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1 Introduction

One of the significant recent progresses in the study of scattering amplitudes is the discovery

of color-kinematic duality by Bern, Carrasco and Johansson (BCJ) [1]. It was conjectured

that a generic L-loop Yang-Mills amplitude can be expressed as a double-copy formula,

AL
tot = iLgm−2+2L

∑

Di

∫ l∏

j=1

dDlj
(2π)D

1

Si

ni(l)ci∏
k Pki(l)

, (1.1)

For the purpose of discussion, in this paper we shall call the above expression as BCJ form

so that it makes better distinction from the rest of the formulations. In equation (1.1) the

summation is taken over all possible cubic Feynman-like diagrams and Si is a symmetry

factor. The color factor ci in this formula is consisted of group structure constants fabc

whereas ni(l) is the kinematic factor satisfying the following properties: Whenever two

color factors ci, cj are related by antisymmetry or three color factors ci, cj , ck by Jacobi

identity, so are the corresponding kinematic factors n.

antisymmetry : ci = −cj ⇒ ni = −nj

Jacobi− like identity : ci + cj + ck = 0 ⇒ ni + nj + nk = 0. (1.2)

At tree-level the existence of BCJ form was proven from string theory in [2, 3], and in

particular from twistor string theory [4–7]. A proof from purely field theory perspective
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can be found in [8–10], while a wide range of relevant studies can be found in the following

list of papers [11–19] (see also [20] for a nice review). At loop-level the BCJ form remains a

conjecture, however a considerable amount of support can be found in the literature [21–31].

The apparent equal-footing treatment of the color and kinematic factors of (1.1) in-

troduces a very interesting perspective to the understanding of the structure of Yang-Mills

amplitudes. To see its implication more clearly, let us review a few results at tree-level.

Tree-level formulations. At tree-level, we can write Yang-Mills amplitudes in the fol-

lowing three color decomposition forms [32, 33]:

Double-copy (or BCJ) form : Atot =
∑

i

cini

Di
(1.3)

Trace form : Atot =
∑

σ∈Sn−1

Tr(T σ1 . . . T σn)A(σ) (1.4)

DDM form : Atot =
∑

σ∈Sn−2

c1|σ(2,...,n−1)|nA(1, σ, n) (1.5)

Here Roman letters A represent color ordered amplitudes, T a are generators of U(N) in fun-

damental representation, and ci, c1|σ(2,...,n−1)|n represent strings of structure constants fabc

c1|σ(2,...,n−1)|n = f1σ2x1fx1σ3x2 . . . fxn−3σn−1n . (1.6)

Among these three forms, the relation between the trace form (1.4) and the Del Duca-

Dixon-Maltoni half ladder formulation (1.5) (abbreviated as DDM form in this paper) has

been well understood using the following two properties of the Lie algebra of U(N) gauge

group (see ref. [33])

Property One : (fa)ij = faij = Tr(T a[T i, T j ]), (1.7)

Property Two :
∑

a

Tr(XT a)Tr(T aY ) = Tr(XY ) (1.8)

On the other hand the existence of BCJ form (1.3) is far from trivial and has sparked the

intense study introduced at the beginning of this section. For special helicity configura-

tions, it was shown that the kinematic numerators correspond to area-preserving diffeo-

morphism algebra [16, 17]. Using this idea, an explicit construction of the BCJ numerators

ni was given in [18], thereby providing a support to an algebra-manifest formulation. Sim-

ilarly, Mafra, Schlotterer and Stieberger have given an explicit construction in [15] using

Berkovits’ pure spinor formalism. Finally, using the twistor string theory, Cachazo, He and

Yuan gave an algorithm for ni using solutions to the scattering equations [7].

Although it is seemingly quite difficult to derive BCJ form from the trace or DDM

form, it is not as much hard to derive the trace and the DDM form from the opposite

direction. Explicitly, using Jacobi relations, one can construct a basis of all the color

factors ci, which are simply the factors given in (1.6). Expanding color factors into this

basis, ci =
∑

σ ασc1|σ|n, and collecting terms rewrites the original BCJ form (1.3) as

Atot =
∑

σ∈Sn−2

c1|σ(2,...,n−1)|nÂ(1, σ, n) (1.9)
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A crucial question that we need to answer before claiming equation (1.9) to be the same

as the desired DDM form (1.5) is that whether the coefficients Â(1, σ, n) obtained here

through collecting terms are the same as the partial amplitudes A(1, σ, n) given in (1.5).

This identification can be argued either from the fact that basis color factors c1|σ(2,...,n−1)|n

by definition must be independent to each other and that both Â and A are minimum

gauge invariant objects, or by using the KLT relation [34] as in [35].

In viewing of the fact that in BCJ form ni acquires the same status as ci, it is natural

to exchange the roles between ci and ni and consider the following two dual formulations

Dual trace form : Atot =
∑

σ∈Sn−1

τσ1...σnÃ(σ) (1.10)

Dual DDM form : Atot =
∑

σ∈Sn−2

n1|σ(2,...,n−1)|nÃ(1, σ, n) (1.11)

where Ã is the color-ordered scalar amplitude with fabc as its cubic coupling constant

(see refs. [35, 36]) and τ is required to be cyclic invariant. The idea of a dual DDM-form

first appeared in the literature in [37]. Using the Jacobi identity we can expand a generic

numerator into a set of basis numerators, ni =
∑

σ n1|σ|n, through a parallel operation

to what was performed on the color factor ci. Plugging these relations back to the BCJ

form (1.3) and collecting terms leads to the form given in (1.11). Note however, it is

far from obvious that the Ã obtained this way reproduces the same color-ordered scalar

amplitude as was claimed by (1.11), which is defined by cubic Feynman rules with fabc as

its coupling. To make this identification, an idea is to perform the analogous manipulation

of [35] on KLT relation, and this requires the off-shell BCJ gauge theory amplitude relation

presented in [18]. Based on the existence of a dual DDM form, the dual trace form was

conjectured by Bern and Dennen in [38] with explicit constructions given for the first few

lower-point amplitudes. In addition two constructions of the dual trace form was discussed

in [40] and [41].

One-loop level. Having reviewed the tree-level case, let us move on to the one-loop case.

At one-loop level we have the following three formulations of total amplitude:

BCJ form : A1−loop
tot = ign

∑

diagrams Γi

∫ ∏ dDl

(2π)D
1

Si

ni(l)ci∏
k Pki(l)

(1.12)

Trace form : A1−loop
tot = Nc

∑

Sn/Zn

Tr(T σ1 . . . T σn)An;0(σ1, . . . , σn)

+

⌊n/2⌋∑

m=1

∑

σ∈Sn/Sn;m

Tr(T σ1 . . . T σn−m)Tr(T σn−m+1 . . . T σn)

×An−m;m(σ1, . . . , σn−m;σn−m+1, . . . , σn) (1.13)

DDM form : A1−loop
tot =

∑

σ∈Sn−1/R

fxnσ1x1fx1σ2x2 . . . fxn−1σnxnAn,0(σ1, . . . , σn) (1.14)

In (1.13), Zn denotes cyclic permutations, Sn;m is the subset of Sn that leaves the double-

trace structure invariant and ⌊n/2⌋ is the greatest integer less than or equal to n/2. The R
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in equation (1.14) denotes reflection. At the moment of writing, the last two formulations,

i.e., (1.13) and (1.14), are proven while the BCJ form (1.12) at generic n-point at one-loop

level remains a conjecture.

At one-loop level the trace form consists of both single and double trace parts [42],

where the partial amplitude An−m;m(σ1, . . . , σn−m;σn−m+1, . . . , σn) associated to the dou-

ble trace part can be obtained by linear combination of those to the single trace part

An;0(σ1, . . . , σn). In other words An−m;m(σ1, . . . , σn−m;σn−m+1, . . . , σn) does not really

bring extra information to the one-loop amplitude. The DDM form given in [33] on

the other hand consists of summation over noncylic permutations up to reflections R :

(12 . . . n) = (n . . . 21). Here the An;0(σ1, . . . , σn) in (1.14) is nothing but the same single

trace partial amplitude appeared in (1.13). In fact it was demonstrated in [33] that it is

straightforward to derive the trace form starting from DDM form, and the relation between

single and double trace partial amplitudes appears automatically as a by-product.

Assuming the existence of (1.12), going from BCJ form to the trace form (1.13) or to

the DDM form (1.14) is relatively easy. As shown by Del Duca, Dixon and Maltoni in [33],

for the one-loop color factors, annuli of structure constants of the form

c1−loop(σ1 . . . σn) ≡ fxnσ1x1fx1σ2x2 . . . fxn−1σnxn (1.15)

serve as a basis. Using it we can expand any ci in BCJ form and collect terms carry-

ing the same color factor c1−loop(σ1 . . . σn). Suppose if we call the collection of coeffi-

cients as Ân,0(σ1, . . . , σn), again the crucial problem is whether it equals the amplitude

An,0(σ1, . . . , σn) defined in (1.14)? The identification is again easy because by definition

the color basis c1−loop(σ1 . . . σn) consists of independent elements, and that Â and A are

gauge invariant objects.

The above discussions are parallel to those given at tree-level. Considering the duality

between ni and ci in (1.12), it is natural to investigate the dual form [38], where the interest

of this paper lies.1 Unlike color numerators, the ni depends on the loop momentum in

general, so the dual formulations at one-loop are expected to take the following forms:2

A1−loop = ign
∫

dDl

(2π)D

∑

σ∈Sn−1

nDDM
1,σ (l)Ĩ(1, σ). (1.16)

for the dual DDM-form, and

A1−loop = ign
∫

dD l

(2π)D

⌊n/2⌋∑

m=0

∑

σ∈Sn/Sn;m

τ{σ1,...,σn−m},{σn−m+1,...,σn}(l)

×Ĩ({σ1, . . . , σn−m}; {σn−m+1, . . . , σn}), (1.17)

1In supergravity theory, a ‘dual DDM-form’(where the full amplitude is decomposed according to one

of the two copies of BCJ numerators) decomposition at one-loop level of supergravity has already been

suggested in [39] and the dual DDM-form in Yang-Mills theory has the similar form. Nevertheless, in this

work, we would like to give a general discussion on dual DDM-form at one-loop level in Yang-Mills theory

in the introduction and some explicit examples in section 2, because the dual DDM-form is crucial for the

construction of dual trace-form.
2One may notice that in one-loop DDM form (1.14), reflection has been modded out, in the dual DDM-

form, we just leave the reflection symmetry and only consider it when we discuss on the dual trace-form.
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for the dual trace-form.3 Therefore inevitably, the duality needs to be considered at inte-

grand level. In the light of preceding success in deriving dual DDM forms from BCJ forms,

it is natural to wonder if similar idea works at one-loop, and we see that collecting coeffi-

cients in a suitable basis of ni indeed returns the dual DDM form, albeit a few complexities

introduced by the loop momentum dependence, particularly in identifying what integrand

these collected coefficients correspond to.

More explicitly, starting from BCJ form one decomposes numerators with respect to

any given loop momentum alignment convention, ni(l) =
∑

α κiαnα(l
′), and the integrand

is given by

∑

α

nα(l)

(
∑

i:diagrams

κiα
ci
Di

)
(1.18)

up to terms that vanish after the integration. The factors inside the bracket can be iden-

tified as colored scalar integrand with respect to certain loop momentum alignment con-

vention.4 In section 2, we will demonstrate how this can be done explicitly through a few

lower-point examples. The general operation should follow. Note that the approach just

described assumes the existence of a BCJ form in the first place. At one-loop level, one

can solve all numerators using the ansatz approach of Bern, Davies, Dennen, Huang and

Nohle [29] for example, which allows us to express the (pure) full Yang-Mills amplitude

in BCJ form.

Granted that a dual DDM form can be obtained using the approach outlined above,

the next step is to construct the corresponding dual trace form. At the moment the idea

of deriving a dual trace formulation seems to be inspired to a great extend purely by

academic interest. It would be natural that a dual trace form should exist if the duality is

to have a group-theoretic origin. A possible practical reason is that for example when all the

informations regarding to coefficients and polarizations are given, an algebraic construction

of the dual trace such as the one provided in [41] should allow us to write down directly

the explicit formula of the full amplitude.

To go from dual DDM form to dual trace-form, we need to find a way to rewrite

basis kinematic numerators nα into a linear combination of analogues of “single trace” and

“double trace” ntrace as what was done at tree-level [38, 40, 41]. However note that, as in

the tree-level case, the number of ntrace is much larger than nα, thus extra relations need

to be manually imposed in order to solve ntrace in terms of nα. Choosing the appropriate

relations is nevertheless far from trivial, in particular one needs to avoid over-constraint

and to maintain relabeling symmetry if possible. A 4-point example at one-loop level was

provided by Bern and Dennen in [38], where cyclic and KK-relations were implemented.

It is therefore natural to suspect that these conditions generically preserves relabeling

symmetry. In this paper we generalize the result of Bern and Dennen and give a general

algorithm for the construction of dual trace-form at one-loop. We will see that the solutions

obtained from this algorithm indeed satisfy relabeling symmetry.

3Since we only discuss on one-loop case, we will use n and τ and Ĩ instead of n1−loop, τ1−loop, Ĩ1−loop

for convenience.
4Relevant work is in progress by the current authors.
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l +p l

l +p

Figure 1. Feynman-like diagrams for two-point one-loop integrand using only cubic vertex.

This paper is organized as follows. Trough a few lower-point examples, in section 2

we demonstrate how to derive dual DDM form assuming the existence of a BCJ form. We

elaborate the algorithm and calculate dual traces up to 6-points in section 3. In section 4,

we use relabeling symmetry to give another construction of dual trace-form. Finally in

section 5 a brief conclusion is given.

2 Dual DDM-form

In this section we use explicit examples to demonstrate generically how to derive dual

DDM form from BCJ form, in particular that the subtleties introduced by loop momentum

degrees of freedom can be seen from the three and four point examples. As remarked in the

previous section here we are assuming that all numerators has been determined using for

example the method described in [29]. In the discussion below we will follow the convention

where the loop momentum l is defined to be the momentum carried by the propagator next

to leg 1.

2.1 Two-point example

At two points , two diagrams A and B can be constructed using only cubic vertices, as

depicted in figure 1. The corresponding integrands are

IA(l) =
CAnA(l)

s12(l + p1 + p2)2
, IB(l) =

CBnB(l)

l2(l + p2)2
. (2.1)

where CA and CB are color factors

CA = f12efee′e′ , CB = fe1e′fe′2e (2.2)

and summation convention has been used implicitly. Since the structure constant is anti-

symmetric, fee′e′ = 0, we see that CA = 0. The two-point one-loop integrand becomes

I2−pt(l) = IB(l) = nB(l)

[
fe1e′fe′2e

l2(l + p2)2

]
. (2.3)

Comparing with (1.16), we see that the part inside the bracket in above equation is simply

the integrand Ĩ(1, 2) we are looking for. It is obvious from the expression that Ĩ(1, 2) is

the one-loop integrand of color-ordered scalar theory with two external lines.

– 6 –
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1

2

3 1

3

2 2

3

1

A B C

1

2

3

D

1 2

3

E

l +p2

l +p +p2 3

l +p3

l

l +p +p2 3

l l +p2 l l +p3

l +p +p2 3 l +p +p2 3

l +p +p2 3

Figure 2. Feynman-like diagrams for three-point one-loop integrand.

2.2 Three-point example

The first non-trivial case occurs at three points, where we encounter three diagram topolo-

gies (see figure 2). The first kind of topologies are the tadpole diagrams. Because of

antisymmetry these diagrams do not contribute, just like the diagram A at two-points.

The second kind of topologies are bubbles, i.e., diagrams A, B, C in figure 2, corresponding

respectively to the three following terms

IA(l) =
CAnA(l)

s12(l + p2)2(l + p2 + p3)2
, IB(l) =

CAnB(l)

s13(l + p3)2(l + p3 + p2)2
,

IC(l) =
CCnC(l)

s23l2(l + p2 + p3)2
. (2.4)

The third kind of topologies have three lines connecting directly to the loop, i.e., diagrams

D, E in figure 2 and these contribute as

ID(l) =
CDnD(l)

l2(l + p2)2(l + p2 + p3)2
, IE(l) =

CEnE(l)

l2(l + p3)2(l + p3 + p2)2
. (2.5)

where CD, CE are the corresponding color factors. Using Jacobi-like identity and taking

nD and nE as basis, we find the following expansions

nA(l) = nD(l)− nE(l + p2), nB(l) = nE(l)− nD(l + p3), nC(l) = nD(l)− nE(l). (2.6)

Thus IA, IB, IC can be written as

IA(l) =
CA[nD(l)− nE(l + p2)]

s12(l + p2)2(l + p2 + p3)2
=

CAnD(l)

s12(l + p2)2(l + p2 + p3)2
−

CAnE(l)

s12l2(l + p3)2
+ TA

IB(l) =
CB[nE(l)− nD(l + p3)]

s13(l + p3)2(l + p3 + p2)2
=

CBnE(l)

s13(l + p3)2(l + p3 + p2)2
−

CBnD(l)

s13(l)2(l + p2)2
+ TB

IC(l) =
CC [nD(l)− nE(l)]

s23l2(l + p2 + p3)2
, (2.7)
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Note that in order to be able to extract ni(l) instead of shifted numerators we simulta-

neously add and subtract unshifted terms. The differences between shifted and unshifted

terms, TA and TB, integrated to give zero.

TA =
CA

s12

[
nE(l)

l2(l + p3)2
−

nE(l + p2)

(l + p2)2(l + p2 + p3)2

]
,

TB =
CB

s13

[
nD(l)

l2(l + p2)2
−

nD(l + p3)

(l + p3)2(l + p3 + p2)2

]
. (2.8)

Therefore up to terms vanish upon integration, the full integrand is given as

I(1, 2, 3)(l) = nD(l)

[
CA

s12(l + p2)2(l + p2 + p3)2
−

CB

s13(l)2(l + p2)2
+

CC

s23l2(l + p2 + p3)2

+
CD

l2(l + p2)2(l + p2 + p3)2

]

+nE(l)

[
−

CA

s12l2(l + p3)2
+

CB

s13(l + p3)2(l + p3 + p2)2
−

CC

s23l2(l + p2 + p3)2

+
CE

l2(l + p3)2(l + p3 + p2)2

]
≡ nD(l)Ĩ(1, 2, 3)(l) + nE(l)Ĩ(1, 3, 2)(l), (2.9)

The above is exactly the expected dual DDM form of one-loop amplitude (1.16), where

nD and nE are just the kinematic basis numerators. The corresponding expressions for

Ĩ(1, 2, 3)(l) and Ĩ(1, 3, 2)(l) are again the three-point one-loop integrands of color-ordered

scalar theory.

2.3 Four-point example

At four-points, four types of diagrams are present. Except for tadpoles, which vanish

because antisymmetry, the rest of the diagrams are list in figures 3, 4 and 5. We choose

D.1-D.6 of figure 5 to be the basis numerators nα and expand those in figure 3 and figure 4

using Jacobi identities. The coefficient of nDDM
1234 for example receives contributions from

diagrams A.1, A.3, B.1, B.3, B.5, B.8, B.9, B.10, B.12, C.1, C.5, C.8, C.12, D.1, and is

given as

CA.1

s12s34(l + p2)2(l − p1)2
+

CA.3

s14s23(l + p4)2(l − p1)2
(2.10)

+
CB.1

s12s123(l+p2+p3)2(l−p1)2
+

CB.3

s23s123(l+p2+p3)2(l−p1)2
+

CB.5

s14s124(l+p2+p4)2(l−p1)2

+
CB.7

s13s134(l + p3 + p4)2(l − p1)2
+

CB.9

s34s134(l + p3 + p4)2(l − p1)2
+

CB.10

s23s234l2(l − p1)2

+
CB.12

s34s234l2(l−p1)2
+

CC.1

s12(l+p2)2(l+p2+p3)2(l−p1)2
+

CC.5

s14(l+p4)2(l+p2+p4)2(l − p1)2

+
CC.8

s23l2(l + p2 + p3)2(l − p1)2
+

CC.12

s34l2(l + p2)2(l − p1)2
+

CD.1

l2(l + p3)2(l+p3+p4)2(l − p1)2
,

– 8 –
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Figure 3. Feynman-like diagrams with two lines connected to the loop in four-point case.

where we have neglected terms that integrate to zero. We recognize the above expression

as the four-point one-loop integrand Ĩ(1, 2, 3, 4) of color-ordered scalar theory. Repeating

similar operations on the rest of the terms and we do get the expected dual DDM form (1.16)

I(1, 2, 3, 4)(l) =
∑

σ∈permutations of{2,3,4}

n1,σ(l)Ĩ(1, σ). (2.11)

up to terms that vanish after loop integration, where each Ĩ(1, σ) can be identified as the

colored scalar integrand at one-loop level. The above procedure generalizes to higher points

although the computations will become much more complicated.
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Figure 4. Feynman-like diagrams with three lines connected to the loop in four-point case.
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Figure 5. Feynman-like diagrams with four lines connected to the loop in four-point case.
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3 Dual trace-form

In the discussions above we saw that the dual DDM-form can be derived through relatively

straightforward manipulations. Deriving a corresponding dual trace-form at one-loop how-

ever turns out to be less direct, especially because of the extra conditions required to define

dual trace factors [38, 40].

Recall that at tree-level, the set of numerators n1σn, consisting of (n − 2)! elements,

having legs 1 and n fixed at two ends, were translated into (n− 1)! dual traces τ1σ̃, which

are counterparts of the single color trace factors. To uniquely determine τ we need to

impose KK-relation among τ1σ̃’s, so the number of independent dual traces can be reduced

to (n− 2)!. The algorithm formally picks a fixed pair (1, n) to define basis numerators. To

examine if the solution satisfy relabling symmetry we need to inspect the transformation

under permutaions of legs 1 and n.

At one-loop level, similar constraints are required to properly define dual traces. For

the purpose of discussion let us first review the U(Nc) color structure at one-loop, which

also serves as input to the definition of dual traces.

3.1 General structure of the defining conditions

Generically, the color factors appear in the DDM-form at one-loop level can be translated

into double trace factors,

c1−loop
{σ} = fx1σ1x2fx2σ2x3 . . . fxnσnx1 = Tr(T x1 [T σ1 , [T σ2 , . . . [T σn , T x1 ]]])

=
∑

σ∈OP ({α}
⋃
{β})

(−1)nβ Tr(T x1Tα1 . . . TαnαT x1T βnβ . . . T β1)

=
∑

σ∈OP ({α}
⋃
{β})

(−1)nβ Tr(Tα1 . . . Tαnα ) Tr(T βnβ . . . T β1), (3.1)

where in the last line we used the property of U(Nc),
∑

x1

Tr(T x1AT x1B) = Tr(A)Tr(B). (3.2)

Note however, two exceptional cases call for special attention. When the repeated gener-

ators are adjacent, single trace factors are produced instead. This can happen in equa-

tion (3.1) as
∑

x1

Tr(T x1T σ1 . . . T σnT x1) = NcTr(T
σ1 . . . T σn) (3.3)

or as

(−)n
∑

x1

Tr(T x1T x1T σnT σn−1 . . . T σ1) = (−)nNcTr(T
σnT σn−1 . . . T σ1). (3.4)

Inspired by the above algebraic structure, it is natural to assume that there are kine-

matic correspondence of the following color trace factors

Tr(Tα1 . . . Tαm)Tr(T β1 . . . T βn) → τα;β , Tr(T σ1 . . . T σn) → τσ, (3.5)
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where kinematic trace factors τα;β and τα are cyclic invariant. Thus we can impose the

following commutation-like relation between nα in the dual DDM-form and kinematic trace

structure τα;β in the dual trace-form as

n1−loop
{σ} =

∑

σ∈OP ({α}
⋃
{β})

(−1)nβτα;βT , (3.6)

where βT should be understood as the ordered set β with its ordering reversed. Once a

dual DDM form is written down, relation (3.6) alone allows us to translate it into the dual

trace form introduced at the very beginning of this paper,

A1−loop = ign
∫

dDl

(2π)D

∑

σ∈Sn−1

nDDM
1,σ (l)Ĩ(1, σ)

= ign
∫

dD l

(2π)D

⌊n/2⌋∑

m=0

∑

σ∈Sn/Sn;m

τ{σ1,...,σn−m},{σn−m+1,...,σn}(l)

×Ĩ({σ1, . . . , σn−m}; {σn−m+1, . . . , σn}). (3.7)

Generically the dual traces can depend on loop momentum, however since that all loop

momenta appear in the dual DDM form are already properly aligned (in the sense that

no shifted numerator is present), we see that going from the first line to the second line

of equation (3.7) follows the same operation on color factors in a rather straightforward

manner. As it happens to the color factors, when applying (3.6) we have two special cases

corresponding to those when the repeated indices are adjacent, and we retain strictly the

same correspondence between traces of U(Nc) and τ by writing: when α = ∅, τα;βT →

NcτβT , and when β = ∅, τα;βT → Ncτα. In the absence of an algebraic interpretation,

we are treating the “kinematic rank Nc” here as a remaining degree of freedom left by

equation (3.6).

From equation (3.6), one can see that the number of all τ together clearly exceeds

that of n. In total there are (n− 1)!/2 independent nα’s because nα is cyclic invariant and

satisfies the following reflection relation

nα = (−)MnαT (3.8)

where M is the number of elements of the set α. To be able to solve τ in terms of nα, we

need to impose extra equations. Nevertheless without any clue from an actual kinematic

algebra it is rather difficult to pick the proper constraint that does not spoil relabeling

symmetry. A possible solution was proposed by Bern and Dennen in [38], where Kleiss-

Kuijf (KK) relation was imposed on N = 4 super Yang-Mills amplitude at 4-points. In the

light of this initial success we are assuming the same KK relation between the kinematic

single and double traces

τα;β = (−)nβ

∑

C∈Znβ

∑

σ∈COP(α
⋃

C(β)T )

τσ (3.9)

generalizes to higher points, in the hope that relabeling symmetry can be preserved despite

that U(Nc) traces generically do not satisfy the same relation. Here we use COP to denote
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“cyclic ordered permutations”, in the sense that we include all possible permutations where

the cyclic orderings of both α and C(β)T are kept fixed. It is worth noticing that subsets

α and β in equation (3.9) were not treated on equal footing. For this reason we manually

impose the following two additional conditions.

τα;β = τβ;α, (3.10)

and

τα = (−1)MταT , (3.11)

where M is the number of elements of the set α. The minus sign in the reflection condi-

tion (3.11) is necessary in order to be consistent with (3.9) and (3.10).

Equations (3.9), (3.10) and (3.11) together reduces the number of independent dual

trace factors to (n − 1)!/2. Under these constraints the original commutation-like equa-

tions (3.6) become an (n− 1)!/2 by (n− 1)!/2 matrix equation,

n1σ =
∑

σ′∈Sn−1

G[σ|σ′]τ1σ′ (3.12)

Once the matrix G is known, in principle we can solve τ1σ′ in terms of the numerators n1σ

and in turn determine all the kinematic trace factors.

General algorithm. To summarize, the general algorithm of constructing kinematic

trace factors is given by the following:

• Starting with any dual-DDM basis numerator n1,...,n we consider all possible splittings

of its label {1, . . . , n} into two subsets α and β, each can be empty. Generically there

will be 2n splittings. For example at four-points, denoting the one-loop dual-DDM

factor as n1−loop
1,σ , σ ∈ perm(2, 3, 4). the relation between n and τ is given by

n1−loop
1234 = Ncτ{1234} − τ{234},{1} − τ{134},{2} − τ{124},{3} − τ{123},{4}

+τ{34},{21} + τ{24},{31} + τ{23},{41} + τ{13},{42} + τ{14},{32} + τ{12},{43}

−τ{4},{321} − τ{3},{421} − τ{2},{431} − τ{1},{432} +Ncτ{4321} (3.13)

• We then impose KK relation (3.9) on τ . In the four-point case, we have

τ{bcd},{a} = −τ{abcd} − τ{bacd} − τ{bcad},

τ{cd},{ba} = τ{abcd} + τ{acbd} + τ{cabd} + τ{bacd} + τ{bcad} + τ{cbad},

τ{d},{cba} = −τ{abcd} − τ{abdc} − τ{adbc}, (3.14)

Substituting these relations into (3.13) and using cyclic symmetry τ{abcd} = τ{dabc},

we get

n1−loop
1234 = (15 +Nc)τ{1234} + 10τ{1243} + 10τ{1324} + 10τ{1342} + 10τ{1423}

+(5 +Nc)τ{1432}. (3.15)
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• Using reflection relation (3.11) we can reduce the obtained equations further. For

example, above equation is reduced to

n1−loop
1234 = (20 + 2Nc)τ1234 + 20τ1243 + 20τ1324, (3.16)

Repeating the same manipulations for all basis numerators, we arrive at the matrix

equation (3.12), from which we can solve for all dual traces.

The G matrix. Now we discuss the computation of the G matrix. The calculation can

be divided into two steps. The first step is to calculate extended G̃-matrix G̃[σ|ρ] where

σ, ρ ∈ Sn/Zn (i.e., all permutations up to cyclic ordering). The second step is to impose

the reflection relation (3.11), i.e,

G[σ|ρ] = G̃[σ|ρ] + (−)nG̃[σ|ρT ], σ, ρ ∈ (Sn/Zn)/Z2 (3.17)

Since the second step is easy, we will focus on the first step, i.e., the extended G̃-matrix.

Elements of extended G̃-matrix depend on Nc only for following two kinds of structures

G̃[σ|σ] = a0 +Nc, G̃[σ|σT ] = (−)n(b0 +Nc) (3.18)

where a0, b0 are constants. Because this dependence, if we know the extended G̃-matrix

for Nc = 1, we will know the extended G̃-matrix for general Nc.

To demonstrate the calculation of element G̃[σ|ρ], let us use four-point result (3.15)

with Nc = 1 as an example. For this example, we have σ = {1, 2, 3, 4} fixed and 3! = 6

different choices of ρ. Given the ordering of σ, there are 24 = 16 different splittings to two

subsets. Among them, 8 of them with 1 at the first subset are given by (remembering to

keep relative ordering)

{1, 2, 3, 4} → (σL, σR)

= (1234, ∅)/(123, 4)/(124, 3)/(134, 2)/(12, 34)/(13, 24)/(14, 23)/(1, 234) (3.19)

and other 8 are obtained by exchanging these two subsets. We do similar splitting to the

ordering ρ, but now we will allow the cyclic shifting of one subset. For example, with

ρ = {1, 2, 4, 3} we will have following splitting with 1 at the first position of the first subset

(by cyclic symmetry, we can always fix one element)

{1, 2, 4, 3}→(ρL, ρR) = (1243, ∅)/(124, 3)/(123, 4)/(143, 2)/(12, 43)/(12, 34)/(14, 23)

/(14, 32)/(13, 24)/(13, 42)/(1, 243)/(1, 432)/(1, 324) (3.20)

where since we have fixed 1, we have to include the cyclic shifting of ρR. Comparing these

two splitting (3.19) and (3.20), we see that there are five splittings to be same:

(123, 4)/(124, 3)/(12, 34)/(13, 24)/(14, 23) =⇒ G̃[{1, 2, 3, 4}|{1, 2, 4, 3}]=2×5=10 (3.21)

where factor 2 comes from exchanging of two subsets. One can easily check that all

other five coefficients in (3.15) can be obtained by same way. For ρ={1, 2, 3, 4} there

are 8×2 splitting. For ρ={1, 3, 2, 4}, (124, 3)/(134, 2)/(12, 34)/(13, 24)/(14, 23) from (3.19)
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are taken, so 5×2 = 10. For ρ = {1, 3, 4, 2}, (134, 2)/(12, 34)/(13, 24)/(14, 23)/(1, 234)

from (3.19) are taken, so 5× 2 = 10. For ρ = {1, 4, 2, 3}, (123, 4)/(12, 34)/(13, 24)

/(14, 23)/(1, 234) from (3.19) are taken, so 5 × 2 = 10. Finally for ρ = {1, 4, 3, 2},

(12, 34)/(13, 24)/(14, 23) from (3.19) are taken, so 3× 2 = 6.

Having about general discussions, now we demonstrate our algorithm by several

examples.

3.2 Four-point dual traces

Under our imposed conditions (3.9), (3.10) and (3.11) the number of independent n’s and

τ ’s is (4−1)!
2 = 3. We take the liberty to choose following three orderings (1234), (1243)

and (1324) as our basis. Using our algorithm for G-matrix, equation (3.12) yields

n1−loop
1234 = (20 + 2Nc)τ1234 + 20τ1243 + 20τ1324,

n1−loop
1243 = 20τ1234 + (20 + 2Nc)τ1243 + 20τ1324,

n1−loop
1324 = 20τ1234 + 22τ1243 + (20 + 2Nc)τ1324. (3.22)

The determinant of G-matrix is det(G) = 8N2
c (30 + Nc) for generic Nc, from which we

derive the solution for τ1234,

τ1234 =
1

2Nc(30 +Nc)
((20 +Nc)n1234 − 10n1243 − 10n1324) . (3.23)

Expressions of other orderings τρ can be obtained by relabeling symmetry.

This result seems to differ from the result previously obtained for N = 4 SYM theory

in [38]. To connect the two results, notice that for N = 4 SYM, only have box diagrams

contribute and the corresponding n is given as

n1−loop
abcd = sabsadA

tree(a, b, c, d). (3.24)

Substituting (3.24) into (3.23) and using tree-level amplitude relation to write all the four-

point tree amplitudes in terms of A(1234), we get

τ1−loop
1234 =

1

62
stAtree(1, 2, 3, 4). (3.25)

which is just the result given by Bern and Dennen when Nc is chosen to be 1.

Our result (3.23) has a free parameter Nc. It is easy to see that Nc can not be 0 or −30

because for these two values, determinant of G-matrix is zero, i.e., G-matrix is degenerated

and we can not solve τ by nα. Also, with particular choice of Nc, we may get simpler

expressions. For example, when Nc = −10 we get

τ1234 =
−1

40
(+n1234 − n1243 − n1324) (3.26)

while when Nc = −20 we get

τ1234 =
1

40
(n1243 + n1324) (3.27)
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3.3 Five-point case

Let us apply the same algorithm to five points. The relation between DDM basis numerator

n and dual trace τ is given as

na1a2a3a4a5 = (30 + 2Nc)τ{a1a2a3a4a5} + 12τ{a1a2a3a5a4} + 12τ{a1a2a4a3a5} + 12τ{a1a3a2a4a5}

+6τ{a1a2a4a5a3} + 6τ{a1a2a5a3a4} + 6τ{a1a3a4a2a5} + 6τ{a1a4a2a3a5}

−12τ{a1a2a5a4a3} − 12τ{a1a4a3a2a5} − 6τ{a1a3a2a5a4} + 0τ{a1a3a5a2a4} (3.28)

The number of independent ns and τs is (5 − 1)!/2 = 12. We choose the our basis to be

(12345), (12354), (12435), (12453), (12434), (12543), (13245), (13254), (13425), (13524),

(14235), (14325) in order, which leads to following matrix G

G=




2Nc+30 12 12 6 6 −12 12 −6 6 0 6 −12

12 2Nc+30 6 −12 12 6 −6 12 0 6 12 −6

12 6 2Nc+30 12 −12 6 6 0 −12 6 12 6

6 −12 12 2Nc+30 6 12 12 −6 −6 −12 −6 0

6 12 −12 6 2Nc+30 12 0 6 6 −12 −6 −12

−12 6 6 12 12 2Nc+30 −6 12 −12 −6 0 6

12 −6 6 12 0 −6 2Nc+30 12 12 6 −12 6

−6 12 0 −6 6 12 12 2Nc+30 6 12 −6 12

6 0 −12 −6 6 −12 12 6 2Nc+30 −12 6 12

0 6 6 −12 −12 −6 6 12 −12 2Nc+30 −12 −6

6 12 12 −6 −6 0 −12 −6 6 −12 2Nc+30 12

−12 −6 6 0 −12 6 6 12 12 −6 12 2Nc+30




(3.29)

with determinant det(G) = 212N6
c (Nc + 30)6. Therefore the solution is

τ{12345} =
1

2Nc(30 +Nc)
{(15 +Nc)n12345 − 6n12354 − 6n12435 − 3n12453

−3n12534 + 6n12543 − 6n13245 + 3n13254 − 3n13425 − 3n14235 + 6n14325} (3.30)

Other τ ’s can be obtained using relabeling symmetry. For this expression, if we choose

Nc = −15, all coefficients are ±2
150 and 1

150 . Especially the first coefficients (15 +Nc) → 0.

3.4 Six-point example

At six-points, the basis can be labeled by the following (6− 1)!/2 = 60 orderings

{1, 2, 3, 4, 5, 6}, {1, 2, 3, 4, 6, 5}, {1, 2, 3, 5, 4, 6}, {1, 2, 3, 5, 6, 4}, {1, 2, 3, 6, 4, 5}, {1, 2, 3, 6, 5, 4},

{1, 2, 4, 3, 5, 6}, {1, 2, 4, 3, 6, 5}, {1, 2, 4, 5, 3, 6}, {1, 2, 4, 5, 6, 3}, {1, 2, 4, 6, 3, 5}, {1, 2, 4, 6, 5, 3},

{1, 2, 5, 3, 4, 6}, {1, 2, 5, 3, 6, 4}, {1, 2, 5, 4, 3, 6}, {1, 2, 5, 4, 6, 3}, {1, 2, 5, 6, 3, 4}, {1, 2, 5, 6, 4, 3},

{1, 2, 6, 3, 4, 5}, {1, 2, 6, 3, 5, 4}, {1, 2, 6, 4, 3, 5}, {1, 2, 6, 4, 5, 3}, {1, 2, 6, 5, 3, 4}, {1, 2, 6, 5, 4, 3},

{1, 3, 2, 4, 5, 6}, {1, 3, 2, 4, 6, 5}, {1, 3, 2, 5, 4, 6}, {1, 3, 2, 5, 6, 4}, {1, 3, 2, 6, 4, 5}, {1, 3, 2, 6, 5, 4},

{1, 3, 4, 2, 5, 6}, {1, 3, 4, 2, 6, 5}, {1, 3, 4, 5, 2, 6}, {1, 3, 4, 6, 2, 5}, {1, 3, 5, 2, 4, 6}, {1, 3, 5, 2, 6, 4},

{1, 3, 5, 4, 2, 6}, {1, 3, 5, 6, 2, 4}, {1, 3, 6, 2, 4, 5}, {1, 3, 6, 2, 5, 4}, {1, 3, 6, 4, 2, 5}, {1, 3, 6, 5, 2, 4},

{1, 4, 2, 3, 5, 6}, {1, 4, 2, 3, 6, 5}, {1, 4, 2, 5, 3, 6}, {1, 4, 2, 6, 3, 5}, {1, 4, 3, 2, 5, 6}, {1, 4, 3, 2, 6, 5},

{1, 4, 3, 5, 2, 6}, {1, 4, 3, 6, 2, 5}, {1, 4, 5, 2, 3, 6}, {1, 4, 5, 3, 2, 6}, {1, 4, 6, 2, 3, 5}, {1, 4, 6, 3, 2, 5},

{1, 5, 2, 3, 4, 6}, {1, 5, 2, 4, 3, 6}, {1, 5, 3, 2, 4, 6}, {1, 5, 3, 4, 2, 6}, {1, 5, 4, 2, 3, 6}, {1, 5, 4, 3, 2, 6}. (3.31)
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The expansion coefficients of n123456 into τs, i.e, G[{123456}|ρ] = G1i i = 1, . . . , 60 respec-

tively by the orderings listed above, is given by

G1i = {62 + 2Nc, 34, 34, 22, 22, 12, 34, 22, 22, 22,

18, 16, 22, 18, 12, 16, 26, 22, 22, 16,

16, 22, 22, 34, 34, 22, 22, 16, 16, 22,

22, 16, 22, 18, 18, 12, 16, 18, 18, 18,

12, 18, 22, 16, 18, 12, 12, 22, 16, 18,

26, 22, 18, 18, 22, 16, 16, 22, 22, 34}, (3.32)

Other Gij can be obtained by relabeling symmetry. The determinant of matrix G is

det(G) = 260N24
c (Nc + 18)5(Nc + 21)16(Nc + 56)9(Nc + 60)5(Nc + 630), (3.33)

and the solution is given by

τσ = G−1[σ|ρ]nρ (3.34)

The inverse of matrix G is very complicated, but with relabeling symmetry, it is enough to

give the first row, i.e., G−1
1i with i = 1, . . . , 60. To have a feeling about the Nc-dependence,

we list all 60 elements as following:

G−1
11,12,13,14,15 =

{
1

120

(
5

Nc+18
+

16

Nc+21
+

9

Nc+56
+

5

Nc+60
+

1

Nc+630
+

24

Nc

)
,

1

2520

(
−

35

Nc+18
+

56

Nc+21
+

99

Nc+56
+

35

Nc+60
+

21

Nc+630
−

176

Nc

)
,

1

2520

(
−

35

Nc+18
+

56

Nc+21
+

99

Nc+56
+

35

N c+60
+

21

Nc+630
−

176

Nc

)
,

1

2520

(
35

Nc+18
+

28

Nc+21
+

27

Nc+56
−

35

Nc+60
+

21

Nc+630
−

76

Nc

)
,

1

2520

(
35

Nc+18
+

28

Nc+21
+

27

Nc+56
−

35

Nc+60
+

21

Nc+630
−

76

Nc

)}
(3.35)

G−1
16,17,18,19,1(10) =

{
1

2520

(
−

105

Nc+18
+

45

Nc+56
−

105

Nc+60
+

21

Nc+630
+
144

Nc

)
,

1

2520

(
−

35

Nc+18
+

56

Nc+21
+

99

Nc+56
+

35

Nc+60
+

21

Nc+630
−

176

Nc

)
,

1

2520

(
−

35

Nc+18
−

112

Nc+21
+

27

Nc+56
+

35

Nc+60
+

21

Nc+630
+

64

Nc

)
,

1

2520

(
35

Nc+18
+

28

Nc+21
+

27

Nc+56
−

35

Nc+60
+

21

Nc+630
−

76

Nc

)
,

1

2520

(
35

Nc+18
+

28

Nc+21
+

27

Nc+56
−

35

Nc+60
+

21

Nc+630
−

76

Nc

)}
(3.36)
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G−1
1(11),1(12),1(13),1(14),1(15) =

{
1

2520

(
−

35

Nc+18
+

56

Nc+21
−

81

Nc+56
+

35

Nc+60
+

21

Nc+630
+

4

Nc

)
,

1

2520

(
35

Nc+18
−

56

Nc+21
−

9

Nc+56
−

35

Nc+60
+

21

Nc+630
+

44

Nc

)
,

1

2520

(
35

Nc+18
+

28

Nc+21
+

27

Nc+56
−

35

Nc+60
+

21

Nc+630
−

76

Nc

)
,

1

2520

(
−

35

Nc+18
+

56

Nc+21
−

81

Nc+56
+

35

Nc+60
+

21

Nc+630
+

4

Nc

)
,

1

2520

(
−

105

Nc+18
+

45

Nc+56
−

105

Nc+60
+

21

Nc+630
+
144

Nc

)}
(3.37)

G−1
1(16),1(17),1(18),1(19),1(20) =

{
1

2520

(
35

Nc+18
−

56

Nc+21
−

9

Nc+56
−

35

Nc+60
+

21

Nc+630
+

44

Nc

)
,

1

840

(
35

Nc+18
−

56

Nc+21
−

9

Nc+56
+

35

Nc+60
+

7

Nc+630
−

12

Nc

)
,

1

2520

(
−

35

Nc+18
−

112

Nc+21
+

27

Nc+56
+

35

Nc+60
+

21

Nc+630
+

64

Nc

)
,

1

2520

(
35

Nc+18
+

28

Nc+21
+

27

Nc+56
−

35

Nc+60
+

21

Nc+630
−

76

Nc

)
,

1

2520

(
35

Nc+18
−

56

Nc+21
−

9

Nc+56
−

35

Nc+60
+

21

Nc+630
+

44

Nc

)}
(3.38)

G−1
1(21),1(22),1(23),1(24),1(25) =

{
1

2520

(
35

Nc+18
−

56

Nc+21
−

9

Nc+56
−

35

Nc+60
+

21

Nc+630
+

44

Nc

)
,

1

2520

(
−

35

Nc+18
−

112

Nc+21
+

27

Nc+56
+

35

Nc+60
+

21

Nc+630
+

64

Nc

)
,

1

2520

(
−

35

Nc+18
−

112

Nc+21
+

27

Nc+56
+

35

Nc+60
+

21

Nc+630
+

64

Nc

)
,

1

2520

(
−

35

Nc+18
+

56

Nc+21
+

99

Nc+56
+

35

Nc+60
+

21

Nc+630
−

176

Nc

)
,

1

2520

(
−

35

Nc+18
+

56

Nc+21
+

99

Nc+56
+

35

Nc+60
+

21

Nc+630
−

176

Nc

)}
(3.39)

G−1
1(26),1(27),1(28),1(29),1(30) =

{
1

2520

(
−

35

Nc+18
−

112

Nc+21
+

27

Nc+56
+

35

Nc+60
+

21

Nc+630
+

64

Nc

)
,

1

2520

(
−

35

Nc+18
−

112

Nc+21
+

27

Nc+56
+

35

Nc+60
+

21

Nc+630
+

64

Nc

)
,

1

2520

(
35

Nc+18
−

56

Nc+21
−

9

Nc+56
−

35

Nc+60
+

21

Nc+630
+

44

Nc

)
,

1

2520

(
35

Nc+18
−

56

Nc+21
−

9

Nc+56
−

35

Nc+60
+

21

Nc+630
+

44

Nc

)
,

1

2520

(
35

Nc+18
+

28

Nc+21
+

27

Nc+56
−

35

Nc+60
+

21

Nc+630
−

76

Nc

)}
(3.40)
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G−1
1(31),1(32),1(33),1(34),1(35) =

{
1

2520

(
35

Nc+18
+

28

Nc+21
+

27

Nc+56
−

35

Nc +60
+

21

Nc+630
−

76

Nc

)
,

1

2520

(
35

Nc+18
−

56

Nc+21
−

9

Nc+56
−

35

Nc+60
+

21

Nc+630
+

44

Nc

)
,

1

2520

(
35

Nc+18
+

28

Nc+21
+

27

Nc+56
−

35

Nc+60
+

21

Nc+630
−

76

Nc

)
,

1

2520

(
−

35

Nc+18
+

56

Nc+21
−

81

Nc+56
+

35

Nc+60
+

21

Nc+630
+

4

Nc

)
,

1

2520

(
−

35

Nc+18
+

56

Nc+21
−

81

Nc +56
+

35

Nc+60
+

21

Nc+630
+

4

Nc

)}
(3.41)

G−1
1(36),1(37),1(38),1(39),1(40) =

{
1

2520

(
35

Nc+18
+

112

Nc+21
−

117

Nc+56
−

35

Nc+60
+

21

Nc+630
−

16

Nc

)
,

1

2520

(
35

Nc+18
−

56

Nc+21
−

9

Nc+56
−

35

Nc+60
+

21

Nc+630
+

44

Nc

)
,

1

2520

(
−

35

Nc+18
+

56

Nc+21
−

81

Nc+56
+

35

Nc+60
+

21

Nc+630
+

4

Nc

)
,

1

2520

(
−

35

Nc+18
+

56

Nc+21
−

81

Nc+56
+

35

Nc+60
+

21

Nc+630
+

4

Nc

)
,

1

2520

(
−

35

Nc+18
+

56

Nc+21
−

81

Nc +56
+

35

Nc+60
+

21

Nc+630
+

4

Nc

)}
(3.42)

G−1
1(41),1(42),1(43),1(44),1(45) =

{
1

2520

(
35

Nc+18
+

112

Nc+21
−

117

Nc+56
−

35

Nc+60
+

21

Nc+630
−

16

Nc

)
,

1

2520

(
−

35

Nc+18
+

56

Nc+21
−

81

Nc+56
+

35

Nc+60
+

21

Nc+630
+

4

Nc

)
,

1

2520

(
35

Nc+18
+

28

Nc+21
+

27

Nc+56
−

35

Nc+60
+

21

Nc+630
−

76

Nc

)
,

1

2520

(
35

Nc+18
−

56

Nc+21
−

9

Nc+56
−

35

Nc+60
+

21

Nc+630
+

44

Nc

)
,

1

2520

(
−

35

Nc+18
+

56

Nc+21
−

81

Nc+56
+

35

Nc+60
+

21

Nc+630
+

4

Nc

)}
(3.43)

G−1
1(46),1(47),1(48),1(49),1(50) =

{
1

2520

(
35

Nc+18
+

112

Nc+21
−

117

Nc+56
−

35

Nc+60
+

21

Nc+630
−

16

Nc

)
,

1

2520

(
−

105

Nc+18
+

45

Nc+56
−

105

Nc+60
+

21

Nc+630
+
144

Nc

)
,

1

2520

(
35

Nc+18
+

28

Nc+21
+

27

Nc+56
−

35

Nc+60
+

21

Nc+630
−

76

Nc

)
,

1

2520

(
35

Nc+18
−

56

Nc+21
−

9

Nc+56
−

35

Nc+60
+

21

Nc+630
+

44

Nc

)
,

1

2520

(
−

35

Nc+18
+

56

Nc+21
−

81

Nc+56
+

35

Nc+60
+

21

Nc+630
+

4

Nc

)}
(3.44)

– 19 –



J
H
E
P
0
6
(
2
0
1
4
)
1
5
7

G−1
1(51),1(52),1(53),1(54),1(55) =

{
1

840

(
35

Nc+18
−

56

Nc+21
−

9

Nc+56
+

35

Nc+60
+

7

Nc+630
−

12

Nc

)
,

1

2520

(
−

35

Nc+18
−

112

Nc+21
+

27

Nc+56
+

35

Nc+60
+

21

Nc+630
+

64

Nc

)
,

1

2520

(
−

35

Nc+18
+

56

Nc+21
−

81

Nc+56
+

35

textNc+60
+

21

Nc+630
+

4

Nc

)
,

1

2520

(
−

35

Nc+18
+

56

Nc+21
−

81

Nc+56
+

35

Nc+60
+

21

Nc+630
+

4

Nc

)
,

1

2520

(
35

Nc+18
+

28

Nc+21
+

27

Nc+56
−

35

Nc+60
+

21

Nc+630
−

76

Nc

)}
(3.45)

G−1
1(56),1(57),1(58),1(59),1(60) =

{
1

2520

(
35

Nc+18
−

56

Nc+21
−

9

Nc+56
−

35

Nc+60
+

21

Nc+630
+

44

Nc

)
,

1

2520

(
35

Nc+18
−

56

Nc+21
−

9

Nc+56
−

35

Nc+60
+

21

Nc+630
+

44

Nc

)
,

1

2520

(
−

35

Nc+18
−

112

Nc+21
+

27

Nc+56
+

35

Nc+60
+

21

Nc+630
+

64

Nc

)
,

1

2520

(
−

35

Nc+18
−

112

Nc+21
+

27

Nc+56
+

35

Nc+60
+

21

Nc+630
+

64

Nc

)
,

1

2520

(
−

35

Nc+18
+

56

Nc+21
+

99

Nc+56
+

35

Nc+60
+

21

Nc+630
−

176

Nc

)}
(3.46)

Remarks. Before concluding this section, let us make a few remarks on the degrees of

freedom introduced by Nc. First we notice that det(G) will depend on Nc, thus there are

solutions of Nc such that det(G) = 0. When this happens, G · τ = n will not have solution.

In other words, for these specific values, Nc and the imposed loop-KK relations are not

compatible to each other. At this moment, we are not clear what is the physical meaning of

these degenerated values of Nc. However from explicit examples discussed above, it seems

that Nc that lead to degenerating matrix G are always negative integer. For positive Nc

there is no problem for it. It is perhaps possible to choose special values of Nc such that

the final expression dramatically simplifies or manifest patten can be observed.

4 An alternative approach

In previous section, we solved τ by n using the G-matrix directly. Since all conditions we

imposed, such as (3.9), (3.10), (3.11) and (3.12), are relabeling symmetric, the solutions

τσ for different ordering σ’s are also related by relabeling symmetry. This property can be

used to solve τ without using the G-matrix, which will be the purpose of this section. In

fact, similar method has been used in tree-level case in [40]. For simplicity, in this section

we assume Nc = 1.

– 20 –



J
H
E
P
0
6
(
2
0
1
4
)
1
5
7

Four-point example. In the four-point case we assume that τ can be expanded by

n, i.e.,

τ1234 = an1234 + bn1243 + cn1324. (4.1)

Under the relabeling 1 ↔ 2, we get

τ2134 = an2134 + bn2143 + cn2314, (4.2)

which can be recast into the original basis using reflection and cyclic symmetry of τ and n

τ1342 = an1243 + bn1234 + cn1324. (4.3)

Same τ1342 can also obtained from τ1234 by relabeling 2 → 3, 3 → 4, 4 → 2, thus we arrive

following equation

τ1342 = an1342 + bn1324 + cn1432 = an1243 + bn1324 + cn1234. (4.4)

By comparing the τ1342 in this two different ways, we can get

b = c. (4.5)

Thus

τabcd = anabcd + b(nabdc + nacbd). (4.6)

Substituting this into the relation between n and τ (3.16), we get

a =
21

62
, b = −

5

31
. (4.7)

Then

τabcd =
21

62
nabcd −

5

31
(nabdc + nacbd). (4.8)

This is the same with the result obtained by imposing KK relation and then solving linear

equations.

Five-point expansion. Similarly at five-points, we assume the dual trace can be ex-

panded into the (5− 1)!/2 = 12 basis numerators n1,σ discussed in section 3.3,

τ12345 =
∑

σ∈S4/R

c1,σn1,σ (4.9)

= c12345n12345 + c12354n12354 + · · ·+ c14325n14325,

where R denotes reflection. Comparing the expansion expressions derived through permu-

tating leg 1 with 2, 3, 4, 5 with the corresponding expressions obtained by relabeling, we
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get the following relations

τ21345 = −τ12543 −→ c12453 = c12534, c12354 = c12435, (4.10)

c13254 = −c13425, c13245 = −c14325,

τ32145 = −τ12354 −→ c12534 = c14235, c12543 = −c13245, (4.11)

c12435 = −c14325, c12453 = −c13254,

τ42315 = −τ13245 −→ c13254 = −c14235, c12453 = c13425 (4.12)

c12435 = −c12543, c12354 = −c14325,

τ52341 = −τ14325 −→ c12534 = −c13254, c13425 = c14235, (4.13)

c12354 = −c12543, c12435 = c13245.

Relabling symmetry therefore reduces the number of independent coefficients to four,

yielding

τ12345 = an12345 ++b (n12453 + n12534 − n13254 + n13425 + n14235) (4.14)

c n13524 − d (n12354 + n12435 − n12543 + n13245 − n14325) ,

while the other basis dual traces τs can be obtained by relabelings of legs 2, 3, 4 and 5.

Substituting these expressions back to just one relation (3.28) allows us to fully determine

the remaining all four coefficients. Again, we arrive at

τ{12345} =
1

62
(16n12345 − 6n12354 − 6n12435 − 3n12453 − 3n12534 + 6n12543

−6n13245 + 3n13254 − 3n13425 − 3n14235 + 6n14325) . (4.15)

5 Conclusion

In this paper we have discussed two kinds of dual-color decompositions of Yang-Mills

amplitude at one-loop level. Starting from an existing double-copy formulation we showed

that the Yang-Mills integrand can be translated into dual DDM form up to terms that

vanish upon integration. Once a dual DDM form is obtained, we showed that it is possible

to take one step further and write down the corresponding dual trace-form. In particular

we saw that the similar technique used to determine tree-level dual trace generalizes to

one-loop. In a sense that the additional degrees of freedom introduced by loop momentum

shifting which potentially may cause problem has been taken care of during the translation

between BCJ and dual DDM form.

Without the knowledge of an actual kinematic algebra as input the algorithm presented

in this paper uses Kleiss-Kuijf relation and reflection conditions as substitutes and we

discussed the possibility of generically solving dual traces in terms of one-loop numerators.

We expect that there might be an algebraic realization of the dual trace analogous to

what has discussed at tree-level in [41], or more interestingly, if the algebraic structure

observed in the scattering equations approach [19] could be systematically generalized to

loop-level. Note especially that although in this paper we constructed the dual traces
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assuming BCJ numerators were determined in advance, this operation can be reversed.

The relation between τ and ni provides an alternative derivation of the numerators if the

τs can be determined from an independent method, for example from the recent work of

Naculich [43], or from the method outlined by the current authors in [44].
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