 Principle sketch of experimental setup (left) and relevant

notations (right). A static directional magnetic field provided by DC

power is applied to form the chain. An additional sinusoidal

dynamical field powered by AC source is applied perpendicularly

to oscillate the chain. A chain formed by N particles (N = 2n ? 1) is

labeled from -n to n, whose center is denoted as the zeroth bead.

Shown in the figure is a representative P15 chain containing N = 15

beads. The phase angle difference between the overall external field

(H) and the chain is represented by DhL
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oscillating frequency are Hd = 24.15 Oe and f = 1 Hz (or

period P = 1 s), respectively. Similar to the results reported

in Ref. (Li et al. 2012a), in which less viscous distilled

water is used as the solvent fluid, the chain apparently

deforms and oscillates consistently under the influence of

an overall external field when the field strength is small,

e.g., Fig. 2a, b. The amplitude of the oscillation and the

prominence of structural deformation become more sig-

nificant as the field strength increases. If the strength of the

dynamical field exceeds a critical value, which is 18.73 Oe

\Hp \ 21.83 Oe for this case, the chain begins to rupture

into two separated segments, as demonstrated in Fig. 2c.

According to the Eqs. (1)–(3) introduced in the previous

section, a stronger field strength results in greater torque

and leads to more prominent oscillation with a larger

amplitude. In the meantime, the instantaneous angular

speed is also greater, because of the larger oscillating

amplitude within a constant period, so that the induced

drag is also greater. Consequently, the chain is ruptured by

the induced drag when the field exceeds a certain critical

strength. We like to point out that distinct patterns of the

present experiments, compared with the previous situations

in a less viscous fluid (Li et al. 2012a), are distinguished.

Due to more significant viscous drag in the present con-

dition, the critical field strength and the maximum sus-

tainable amplitude (denoted as hA_max) are much lower

than those reported for less viscous distilled water (Li et al.

2012a). The much lower sustainable oscillating amplitude

of the chain, e.g., hA_max \ 30� (or p/6), is also demon-

strated by the comprehensive phase angle trajectories

shown in Fig. 3. The lower amplitude in a more viscous

environment is in line with common expectation. Never-

theless, the pattern of a single breakup at a position near

middle of the chain is distinct from the pattern of dual

breakups at both sides of the chain commonly observed in a

less viscous solvent fluid (Li et al. 2012a).

2.2 Effects of controlling parameters

The effect of various controlling parameters, such as the

number (N) and the diameter (d) of the beads in the chain

and the directional field strength (Hd), is analyzed to obtain

more insights in manipulating the chain. A complete series

of experiments, in which the lengths of the chains vary

from P13 to P17, are firstly performed using the same

manipulating field, i.e. a constant chaining field of Hd =

24.15 Oe and an oscillating frequency of f = 1 Hz that is

subjected to an increasing dynamical field strength. The

effect of N is generally consistent with the early findings

(Li et al. 2012a). A shorter chain results in an oscillation

that is more synchronized with the overall external field.

The critical strength of dynamical field is also stronger for

a shorter chain. The rupture patterns are consistent with

those shown in Fig. 2c, in which a single breakup occurs

near middle of the chain, rather than the dual breakups (Li

et al. 2012a), which will be also presented in the later

section.

Selected images from another series of experiments,

whose beads are smaller (d = 2.3 lm), are shown in Fig. 4.

It is interesting to note the great similarity between this P15

chain (Fig. 4a, b) and the P15 chain that has larger beads

(Fig. 2b, c). The strengths of the critical fields are both at

Fig. 2 Sequential images of a

chain consisted of 15 beads

(P15 chain) subjected to an

increasing dynamical field

strength of a Hp = 11.44 Oe, b
18.73 Oe and c 21.83 Oe, at

different times t = P/3, 2P/3 and

1P within a period (P = 1 s in

the experiments). The

directional field strength and

frequency of the oscillating field

are Hd = 24.15 Oe and f = 1 Hz,

respectively. Critical strength

for the dynamical field of 18.73

Oe \ Hp \ 21.83 Oe is

observed to result in a structural

rupture of single breakup near

center of the chain
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18.73 Oe \ Hp \ 21.83 Oe with a single breakage near

middle of the chain. These similarities are attributed to

reductions in the drag and the binding magnetic force.

Because of a smaller radius (a) and a lower instantaneous

angular speed (x), a reduction in hydrodynamic drags is

easily understood by referring to Eq. (2). The lower

instantaneous angular speed is a result of the much smaller

amplitude within the same period, which can be seen by

comparing the images shown in Figs. 2b and 4a. In the

meantime, the lesser susceptibility of v = 1.0 weakens the

binding magnetic force between these smaller beads, as

demonstrated by Eq. (1). Consequently, the critical field

strength is not altered significantly when the beads are

smaller. These characteristic observations are generally

valid for the P13 to P17 chains tested.

Another parameter that is significant for the manipula-

tion of an oscillating chain is the directional field strength

(Hd). In order to evaluate the effect of the chaining field, a

series of experiments applying a weaker directional

strength of Hd = 18.15 Oe were conducted. The size of

beads is d = 4.5 lm, so that direct comparisons can be

made with the cases shown in Fig. 2. Figure 5a–c show the

rupture patterns of P13, P15 and P16 chains, respectively.

There are apparent differences in the rupture patterns for

stronger Hd, as shown in Fig. 2. Because the chaining

strength is weaker, the critical field strength is reduced to

Hp = 18.73 Oe for the same P15 chain. In addition, more

unstable patterns of dual breakages are observed for longer

chains, e.g., N C 15. A lower critical strength of the

dynamical field is to be expected, since the major role of

the directional field is to provide a stable chaining force.

Nevertheless, the transition of rupturing patterns that

evolves from a single breakage to dual breakages is worthy

of further analysis. More discussion of the different pat-

terns of rupture instability is presented in a later section.

The effect of controlling parameters is summarized by

their corresponding phase angle trajectories, as shown in

Fig. 6. These trajectories are plotted at their experimental

maximum dynamical field strengths, which sustain a stable

chain without rupture instability. All of the chains oscillate

consistently with the overall external field, e.g., at an

identical frequency of f = 1 Hz. In a fixed field configu-

ration, a shorter chain can be stably manipulated to achieve

a more prominent oscillation because of less viscous drag.

However, the maximum amplitude of a stable oscillating

chain containing the same number of beads is predomi-

nantly affected by the directional field strength. A stronger

directional field results in a higher critical strength of the

dynamical field and allows a more effective manipulation

of the micro-chain. Minimum oscillating amplitude is

resulted by a chain that consists of smaller beads, because

the magnetic susceptibility is smaller.

0 0.5 1 1.5 2
−1/4

0  

1/4

P

θ 
(π

)

 

 

Hp=11.44 Oe ; Field
Hp=11.44 Oe ; Chain
Hp=18.73 Oe ; Field
Hp=18.73 Oe ; Chain
Hp=21.83 Oe ; Field
Hp=21.83 Oe ; Chain

Fig. 3 Phase trajectories within two periods of oscillation of the

representative P15 chain shown in Fig. 2. The x-axis denotes the

oscillation period (P = 1 s). The chain oscillates consistently with the

overall external field. Because of viscous dissipation, apparent phase

lags are observed. For a sufficient strong field strength of Hp = 21.83

Oe, rupture instability is triggered at the phase angle of h & 0, in

which the local instantaneous angular speed is maximum

Fig. 4 Sequential images of a

P15 chain consisted of smaller

beads (d = 2.3 lm) subjected to

an increasing dynamical field

strength of a Hp = 18.73 Oe and

b 21.83 Oe. The directional field

strength and oscillating

frequency are identical to the

cases shown in Fig. 2. The

overall patterns of oscillation

and rupture appear great

similarities with the chain

consisted of bigger beads
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In general, all of the oscillating amplitudes are much

less than those chains manipulated in less viscous distilled

water (Li et al. 2012a), which clearly demonstrates the

significant effect of the solvent fluid. The significance of

the viscous effect is not surprising in such a Stokes regime

(Reynolds number Re! 0), whose length scale is extre-

mely small. In addition, the influences of inertia effects are

usually neglected, which can be justified by the sufficiently

small value of the Stokes number (St) defined as St � Tb

Tf
. Tb

and Tf stand for the response times of beads and fluid,

respectively. Since the Reynolds number is very small in

the present condition, the response time of a single bead

can be expressed as Tb = (qbd2)/(18g) (Crowe et al. 2012),

where qb is the density of bead. By plugging the numerical

values of correspondent properties, the beads’ response

time is in an order of Tb * (10-6) s. In addition, the solvent

fluids are initially stationary and only slow flow induced by

the movement of beads, so that the fluid response time can

be approximated by the oscillating period P, i.e., Tf * 1 s.

These result in a condition of St ! 0, so that the inertia

effects are commonly not considered.

The criterion for chaining instability is examined for

various controlling parameters. Because of the transient

nature of the oscillating field, the instantaneous values of

the Mason number within a period of oscillation vary

significantly. It is noticed that the values of time-dependent

instantaneous angular speeds x are obtained by taking the

derivatives of the phase angle trajectories and then applied

to calculate the numerical value of the Mason number. The

values of Mn1/2*N before ruptures in their corresponding

critical field conditions are plotted in Fig. 7a. The rupture

instabilities all occur at the moment when Mn1/2*N [ 1.7.

It is noticed that numerous experiments are performed for

each condition, and the results are all very consistent.

These results are in good agreement with the proposed

critical value of Mn1/2*N & 1.7 in Li et al. (2012a), so the

proposed criterion is verified more generally. As a result,

the stability criterion can be universally applied to chains

Fig. 5 Sequential images of a
P13, b P15 and c P16 chains at a

weaker directional field strength

of Hd = 18.15 Oe. Less stable

chaining structures by a weaker

directional field can be realized

by the direct comparison

between the present condition of

a ruptured P15 chain in (b) and

a stable chain in a stronger

directional field shown in

Fig. 2b. In addition, chain

ruptures evolve from a single

breakup near the center in a

shorter P13 chain to a more

unstable mode of dual breakups

in both the P15 and P16 chains

0 1 2
−1/4

0 

1/4

P

θ 
(π

)

Field; Hp=18.73 Oe;Hd=24.15 Oe
P15; Hp=18.73 Oe;Hd=24.15 Oe
P17; Hp=18.73 Oe;Hd=24.15 Oe
P15;d=2.3μm
Field; Hp=14.69 Oe;Hd=18.15 Oe
P15; Hp=14.69 Oe;Hd=18.15 Oe

Fig. 6 Phase trajectories of cases with various controlling parame-

ters, i.e. number (N) and size (d) of beads and directional field

strength (Hd), at their experimented maximum stable dynamical field

strengths. Except the case of d = 2.3 lm, whose correspondent images

are shown in Fig. 4a, all the experiments use beads of d = 4.5 lm.

Subjected to the same directional field strength, a shorter chain

oscillating in larger amplitude is expected due to its smaller induced

drag. On the other hand, less pronounced oscillations by chains

consisted of smaller beads or subjected to a smaller field are attributed

to their weaker magnetization strengths
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that contain beads of different sizes (or magnetic suscep-

tibility), or which are manipulated in a more viscous sol-

vent fluid.

To conclude this section, interesting facts regarding the

coupling relationship between these two crucial parameters

Mn and N are emphasized. In the common situations of a

rational field, the field strength and the angular speed are

constant and known, so that Mn is independent on N. In the

present cases, the actual amplitudes of oscillations, which

affect the instantaneous angular speeds, result from the

interactions of magnetic torques and drags. As a result,

value of Mn depends strongly on N and cannot be prede-

termined. In general, for a fixed field less prominent

oscillation is resulted by a longer chain because of more

severe energy dissipation. Consequently, value of the

instantaneous Mason number is smaller. In the other word,

the coupling effects have been included in the dynamic

feature of the instantaneous Mason number. This explains

that, even there exists strongly coupling effect between Mn

and N, the chaining stability follows the proposed criterion

consistently. Shown in Fig. 7b is the phase diagram of the

rupture instability plotted by the two controlling parame-

ters. For the cases tested in various conditions, the chaining

instability is triggered immediately after the critical crite-

rion is reached.

2.3 Patterns of chaining instability and reversed rupture

In the previous section, the global criterion to determine

the occurrence of rupture instability is generally verified,

but this criterion provides no direct information regarding

the rupture patterns, which mainly depend on the local

dynamics. The topologies of the rupture patterns are

important to their application. Kang et al. (2007) argued

that the rupture and reattachment of rotating chains lead to

more efficient mixings. However, breakages in the oscil-

lating chains significantly reduce the swimming efficiency

of micro-swimmers (Li et al. 2013c). In the worst case, the

ruptured segments may not rejoin to the original chaining

formation and the linear chaining structure is permanently

damaged. This indicates that understandings of the local

phenomena for chaining instability are not trivial issues.

For a rotational field, a single breakage near middle of

the chain to form two separated segments is commonly

observed (Petousis et al. 2007; Melle et al. 2003; Melle

and Martin 2003; Biswal and Gast 2004). Melle and Martin

(2003) suggested that the possibility of brittle or ductile

chain fracture depends on the permeability of the particles.

Petousis et al. (2007) also reported that the variation in

local susceptibility, which can be caused by defects of non-

uniformity, alters the positions of a rupture. Detailed sim-

ulations (Kang et al. 2007; Gao et al. 2012) demonstrate

that multiple breakages can occur for intermediate values

of the Mason number. Based on these studies, it is com-

monly concluded that the chains in a rotational field

develop a stable antisymmetric S-shape in a sufficiently

low value of the Mason number, or rupture occurs in the

vicinity of the chain center if the Mason number exceeds a

critical value. On the other hand, Li et al. (2012a, 2013b)

reported a distinct pattern of structural instability when a

10 20 30
0  

0.01

0.02

0.03

N

M
n

(b)

N*Mn0.5=1.7
d=4.5μm [28]
d=4.5μm
d=2.3μm
P11 (Fig. 11)
P29 (Fig. 11)

0 0.2 0.4 0.60

0.4

0.8

1.2

1.6

2

P

N
*M

n0.
5

(a)

P15;d=4.5μm;Hp=56.72Oe;Hd=17.01Oe
P15;d=4.5μm;Hp=21.83Oe;Hd=24.15Oe
P15;d=2.3μm;Hp=21.83Oe;Hd=24.15Oe
P17;d=4.5μm;Hp=21.89Oe;Hd=24.15Oe
P15;d=4.5μm;Hp=18.73Oe;Hd=18.15Oe

Fig. 7 a Evolutions of the numerical values of Mn1/2*N before

breakups in various controlling parameters before ruptures. The

transient nature of the present oscillating field results in temporal

variation of the Mason number within oscillation. The experiment

represented by the solid circle is conducted in a much less viscous

distilled water. The chaining structures cannot be sustained immedi-

ately after the Mn1/2*N raised beyond a critical value of Mn1/2*N &
1.7, which agrees with the criterion proposed in Li et al. (2012a).

b Phase diagram of the rupture instability. The chains are ruptured if the

manipulating conditions exceed the stable criterion of Mn1/2*N = 1.7
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chain oscillates in less viscous distilled water. Because the

solvent fluid is less viscous, much greater dynamical field

strengths (Hp) are sustainable for a stable chain to achieve

an oscillation with a significant amplitude. These experi-

ments are re-examined, as shown in Fig. 8, to make com-

parisons with the present condition of a less prominent

oscillation.

Under the influences of a strong dynamical field, e.g.,

Hp = 48.02 Oe and Hd = 17.01 Oe, Fig. 8a shows a stable

chain significantly bent to an S-shape in a less viscous

environment. It is noticed that the oscillating orientation

begins in a counterclockwise direction in this case, which

is opposite to the cases shown in the previous sections. If

the dynamical field strength is raised to exceed the critical

value, e.g., Hp = 56.72 Oe and 65.72 Oe shown in Fig. 8b,

c, respectively, ruptures with dual breakages mainly occur

at t & P/2 toward both sides of the chain, in which the

length of middle segment is comparable or even longer

than ruptured segments on the sides. In addition, defor-

mation of the oscillating chains is very insignificant before

these ruptures. Compared with the ruptured chains in a

more viscous solvent fluid presented in the previous sec-

tions, the motions of these chains appear to be more rigid

before the dual breakages occur, so the pattern of insta-

bility is more appropriately referred to as a weak ductile

fracture. In common unstable cases, the broken segments

periodically undergo processes of re-chaining and rupture.

However, an unconventional rupture phenomenon is also

observed, in which the oscillating directions are inconsis-

tent between the broken segments, as shown in Fig. 8c.

This pattern of counter-oscillating segments is referred to

as a reversed rupture. The reason for this reversed rupture

is a local trajectory shift in the central segment. Because

there is bending deformation on two sides of the chain, the

local phase lag to the overall external field in the central

region is the greatest. It is possible that this maximum

phase lag can exceed p/2, which results in a shift in the

local trajectory (Li et al. 2013a) and an oscillation opposite

to the overall external field. If the outer segments remain to

lag the overall external field by less than p/2 and continue

their original motion, there is counter-oscillation between

the segments. As demonstrated in Fig. 8c, this counter-

Fig. 8 Typical patterns of a chain with significant oscillating

amplitude in distilled water (Li et al. 2012a). Pointing direction and

length of the arrow represent orientation and strength of the

instantaneous overall external field, respectively. Particular beads

are labeled by number to indicate their initial positions in the chain. a
Pattern of a stable S-shaped chain. b Weak ductile fracture when

dynamical field strength exceeds a certain critical value. Rupture

pattern of dual breakups occurs at two sides of the chain. c Pattern of

dual breakups associated with a reverse oscillation of the middle

segment, referred to as the reversed rupture, in even stronger field

strength. The instantaneous phase lag of the middle segment is greater

than p/2 to trigger the reversed rupture
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oscillation between the segments bends the chain and

triggers dual breakages at the sides. It is important to note

that such a reversed rupture may prevent the broken seg-

ments from rejoining linearly and leads to a permanent

failure of the chaining structure.

The rupture patterns observed in the experiments with

smaller oscillating amplitudes are more toward center of

the chain, with either a single breakage or dual breakages,

as shown in Figs. 2, 4 and 5. The pattern of a single

breakage has been commonly observed in a rotational field,

while multiple breakages are rarely reported, except the

results by direct numerical simulations and recent experi-

ments (Kang et al. 2007; Gao et al. 2012). The simulations

reveal that the rupture patterns evolve from a basic mode of

a single breakage at the center of the chain to more chaotic

patterns of multiple breakages, when the value of the

Mason number increases. There are notable distinctions in

the rupture patterns for these cases of smaller oscillating

amplitudes and cases of weak ductile fracture, as shown in

Fig. 8b, c. Firstly, deformation before rupture is more

apparent, and the positions of the breakages are more

toward center of the chain. Even in some cases with a

similar pattern of dual breakages, the positions are toward

the center, which results in a shorter middle segment. In

addition, the timings of ruptures are delayed to t & 2P/3.

These differences suggest that the chaining instability is in

a different regime, referred to as a strong ductile fracture

because of an apparent deformation before rupture. The

detailed dynamics of the regimes for weak and strong

ductile fractures are discussed in the following paragraphs.

2.3.1 Weak ductile fracture

A weak ductile fracture, e.g., patterns shown in Fig. 8,

which features dual breakages at the outer regions of the

chain, in which a comparable or even longer middle seg-

ment is formed after the rupture, is favored when there is a

pronounced oscillation of large amplitude. Even though the

maximum amplitude is given by hmax = tan-1(Hp/Hd), the

actual amplitude is reduced by viscous dissipation. As a

result, a strong dynamical field strength in a less viscous

fluid is essential to achieve a pronounced oscillation. For

typical experiments shown in Fig. 8, the actual oscillating

amplitudes are measured as hA_max & 70�, compared with

hA_max \ 30� in a more viscous condition presented in the

previous section. In this situation, the overall angular speed

is faster, compared with the cases in a more viscous con-

dition, associated with a rapid variation within an oscil-

lating period. This significant speed variation constrains a

prominent stable deformation before rupture. In addition,

the strength of the overall field also appears to vary sig-

nificantly, i.e., a maximum of H ¼
ffiffi

ð
p

Hp
2 þ Hd

2Þ at t = P/4

and a minimum of H = Hd at t = P/2. It is natural that the

critical condition is determined by the minimum overall

field strength, when the bonding magnetic attraction is the

weakest. As a result, the most favorable time to trigger the

chaining instability is at t & P/2, when the field strength is

the weakest. These facts prove that a weak ductile fracture

is preferable to happen at t & P/2. To further understand

the favored position of local ruptures, an analysis of the

detailed force distributions that act on the chains is nec-

essary. For a chain of 2n ? 1 beads, labeled from -n to n,

whose origin is centered on the zeroth bead, the radial

dipolar interaction (FD) over the ith bead due to the rest of

beads in the chain is given by Melle et al. (2000)

FDi
¼ 3l0m2

4p
ð3cos2DhL � 1Þ

X

i�1

j¼�n

1

rij
4
�
X

n

j¼iþ1

1

rij
4

" #

; ð4Þ

where, rij = |ri - rj| = 2a|i - j| is the distance between

the centers of the ith and jth beads. These radial dipolar

forces are commonly used to determine structural

instability (Petousis et al. 2007; Melle et al. 2003; Melle

and Martin 2003; Biswal and Gast 2004). Nevertheless, the

normal forces acting on the interfaces between the beads,

which constrain the mobility of the beads and induce

tangential friction in realistic situations, can also play an

important role in sustaining chaining structures. The

normal force acting on the interface between the (i -

1)th and ith beads, denoted as FN
i�1

2

, is depicted in Fig. 9

and is calculated by

FN
i�1

2

¼
X

n

j¼i

FDj
: ð5Þ

The typical distribution of the normal forces (FN) among

the beads appears to be the weakest and varies significantly

near the sides, which is similar to the trends shown in

Fig. 10. It is expected that the friction, denoted Ff, would

be directly proportional to the normal force, i.e., Ff * FN.

Since the actual numerical value of friction coefficient or

even its order of magnitude is not presently available,

influences of the friction are seldom discussed. Neverthe-

less, qualitative arguments can be concluded based on the

distributions of normal forces between beads. In the situ-

ation of more dramatic rupture without significant
Fig. 9 Principle sketch of dipolar forces (FD) and normal force (FN)

acting on beads and interfaces, respectively
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deformation, i.e., the weak ductile fracture, the facts of

weaker normal forces associated with rapid variations near

the sides locally provide a qualitative assessment that the

positions of breakages favor the outer regions.

2.3.2 Strong ductile fracture

On the other hand, oscillations with smaller amplitudes in a

more viscous environment commonly lead to the rupture

patterns of strong ductile fractures. For the cases presented

in the previous section, the amplitudes are usually

hA_max \ 30� as shown in Figs. 3 and 6. Because of this

small amplitude, magnitudes and variations of the instan-

taneous angular speeds among an oscillating period are

both less significant, so the chain is structurally more

ductile. A prominent deformation before rupture is

allowed. When there is weak field strength and strong

viscous drag, the primary factor to determine chaining

instability is the variation in the drag. Consequently, the

preferred timing for a rupture is at the time of maximum

instantaneous angular speed, when the induced drag is

greatest. For all of the experimental cases involving a more

viscous environment, ruptures occur when the chains ori-

entate almost horizontally, shortly before t & 2P/3.

Examinations of their trajectories show that the breakages

occur at the times when the local instantaneous angular

speed is maximum, i.e., h & 0 as a representative trajectory

before rupture for Hp = 21.83 Oe and Hd = 24.15 Oe

shown in Fig. 3. Numerical simulations for a steady rota-

tional S-shaped chain (Kang et al. 2007) reveal that a

counter-rotating vortex pair is generated in the middle

region, which leads to a rupture locally. By the same token,

a rupture near center of the chain is preferred for strong

ductile fractures.

Qualitative observations for strong ductile fractures in

the previous section suggest that the rupture patterns are

predominantly influenced by the length of the chain and

the strength of the directional field, e.g., multiple break-

ages in a longer chain subjected to a weaker directional

field, as shown in Fig. 5. Figure 10 shows a plot of the

force distributions for three chains of different lengths and

directional field strengths, i.e., N = 13, 15 and Hd = 18.15

Oe, 24.15 Oe, which are subjected to their corresponding

critical dynamical field strengths at a time immediately

before rupture. The corresponding images of the P15

chain for Hd = 24.15 Oe, the P13 chain in Hd = 18.15 Oe

and the P15 chain in Hd = 18.15 Oe are shown in Figs. 2c

and 5a, b, respectively. Figure 10 clearly demonstrates

that the overall stabilizing normal forces are weakest for a

longer P15 chain that is subjected to a weaker directional

field strength of Hd = 18.15 Oe. In line with the experi-

mental observations, this particular chain appears to have

a more unstable pattern, e.g., dual breakages, as shown in

Fig. 5b. These assessments provide a quantitative valida-

tion that the pattern for chaining instability is mainly

affected by the length of the chain and the strength of the

directional field. These findings are also verified by

additional experiments involving a weaker directional

field strength and a longer chains. Shown in Fig. 11 are

sequential images of a P11 chain subjected to a weak

directional field strength of Hd = 3.15 Oe, and a long P29

chain in Hd = 14.15 Oe. Because of a very weak chaining

field strength, the P11 chain ruptures into 4 segments right

after its movement. On the other hand, an excessive length

of the P29 chain results in a more disorder fracture. Their

correspondent Mason numbers are plotted in Fig. 7b,

which also exceed the critical value. These results also

support the fact that multiple breakups is another common

rupture pattern in an oscillating chain, which is favorable

when longer chains are subjected to a weaker directional

field.

3 Concluding remarks

In this study, distinct patterns of fracture instability in an

oscillating magnetic micro-chain, which depend strongly

on the viscosity of the solvent fluid, are identified and

discussed. In order to analyze these particular fracture
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Fig. 10 Distributions of dipolar (FD) and normal (FN) forces acting

on individual beads immediately before ruptures for the cases of a

P15 chain with single breakup, a P13 chain with single breakup and a

P15 chain with dual breakups shown in Figs. 2c and 5a, b,

respectively. The overall normal forces are the lowest in the case of

a longer P15 chain subjected to a weaker directional field strength of

Hd = 18.15 Oe, which appears a more unstable mode of dual

breakups
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patterns, systematic experiments in a more viscous mixture

are first investigated. Because of the significant induced

drag, the critical strength of the dynamical field to sustain a

stable chaining structure is much lower than for the cases in

less viscous distilled water (Li et al. 2012a). In addition,

the allowable oscillating amplitudes are also less pro-

nounced. These phenomena result in variations of timings

and locations of the chain breakup. Determined by the

viscosities of solvent fluids, two distinct regimes, referred

to as a weak ductile fracture and a strong ductile fracture,

are categorized and discussed in detail.

A weak ductile fracture describes insignificant defor-

mation immediately before chain rupture. This often occurs

when the chain experiences a pronounced oscillation of

large amplitude. In order to achieve a pronounced oscil-

lation, a strong field in a less viscous solvent fluid is

required, such as distilled water (Li et al. 2012a). To fur-

ther understand the mechanisms at work, the cases in dis-

tilled water are revisited and detailed distributions of

normal forces acting between the particles and interactions

with the induced drag are analyzed. Because of the large

amplitude, the temporal variations in both the local

instantaneous angular speed and the corresponding induced

drag are severe. The chain tends to be broken in a more

rigid manner, before apparent deformation. In addition, the

distribution of the normal forces between the interfaces of

the beads appears to vary more significantly in the outer

region, so the positions of rupture usually favor toward the

sides of the chain. The preferred time for a rupture is at t &
P/2, when the overall field strength is weakest. An inter-

esting phenomenon of ruptured segments in counter

oscillations, referred to as a reversed rupture, is newly

identified when there is an excessive dynamical field. This

reversed rupture occurs when the phase lag of the middle

segment of the chain is greater than p/2, which triggers a

local trajectory shift (Li et al. 2013a). An important con-

sequence of this reversed rupture is that broken segments

may be prevented from rejoining and lead to permanent

failure of a linear chaining structure.

A strong ductile fracture, which features significant

deformation before rupture, is favorable in a more viscous

solvent fluid, in which pronounced oscillation is difficult to

achieve. In contrary to a weak ductile fracture, the posi-

tions of breakages are toward the middle region of the

chain, because the vortex pairs are generated by an

S-shaped deformation. The experimental results suggest

that the rupture patterns are mainly influenced by two

factors: the length of the chain and the strength of the

directional field. The prominence of rupture instability,

which can be represented by the number of breakages in

the chain, is enhanced in a weaker directional field or a

longer length. These experimental observations are in line

with quantitative assessments determined by the distribu-

tions of normal forces.

Finally, supplementary but non-trivial results of the

experiments conducted in different manipulating condi-

tions provide further validations of the global criterion for

rupture instability, given by Mn1/2*N & 1.7 which was

initially proposed based on the measurements for pure

distilled water (Li et al. 2012a).
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