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Abstract This paper addresses certain misconceptions regarding what is known
and what may be expected when performing sensitivity analyses of network
user equilibrium flow patterns. Our presentation relies on a simple observation:
any given user equilibrium sensitivity analysis technique should be employed
only when the regularity conditions on which it is based are satisfied. Violating
regularity, as we show through previously published numerical examples, as
well as new examples presented here for the first time, may well lead to
incorrect results when the Tobin-Friesz sensitivity analysis method is applied.
This is especially so when the most critical regularity assumption of the Tobin-
Friesz method, namely that the unperturbed solution must be a nondegenerate
extreme point, is violated. We also illustrate how a degenerate unperturbed
solution may sometimes be modified to obtain an appropriate nondegenerate
solution, thereby allowing the Tobin-Friesz method to be applied.
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1 Introduction

The type of sensitivity analysis we consider in this paper is based on the simultaneous
perturbation of parameters in a static user equilibrium model. We assume herein that the
reader is aware of the importance of being able to easily approximate a new equilibrium
following such a perturbation. The work by Fiacco (1983), Tobin (1986), Kyparisis
(1987) and Dafermos (1988) on the sensitivity analysis of nonlinear programs and
abstract variational inequalities eventually inspired several efforts to create a method for
the sensitivity analysis of user equilibrium.

The history of user equilibrium sensitivity analysis is interesting, and, for our
purposes herein, may be considered to begin with Tobin and Friesz (1988). In the
Tobin-Friesz approach to user equilibrium sensitivity analysis, an unperturbed nonde-
generate extreme point must be known from the outset in order to initiate sensitivity
analysis calculations. The formulae for sensitivity analysis obtained under the
nondegeneracy assumption accord with intuition, and are easy to derive and under-
stand. Various other user equilibrium sensitivity analysis methods including Qiu and
Magnanti (1989), Yang (1997), Cho et al. (2000), Patriksson and Rockafellar (2003),
Patriksson (2004), Yang and Bell (2007) and Lu (2008) have been developed since
Tobin and Friesz (1988). Sensitivity analysis methods have been effectively used for
various transportation applications, including but not limited to network design (Friesz
et al. (1990) and Davis (1994)), origin–destination matrix estimation (Yang et al.
(2001)), and optimal pricing (Ying and Yang (2005)).

This paper has been written to clarify the regularity conditions governing application
of the Tobin-Friesz method (TFM) for user equilibrium sensitivity analysis presented in
Tobin and Friesz (1988) and rederived in Cho et al. (2000). We have found that certain
statements and numerical examples found in Patriksson (2004), Josefsson and
Patriksson (2007) and Marcotte and Patriksson (2007), if taken out of context, leave
the impression that the TFM for user equilibrium sensitivity analysis is somehow
“wrong” when, in fact, it works quite well provided its application is limited to those
problems fulfilling the regularity conditions reviewed in this paper.

We wish to make clear from the outset that the sensitivity analysis formulae
developed by Josefsson and Patriksson (2007), Marcotte and Patriksson (2007) and
Lu (2008) are more general in some aspects than the TFM. We note that a central
theorem in Patriksson (2004) is unproven since the proof is incorrect as shown in
Robinson (2006). History, however, plays a significant role in the scholarly conversa-
tion about sensitivity analysis of user equilibrium flows. In particular, the TFM was
developed some 15 to 20 years prior to the alternative literature cited above, at a time
when there was considerable doubt about whether sensitivity analysis of variational
inequalities based on path variables was possible. It is only natural that, as the first
method for user equilibrium sensitivity analysis, the TFM involves more restrictive
regularity conditions than those of subsequently published works.

The aforementioned lack of generality notwithstanding, the TFM is a self-consistent
user equilibrium sensitivity analysis technique. As such, the TFM does not produce
erroneous results when the user equilibrium to which it is applied fulfills the assump-
tions used for derivation of the TFM presented in this paper. Although there are now
more general methods for user equilibrium sensitivity analysis, such generality comes
at the price of increased mathematical sophistication that may place alternative methods
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beyond the comprehension of some practitioners. In mathematics, generality is always
thought to be a virtue. However, in operations research, engineering and the social
sciences, users of mathematical tools vote with their feet; that is, the most general
mathematical tools may fail to be the most popular mathematical tools. Such is the
nature of scholarly inquiry and the march of knowledge.

2 The Principal Issues

Although the TFM for sensitivity analyses, which was re-derived using alter-
native arguments by Cho et al. (2000), has been widely used, it has been
criticized by Patriksson (2004), Josefsson and Patriksson (2007), Marcotte and
Patriksson (2007), Yang and Bell (2007) and Yang and Huang (2005) on the
basis of the following:

1. A non-standard definition of user equilibrium is employed in Tobin and Friesz
(1988). We agree that the definition of user equilibrium employed is not general,
and it represents a limitation of the analysis presented in Tobin and Friesz (1988).
However, as we show in this paper, the results derived in Tobin and Friesz (1988)
do not depend on using that nonstandard definition and may be derived using the
traditional definition of user equilibrium.

2. A non-standard definition of strict complementary slackness is employed in Tobin
and Friesz (1988). We agree that the definition of strict complementarity used in
Tobin and Friesz (1988) is nonstandard. However, we show in this paper that the
TFM may be derived using the traditional definition of strict complementary
slackness.

3. To apply the TFM, one must begin with an unperturbed solution that is a
nondegenerate extreme point. This regularity condition represents a critical
assumption; it is the key reason why the TFM is easy to derive. Example
problems have been published that show the TFM may fail when the
nondegeneracy assumption is relaxed. However, it is possible to modify
the degenerate solutions employed in example 7.3.2 of Josefsson and
Patriksson (2007), as shown in Section 4.1.5 of this paper, and example
8 of Yang and Bell (2007), as shown in Section 4.2.3 of this paper, to
create valid initial solutions that are nondegenerate. However, our remarks
should not be misconstrued as a claim that such modifications will always
be possible, for they will not. However, in the event it is possible to
construct a nondegenerate extreme point solution from a degenerate solu-
tion, the TFM works. Moreover, the rederived method by Cho et al. (2000)
can sometimes be applied to cases where an unperturbed solution is a
nondegenerate extreme point as shown in Section 4.1.6 of this paper for
examples 7.3.2 and 7.3.3 of Josefsson and Patriksson (2007) and Section 4.2.4 of
this paper for example 8 of Yang and Bell (2007).

4. From Tobin and Friesz (1988), it is clear that existence and invertibility of
the Jacobian matrix of the path cost vector, a submatrix of the entire
Jacobian matrix formed from the Kuhn-Tucker conditions (including the
complementary slackness conditions), are crucial to the validity of the
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TFM. Differentiability of the relevant functions assures existence of that
Jacobian, and the stipulation of differentiability as a regularity condition is
not at issue. However, Bell and Iida (1997) correctly observed that the
Jacobian of the path cost vector is not invertible when the number of paths
is larger than the number of arcs, as example 6 of Yang and Bell (2007)
illustrates. In Section 4.2.1 of this paper, we show that sometimes it is
possible for the whole Jacobian matrix to be invertible even though the
aforementioned submatrix (the Jacobian matrix of the path cost vector) is
not invertible. Moreover, in assessing the TFM, one should not forget that
the alternative derivation of identical sensitivity analysis formulae in Cho
et al. (2000) was performed to overcome the potential noninvertibility of
the Jacobian matrix of the path cost vector, provided the appropriate
derivatives needed to express the Jacobian may be calculated.

5. Violation of traditional strict complementarity may occur. Because one of
the regularity conditions stipulated by Tobin and Friesz (1988) is strict
complementarity, it is reasonable to expect that the violation of some form
of strict complementarity would generally prevent sensitivity analysis based
on the TFM. However, in this paper, we show by numerical example that
sensitivity analysis may sometimes be performed using the TFM even if
strict complementarity is violated, provided there is differentiability at the
unperturbed user equilibrium solution. Example 5 in Patriksson (2004) is an
instance wherein both strict complementarity and differentiability fail to
hold. Per se, sensitivity analysis of such a non-differentiable problem
cannot be conducted using the TFM. However, when we consider example
7.3.1 of Josefsson and Patriksson (2007), which does not fulfill strict
complementarity but meets the differentiability standard, we find the TFM
may be used successfully, as we illustrate in Section 4.1.2

3 User Equilibrium Sensitivity Analysis

We will employ the specific notation presented in Table 1. We assume the user
equilibrium problem possess s parameters that are subject to perturbation; these form
the vector ε∈ℜ s. The reader should note that the number s of perturbed parameters has
no a priori relationship to the number of decision variables, the number of equality
constraints or the number of inequality constraints found in a given user equilibrium
problem.

To represent the perturbation of a given user equilibrium problem, we explicitly
express the dependence of the impacted arc and path flows, cost functions and demands
on the perturbation vector ε∈ℜ s. That is, we will write

h εð Þ
C h εð Þ; εð Þ

to denote the vector of perturbed path flows and the vector of perturbed path
costs, respectively. Similar notation of course applies to other perturbed entities.
We will not elaborate further on such notation, since it is intuitive and widely
used in the sensitivity analysis literature. Using the notation of Table 1,
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together with the perturbation notation convention just mentioned, the
unperturbed user equilibrium problem of interest is:

gp h� 0ð Þð Þ≡−h�p 0ð Þ < 0; p ∈ Pw⇒Cp h� 0ð Þ; 0ð Þ ¼ λw ∀w∈W ð1Þ

Cp h� 0ð Þ; 0ð Þ−λw≥0 ∀w∈W ; p∈Pw ð2Þ

dw h� 0ð Þ; 0ð Þ≡
X
p∈Pw

h�p 0ð Þ−Qw ¼ 0 ∀w∈W ð3Þ

Let us define the set of feasible solutions

Ωh 0ð Þ ¼ h 0ð Þ : dw h 0ð Þ; 0ð Þ ¼ 0; gp h 0ð Þð Þ≤0
n o

ð4Þ

It is not difficult to show that Eqs. (1–3) may be equivalently stated as the variational
inequality

VIh 0ð Þ : find h� 0ð Þ∈Ωh 0ð Þ such that
C h� 0ð Þ; 0ð Þ½ �T h 0ð Þ−h� 0ð Þð Þ≥0 ∀h 0ð Þ∈Ωh 0ð Þ ð5Þ

Table 1 The notation

Notation Description

N the set of nodes of the network

i,j∈N nodes in the network

A the set of arcs of the network

a∈A an arc of the network, a=(i, j)

W the set of origin–destination pairs

w∈W an origin–destination pair, w=(i, j)

Pw the set of paths between origin–destination pair

Δ=[Δap] the arc-path incidence matrix, where Δap=1 if arc a is in path p, 0 otherwise

Λ=[Λwp] the origin–destination/path incidencematrix, whereΛwp=1 if path p∈Pw, 0 otherwise
Qw traffic required between origin–destination pair w

Q=[Qw:w∈W] the vector of all traffic requirements

hp the flow on path p

h=[hp:p∈P] the vector of all path flows

va the flow on arc a

v=[va:a∈A] the vector of all arc flows, note that v=Δh

ca(v) the unit cost on arc a as a function of all arc flows

c(v)=[ca(v):a∈A] the vector of arc unit cost functions

Cp(h) the unit cost on path p as a function of all path flows

C(h)=[Cp(h):p∈P] the vector of path unit cost function

C(h)=ΔTc(v)=ΔTc(Δh) path unit costs are the sum of arc unit costs

λw minimum unit path cost for origin–destination pair w∈W
λ=[λ:w∈W] the vector of minimum travel costs
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since we take demand to be inelastic. The variational inequality (5), under the assump-
tion that path costs are additive in arc costs, is equivalent to

VIv 0ð Þ : findv� 0ð Þ∈Ωv 0ð Þ such that
c v� 0ð Þ; 0ð Þ½ �T v 0ð Þ−v� 0ð Þð Þ≥0 ∀v 0ð Þ∈Ωv 0ð Þ ð6Þ

where

Ωv 0ð Þ ¼ v 0ð Þ : dw h 0ð Þ; 0ð Þ ¼ 0; gp h 0ð Þð Þ≤0; v 0ð Þ ¼ Δh 0ð Þ
n o

ð7Þ

is the set of feasible arc flows.
Clearly, the perturbed version of Eqs. (5–6) are

VIh εð Þ : findh� εð Þ∈Ωh εð Þ such that
C h� εð Þ; εð Þ½ �T h εð Þ−h� εð Þð Þ≥0 ∀h εð Þ∈Ωh εð Þ ð8Þ

VIv εð Þ : findv� εð Þ∈Ωv εð Þ such that
c v� εð Þ; εð Þ½ �T v εð Þ−v� εð Þð Þ≥0 ∀v εð Þ∈Ωv εð Þ ð9Þ

where we employ the obvious definitions of perturbed feasible sets, namely

Ωh εð Þ ¼ h εð Þ : dw h εð Þ; εð Þ ¼ 0; gp h εð Þð Þ≤0
n o

ð10Þ

Ωv εð Þ ¼ v εð Þ : dw h εð Þ; εð Þ ¼ 0; gp h εð Þð Þ≤0; v εð Þ ¼ Δh εð Þ
n o

ð11Þ

3.1 Regularity Conditions

We now introduce the following regularity conditions which are assumed to be in force
unless otherwise stated:

Condition 1 Continuous differentiability. In the perturbed equilibrium network
flow problem, c(v,ε) is once continuously differentiable in (v,ε), and Q(ε) is once
continuously differentiable in ε.
Condition 2 Strong monotonicity. The arc cost vector c(v,ε) is strongly monotone
in v for all ε. As a consequence, the arc flow solution is unique.
Condition 3 Traditional strict complementarity. If hp

*(0)=0, then Cp
*(h*(0),

0)>λw(0) for origin–destination (OD) pair w∈W.

3.2 The Key Formulae

Now suppose v*(0) to be a locally unique solution to VIv(0). Additionally take
∇hgp(h*,0), for all p such that gp(h*,0)=0, and ∇hdw(h*,0), for all w∈W, to be linearly
independent, where the gradients are with respect to path flows. Furthermore, assume
that the strict complementary slackness condition

π�
p 0ð Þ > 0 when gp h� 0ð Þ; 0ð Þ ¼ 0

holds. Then the equilibrium dual variables for inequality constraints and equal-
ity constraints, π*(0) and μ*(0) respectively, are unique. Moreover, in a
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neighborhood of ε=0, there exists a unique once continuously differentiable
function

y εð Þ≡
v� εð Þ
π� εð Þ
μ� εð Þ

2
4

3
5

where v*(ε) is the locally unique arc flow solution to VIv(ε) assumed previously
to be at our disposal, and π*(ε) and μ*(ε) are its unique associated multipliers.

Note that VIh(0) may be stated as

min Z h 0ð Þð Þ ¼ C h� 0ð Þ; 0ð Þ½ �Th 0ð Þ s:t:h 0ð Þ∈Ωh 0ð Þ
and

∂Z 0ð Þ
∂hp

¼
X
a∈A

∂ f a
∂hp

∂Z 0ð Þ
∂ f a

¼
X
a∈A

δapca f 0ð Þ; 0ð Þ ¼ Cp h 0ð Þ; 0ð Þ

Thus

∇hZ 0ð Þ ¼ C h� 0ð Þ; 0ð Þ
The derivative of the solution vector y(ε) with respect to ε obeys the following form

of the implicit function theorem:

∇εy 0ð Þ ¼
∇εv

� 0ð Þ
∇επ

� 0ð Þ
∇εμ

� 0ð Þ

2
4

3
5 ¼ J �y 0ð Þ

h i−1
⋅ J �ε 0ð Þ� � ð12Þ

where Jy
*(0) is the Jacobian matrix with respect to y of the following Kuhn-Tucker

system for VIh(0):

C h� 0ð Þ; 0ð Þ þ
X
i¼1

m

πi∇hgi h
� 0ð Þ; 0ð Þ þ

X
i¼1

p

μi∇hdi h
� 0ð Þ; 0ð Þ ¼ 0 ð13Þ

πigi h
� 0ð Þ; 0ð Þ ¼ 0 πi≥0 for i ¼ 1;…;m ð14Þ

di h
� 0ð Þ; 0ð Þ ¼ 0 for i ¼ 1;…; p ð15Þ

and Jε(0) the Jacobian with respect to ε. Result Eq. (12) would seem to provide
an immediate opportunity to conduct sensitivity analysis. Unfortunately, as is
now widely understood, the gradients in Eq. (13) do not generally exist since
path flows are generally not unique. Therefore, Eq. (12) cannot be used as it is
presently stated.

To avoid complications arising from the non-uniqueness of path flows,
Tobin and Friesz (1988) assumed the unperturbed equilibrium path flow
solution on which to base sensitivity analysis corresponds to a nondegenerate
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extreme point of Ωh(0). More precisely, they invoked the following regularity
condition:

Condition 4 Non-degeneracy assumption. There exists h*(0) that is a non-
degenerate extreme point of

Ωh 0ð Þ ¼ h : Δh ¼ v� 0ð Þ;Λh ¼ Q 0ð Þ; h≥0f g
in the sense that h*(0) corresponds to a unique basis and the number of paths with
positive flow is equal to the rank of [ΔT,ΛT] after restricting the network to arcs
with positive flows.

We know that the perturbed arc flow solution f *(ε) is continuous with respect to the
perturbation vector ε because of Condition 2. Thus, provided ε is small enough, we are
assured that those arcs of the perturbed solution with positive flow are the same as those
of the unperturbed solution. We are then free to consider only those paths of the non-
degenerate extreme point that traverse arcs with positive flow and themselves have
positive path flows. We shall refer to the vector of unperturbed, positive, equilibrium
path flows found in the manner just described as h0(0). Moreover, because of
continuity, we may be sure, for sufficiently small ε, that −h0(ε)<0. As a
consequence, the associated dual variables are all zero; that is, π0(0)=π0(ε)=0.

We shall employ the notation Δ0 for the arc-path incidence matrix corre-
sponding to h0(0). Additionally, we shall use the notation Λ0 for the OD-path
incidence matrix corresponding to h0(0). The matrices Δ0 and Λ0 also apply to
the perturbed solution h0(ε) by virtue of continuity and the way in which h0(0)
has been constructed.

Thus, the key information on which sensitivity analysis is predicated is h0(0), which
in turn is predicated on finding a non-degenerate extreme point of Ωh(0). Tobin and
Friesz (1988) suggest searching for a non-degenerate extreme point by varying b∈ℜ|h|

and repeatedly solving the linear program:

min bTh s:t: h∈Ωh 0ð Þ ð16Þ
Other schemes may also be employed, as we shall illustrate later via numerical

examples.
As long as the Conditions 1 through 4 mentioned above are satisfied, the derivative

of the equilibrium solution vector with respect to ε may be calculated using the TFM.
Let us briefly review what has been said above by placing the essential actions in the
order in which they would be executed in an actual application:

1. If Conditions 1 through 3 are satisfied, restrict the network to those arcs with
positive arc flows.

2. If possible, determine a nondegenerate extreme point h*(0)∈Ωh(0) so that Condi-
tion 4 is satisfied. Construct h0(0) by considering only those paths of the non-
degenerate extreme point h*(0) that traverse arcs with positive flow and themselves
have positive path flows.

3. Construct the origin–destination/path incidence matrix Λ0 and arc-path incidence
matrix Δ0 corresponding to h0(0).

4. Create formulae for sensitivity analysis using the implicit function theorem identity
(12) adapted to the restricted network created via actions 1, 2 and 3 above,
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recognizing that π0=0, since all path flows of both the perturbed and unperturbed
versions of the restricted network are positive. The relevant result is

∇εh
0 0ð Þ

∇εμ
0 0ð Þ

� �
¼ J �h0μ0 0ð Þ
h i−1

J �ε 0ð Þ� � ð17Þ

and

∇εv
0 0ð Þ ¼ Δ0∇εh

0 0ð Þ ð18Þ
where J �

h0μ0 0ð Þ is the Jacobian of the Kuhn-Tucker conditions for the restricted
network with respect to h0(0) and μ0(0) when ε=0; and Jε

*(0) is the Jacobian of the
Kuhn-Tucker conditions for the restricted network with respect to perturbations when
ε=0. The Jacobian matrices J �

h0μ0 0ð Þ and Jε
*(0) are

J �ε 0ð Þ� � ¼ −∇εC
0 h� 0ð Þ; 0ð Þ

∇εQ 0ð Þ
� �

ð19Þ

J �h0μ0 0ð Þ
h i

¼ ∇hC
0 h�; 0ð Þ −Λ0T

Λ0 0

� �
ð20Þ

Suppose

J �h0μ0 0ð Þ
h i−1

¼ B11 B12

B21 B22

� �
ð21Þ

then the derivatives with respect to ε when ε=0 are

∇εh
0 0ð Þ ¼ −B11∇εC

0 h� 0ð Þ; 0ð Þ þ B12∇εQ 0ð Þ ð22Þ

∇εμ
0 0ð Þ ¼ −B21∇εC

0 h� 0ð Þ; 0ð Þ þ B22∇εQ 0ð Þ ð23Þ
where

B11 ¼ ∇hC
0 h�; 0ð Þ−1 I−Λ0T Λ0∇hC

0 h�; 0ð Þ−1Λ0T
h i−1

Λ0∇hC
0 h�; 0ð Þ−1

� �
ð24Þ

B12 ¼ ∇hC
0 h�; 0ð Þ−1Λ0T Λ0∇hC

0 h�; 0ð Þ−1Λ0T
h i−1

ð25Þ

B21 ¼ − Λ0∇hC
0 h�; 0ð Þ−1Λ0T

h i−1
Λ0∇hC

0 h�; 0ð Þ−1 ð26Þ

B22 ¼ Λ0∇hC
0 h�; 0ð Þ−1Λ0T

h i−1
ð27Þ

are found using a minimum norm projection to express a mathematical program whose
unique solution provides the gradient information needed for sensitivity analysis.
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5. Perform the desired sensitivity analysis according to the following local linear
approximation:

h0 εð Þ
μ0 εð Þ
� �

≈ h0 0ð Þ
μ0 0ð Þ
� �

þ ∇εh
0 0ð Þ� �T ∇εμ

0 0ð Þ� �Th i ε
ε

� �
ð28Þ

Since path flows are unique for the restricted network, it is a simple matter to find
arc flows from Eq. (28).

3.3 The Cho-Smith-Friesz Alternative Derivation of Sensitivity Analysis Formulae

The TFM is based on the implicit function theorem and requires local uniqueness.
Specifically, we need to choose a unique path flow vector h* with a restricted network by
solving the linear program (16). To meet the requirement of a nondegenerate extreme point,
the number of paths with positive flowmust equal the rank of [ΔT,ΛT]. For convenience, we
refer to that property as the positive-flow-rank (PFR) condition. It is sometimes not possible
to fulfill the PFR condition even when working with the restricted network formulation of a
given user equilibrium problem.Moreover, Bell and Iida (1997) observed the potential non-
invertibility of the submatrix ∇hC0(h*,0)−1 of the Jacobian matrix J �

h0μ0 0ð Þ employed by

the TFM. Accordingly, Cho et al. (2000) proposed an arc-based reduction method that
derives sensitivity analysis formulae without invoking the PFR condition.

In the arc-based reduction method, a “minimum distance” technique is employed to
find a unique equilibrium path flow. To employ that perspective, a maximal set of rows
from Δ, say Δ1, is selected so that the combined matrix [Δ1,Λ]

T is of full row rank.
Thereby we achieve the following partition of Δ:

Δ ¼ Δ1 Δ2½ �T

Therefore, there must exist matrices M1 and M2 such that

Δ2 ¼ M 1Δ1 þM 2Λ ð29Þ
In concert, the arc-flow vector is partitioned so that

v ¼ v1 v2½ �T

where

v2 ¼ Δ2h ð30Þ

¼ M 1Δ1hþM 2Λh ð31Þ

¼ M 1v1 þM 2T εð Þ ð32Þ
Since travel demands are linearly expressible in terms of arc flows, the following

minimum norm projection problem may be employed to determine a unique equilib-
rium path-flow vector for any v1, ε and h0. That is, we solve

min h−h0k k2 ¼ h−h0ð ÞT h−h0ð Þ s:t:
Δ1

Λ

� �
h ¼ v1

T εð Þ
� �

ð33Þ
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Since the matrix [Δ1,Λ]
T is of full row rank, there exists a unique solution h(ε,v1,h0)

to the above linearly constrained quadratic program, namely

h ε; v1; h0ð Þ ¼ h0 þ Δ1

Λ

� �T Δ1Δ
T
1 Δ1Λ

T

ΛΔT
1 ΛΛT

" #−1
v1
T εð Þ
� �

− Δ1

Λ

� �
h0

� 	
ð34Þ

Moreover, if we let

Δ1Δ
T
1

Δ1Λ
T

ΛΔT
1 ΛΛT

� �−1
¼ M11 M 12

M21 M 22

� �
ð35Þ

we can rewrite Eq. (34) in a compact form as

h ε; v1; h0ð Þ ¼ N 0h0 þ N1v1 þ N2T εð Þ
where

N0 ¼ I 0
0 I

� �
− Δ1

Λ

� �T Δ1Δ
T
1 Δ1Λ

T

ΛΔT
1 ΛΛT

� �−1
Δ1

Λ

� �

N1 ¼ ΔT
1M 11 þ ΛTM 21 ð36Þ

N2 ¼ ΔT
1M 12 þ ΛTM 22 ð37Þ

Also, from Eqs. (29) and, (35–37), M1 and M2 may be expressed as

Δ2 ¼ M1Δ1 þM 2Λ ¼ M1 M2½ � Δ1

Λ

� �

so that

M 1 M2½ � ¼ Δ2
Δ1

Λ

� �T
Δ1

Λ

� �
Δ1

Λ

� �T !−1

ð38Þ

¼ Δ2
Δ1

Λ

� �T
M 11 M 12

M 21 M 22

� �
¼ Δ2 N 1 N2½ � ð39Þ

Therefore, M1=Δ2N1 and M2=Δ2N2. Finally, we conclude that the flow-
conservation conditions in Eq. (30) can be written as

Δ2N1v1−v2 þΔ2N2T εð Þ ¼ 0

so that

MvþΔ2N 2T εð Þ ¼ 0

where

M ¼ Δ2N1 −I½ � ð40Þ
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Carrying out the necessary algebra yield the following:

∇εv 0ð Þ
∇εμ 0ð Þ
� �

¼ ∇vc v 0ð Þ; 0ð Þ −MT

MT 0

� �−1 −∇εc v 0ð Þ; 0ð Þ
Δ2N2∇εQ 0ð Þ
� �

ð41Þ

from which it is apparent that differentiability of arc costs with respect to flow and
parameter perturbations is needed; differentiability of demands with respect to param-
eter perturbations is also needed.

4 Counterexamples in the Literature

In this section we discuss some numerical examples appearing in the literature on user
equilibrium sensitivity analysis.

4.1 Counterexamples in Patriksson (2004), Josefsson and Patriksson (2007)
and Marcotte and Patriksson (2007)

In Patriksson (2004), there is an illustrative example explaining that the TFM can provide an
inaccurate result. Also, Josefsson and Patriksson (2007) proposed three counterexamples
which depicted some pitfalls of the TFMandwhichwere re-used inMarcotte and Patriksson
(2007). However, in the aforementioned examples, the authors either ignored the require-
ments of the TFM or applied the TFM to non-differentiable examples which violated the
method’s basic assumptions. As such the examples are not bonafide counter examples. In
the discussion below, we will carry out TFM calculations for some of the aforementioned
examples while enforcing the regularity conditions presented in Section 3 of this paper.

4.1.1 Example 5 in Patriksson (2004)

In Patriksson (2004), a 5 node, 7 arc network with 2 origin–destination (OD) pairs and
6 paths is depicted and repeated here as Fig. 1. There are two fixed travel demands for
OD pairs (1, 4), and (3, 5). There are three paths corresponding to each OD pair:
p1={1,3}, p2={1,7,4} and p3={2,4} for OD pair (1,4) and p4={5,2}, p5={5,1,7} and
p6={6,7} for OD pair (3, 5). The arc cost functions are

c1 v1ð Þ ¼ 10v1
c2 v2ð Þ ¼ 0:5v2

c3 v3ð Þ ¼ 3þ 10v3
c4 v4ð Þ ¼ 1þ 10v4

c5 v5ð Þ ¼ v5
c6 v6ð Þ ¼ 2þ v6
c7 v7ð Þ ¼ v7

The travel demands are subject to perturbations expressed as the following vector:

ε ¼ ε14 ε35½ �T

When ε=0, the equilibrium arc flow solution is v*(0)=[0,2,0,1,1,0,0]T. However, as
mentioned in Patriksson (2004), the solution does not obey strict complementarity.
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Also, the equilibrium solution is not differentiable. Therefore, this example problem is
not one for which the TFM is applicable. That is, the TFM was never intended to apply
to such a problem, and the example is not a counterexample.

4.1.2 Example 7.3.1 in Josefsson and Patriksson (2007)

This example, proposed by Josefsson and Patriksson (2007), considers the 4 node, 5 arc
network with 2 OD pairs and 4 paths depicted in Fig. 2. There are fixed demands of 2 and 1
units of flow for OD pairs (1, 2) and (4, 2), respectively. There are four paths corresponding
to the two OD pairs: p1={1}, p2={2,3}, p3={4} and p4={5,3}. The arc cost functions are

c1 v1; εð Þ ¼ 2v1 þ ε
c2 v2ð Þ ¼ v2
c3 v3ð Þ ¼ 1

c4 v4ð Þ ¼ v4 þ 2
c5 v5ð Þ ¼ v5

When ε=0, the equilibrium arc flow solution is v*(0)=[1,1,2,0,1]T. (Note that the arc
flow solution, namely v*(0)=[1,1,1,1,1]T, given in Josefsson and Patriksson (2007) is
incorrect.) Since the solution violates strict complementary, the TFM should was never
intended for application to this problem. However, since strict complementarity is not a
necessary condition for differentiability, it is possible that the problem is differentiable
in the neighborhood of ε=0 and that the TFM may be applied, as is next discussed.

We consider perturbations of the travel demands; that is, ε ¼ ε12 ε42½ �T . The
unperturbed solution is v*(0)=[1,1,2,0,1]T, and the restricted arc-path and OD-path
incidence matrices are

31

2 4

5 6

7

1 2

3

4

5

Fig. 1 The network of Patriksson’s example 5
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Δ ¼
1 0 0
0 1 0
0 1 1
0 0 1

2
664

3
775 and Λ ¼ 1 1 0

0 0 1

� �
:

In the restricted arc-path and OD-path incidence matrices, arc 4 is eliminated in the
restricted network. The rows of the restricted arc-path incidence matrix correspond to
arcs 1, 2, 3 and 5. The columns of arc-path incidence matrix correspond to paths 1, 2
and 4, respectively. We solve a linear program to find non-degenerate extreme points of

the restricted network with b ¼ 1 1 1½ �T , and obtain the path flow solution

h0 0ð Þ ¼ 1 1 1½ �T > 0 . The rank of [Δ0T,Λ0T] is equal to the number of paths
with positive flow, which means that h0(0) is a non-degenerate extreme point. The
scalar path flows corresponding to h*(0) are all positive, and h0,Δ0 and Λ0 are identical
to h*, Δ and Λ, respectively. It follows that

∇hC
0 h�; 0ð Þ −Λ0T

Λ0 0

� �
¼

2 0 0 −1 0
0 1 0 −1 0
0 0 1 0 −1
1 1 0 0 0
0 0 1 0 0

2
66664

3
77775

−∇εC
0 h�; 0ð Þ

∇εQ 0ð Þ
� �

¼

−1
0
0
0
0

2
66664

3
77775

3

1

2

4

5

1

2

3

4

Fig. 2 The network of Josefsson and Patriksson’s example 7.3.1
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Therefore

∇εv
� ¼

−1
.
3

1
.
3

1
.
3

0

2
666664

3
777775

which is identical to the solution reported in Josefsson and Patriksson (2007). We do
add, however, that every cases for which strict complementarity condition will possess
the differentiability that allowed the successful application of the TFM. However, the
above calculations do show that sometimes violation of strict complementarity does not
prevent application of the TFM.

4.1.3 Example 7.3.2 in Josefsson and Patriksson (2007)

In another example, Josefsson and Patriksson (2007) considered a 3 node, 4 arc
network with the single OD pair (1, 3) and 4 paths, as depicted in Fig. 3. There is a
fixed demand of 2 units of flow for OD pair (1, 3). Also there are four paths: p1={1,3},
p2={1,4}, p3={2,3} and p4={2,4}. Furthermore, the arc cost functions are

c1 v1; εð Þ ¼ v1 þ ε
c2 v2ð Þ ¼ v2
c3 v3ð Þ ¼ v3
c4 v4ð Þ ¼ v4

where ε∈ℜ1 is a now a scalar perturbation parameter. When ε=0, the equilibrium arc
flow solution is v*(0)=[1,1,1,1]T. Thus, the restricted arc-path and OD-path incidence
matrices are

Δ ¼
1 1 0 0
0 0 1 1
1 0 1 0
0 1 0 1

2
664

3
775 and Λ ¼ 1 1 1 1½ �:

In this example, the rank of [ΔT,ΛT] is 3. As the analysis in Josefsson and Patriksson
(2007) establishes, the possible number of paths having non-zero flow is either 2 or 4. It
is impossible to find a vector b for which the linear program (16) yields is a non-
degenerate path flow solution with only 3 non-zero flows. In other words, it is

1 2 3

31

2 4
Fig. 3 The network of Josefsson and Patriksson’s example 7.3.2
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impossible to satisfy the requirements of the TFM in this example. Therefore, the TFM
should not be applied in this example to calculate the sensitivity information even
though the gradient exists, and the example does not constitute a counterexample.

4.1.4 Example 7.3.3 in Josefsson and Patriksson (2007)

In this example, Josefsson and Patriksson (2007) considered the 3 node, 3 arc network
with 3 OD pairs and 4 paths depicted in Fig. 4. There are three fixed demands of 1 unit
of flow for each of the OD pairs (1, 2), (1, 3) and (3, 2). There are four paths
corresponding to the three OD pairs denoted by p1={1}, p2={2,3}, p3={2} and
p4={3}. The arc cost functions are given by

c1 v1; εð Þ ¼ 2v1 þ ε
c2 v2ð Þ ¼ v2
c3 v3ð Þ ¼ v3

where ε∈ℜ1 is again a scalar perturbation parameter. When ε=0, the equilibrium arc
flow solution is v*(0)=[1,1,1]T. Thus, the restricted arc-path and OD-path incidence
matrices are

Δ ¼
1 0 0 0
0 1 1 0
0 1 0 1

2
4

3
5 and Λ ¼

1 1 0 0
0 0 1 0
0 0 0 1

2
4

3
5:

In this example, the rank of [ΔT,ΛT] is 4. Path 3 is the only path connecting OD pair (1,
3); so the flow on path 3 is exactly equal to the associated demand. Similarly, the flow on
path 4 is exactly equal to the demand betweenOD pair (3, 2). Therefore, the flow on path 1
must be 1 and the flow on path 2 is zero. The flows just described form the unique
equilibrium path flow solution, and the rank of [ΔT,ΛT] cannot possibly equal the number
of paths with positive flow. Once again, this example does not satisfy the regularity
conditions for the TFM. In addition, this example is non-differentiable, which fact also
violates the TFM regularity conditions. Thus, the TFM should never be considered for
application to this example, and the example, again, does not constitute a counterexample.

1

2

3

31

2

Fig. 4 The network of Josefsson and Patriksson’s example 7.3.3
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4.1.5 Modifying Example Problems to Satisfy the TFM Regularity Conditions

Example 7.3.2 in Josefsson and Patriksson (2007), first discussed in this paper in
Section 4.1.3 above, violates the regularity assumptions on which the TFM is
predicated due to its symmetric arc cost functions and network topology. If we make
the cost functions asymmetric, as we shall illustrate, the possible number of paths
having non-zero flow is no longer restricted to either 2 or 4. As depicted in Fig. 3. the
network contains three nodes, four arcs, one OD pair and four paths. This example is
identical to example 7.3.2 in Josefsson and Patriksson (2007) except for the cost
function of arc 2, which is now c2(v2)=1+v2.

When ε=0, the equilibrium arc flow solution is v*(0)=[3/2,1/2,1,1]T. Thus, the
restricted arc-path and OD-path incidence matrices are

Δ ¼
1 1 0 0
0 0 1 1
1 0 1 0
0 1 0 1

2
664

3
775 and Λ ¼ 1 1 1 1½ �:

After solving the linear program (16), a path flow solution h*(0)=[1,1/2,0,1/2]T can
be obtained with b=[1,1,1,1]T. In this case, the rank of [ΔT,ΛT] is equal to the number
of paths with positive flow, which implies that h* is a non-degenerate extreme point.
Due to the flow on path 3 being zero, we may eliminate path 3 to generate h0*(0)=[1,
1/2,1/2]T which contains only those path variables having positive path flows.
Conformally defined with respect to h0*, the reduced arc-path and OD-path incidence
matrices, denoted by Δ0 and Λ0 respectively, are

Δ0 ¼
1 1 0
0 0 1
1 0 0
0 1 1

2
664

3
775 and Λ0 ¼ 1 1 1½ �:

It follows that

∇hC
0 h�; 0ð Þ −Λ0T

Λ0 0

� �
¼

2 1 0 −1
1 2 1 −1
0 1 2 −1
1 1 1 0

2
664

3
775

−∇εC
0 h�; 0ð Þ

∇εQ 0ð Þ
� �

¼
−1
−1
0
0

2
664

3
775

Therefore, we have the following derivative of arc flows with respect to the
perturbation ε (of the cost function for arc 1):

∇εv
� ¼

−1=2
1=2
0
0

2
664

3
775
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Clearly, all requirements of the TFM are satisfied and the derivative of
differentiable solutions with respect to perturbation parameters can be calcu-
lated by the TFM. This contrasts to the example 7.3.3 in Josefsson and
Patriksson (2007) and the example 5 in Patriksson (2004), for which non-
differentiability is encountered in violation of the assumptions intrinsic to the
TFM.

4.1.6 Applying Cho-Smith-Friesz Method on Counterexamples

We illustrate in this section that the Cho-Smith-Friesz method (CSFM) extends the
circumstances under which the TFM is applicable.

Example 7.3.2 in Josefsson and Patriksson (2007) This example has been stated
previously. Recall that, when ε=0, the equilibrium arc flow solution is
v*(0)=[1,1,1,1]T and the restricted arc-path and OD-path incidence matrices
are

Δ ¼
1 1 0 0
0 0 1 1
1 0 1 0
0 1 0 1

2
664

3
775 and Λ ¼ 1 1 1 1½ �:

In this example, the rank of [ΔT,ΛT] is 3. By inspection, Λ has one independent row.
Also the rows ofΔ that correspond to arcs 1 and 3 are linearly independent, so that we
may partition Δ according to

Δ ¼ Δ1 Δ2½ �T ð42Þ
where

Δ1 ¼ 1 1 0 0
1 0 1 0

� �
andΔ2 ¼ 0 0 1 1

0 1 0 1

� �

The matrices referred to in Eq. (41) are the followings:

∇vc v 0ð Þ; 0ð Þ ¼
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

2
664

3
775

M ¼ −1 −1 0 0
0 0 −1 −1

� �

−∇εc v 0ð Þ; 0ð Þ ¼
1
0
0
0

2
664
3
775

Δ2N2∇εQ 0ð Þ ¼ 0
0

� �
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Therefore, Eq. (41) reduces to the following:

∇εv
� ¼

−1
.
2

1
.
2

0
0

2
66664

3
77775

which is identical to the solution in Josefsson and Patriksson (2007). Thereby, we see
that the CSFM may sometimes be able to deal with cases wherein h* is not a non-
degenerate path solution.

Example 7.3.3 in Josefsson and Patriksson (2007) When ε=0, the equilibrium arc flow
solution is v*(0)=[1,1,1]T. Thus, the restricted arc-path and OD-path incidence
matrices are

Δ ¼
1 0 0 0
0 1 1 0
0 1 0 1

2
4

3
5 and Λ ¼

1 1 0 0
0 0 1 0
0 0 0 1

2
4

3
5:

In this example, the rank of [ΔT,ΛT] is 3. By inspection Λ has three independent
rows. Moreover, the rows of Δ are linearly independent. Thus

Δ ¼ Δ2

based on the notation introduced in Eq. (42). Therefore, the matrices of Eq. (41) may be
expressed as

∇vc v 0ð Þ; 0ð Þ ¼
2 0 0
0 1 0
0 0 1

2
4

3
5

M ¼
−1 0 0
0 −1 0
0 0 −1

2
4

3
5

−∇εc v 0ð Þ; 0ð Þ ¼
−1
0
0

2
4

3
5

Δ2N 2∇εQ 0ð Þ ¼
0
0
0

2
4
3
5

Furthermore, Eq. (41) yields

∇εv
� ¼

0
0
0

2
4
3
5

which is the directional derivative when ε=1 employed in the Josefsson-Patriksson
solution. However, the directional derivative when ε=−1 cannot be obtained by the
CSFM because it corresponds to a non-differentiable circumstance, and thereby vio-
lates the regularity conditions needed for application of the CSFM method.

Sensitivity Analysis of User Equilibrium Flows Revisited 201



4.2 Counterexamples in Yang and Bell (2007) and Yang and Huang (2005)

Subsequent to Bell and Iida (1997), non-invertibility of the Jacobian of the path cost
occurring in Eq. (24) of the TFM was also observed by Yang and Bell (2007). The
Jacobian of the path cost is in general not invertible so that the sensitivity formulae of the
TFM would seem to fail in such a circumstance. However, Yang and Bell (2007)
presented an example for which the Jacobian of the path cost is not invertible yet the
requisite information for sensitivity analysis exists. As we have already indicated, this is
not a surprise, since the invertibility of the Jacobian of path cost is a regularity condition
for the TFM that one may relax when it is realized that the sensitivity analysis formulae
may be derived via the CSFM. More generally, the TFM sensitivity formulae remain
applicable when the Jacobian of the path cost is not invertible. This understanding, as we
now reiterate, is established by the analysis of Cho et al. (2000) and the summary thereof
presented in Section 3.3 of this paper, because Cho et al. (2000) derive those formulae
without reference to the network’s topology or the presumption of invertibility of the
Jacobian of path cost. We note that the Yang and Bell (2007) counter example is used in
Yang and Bell (2007); thus, the above remarks also apply to the Yang and Huang (2005)
paper. Our remarks immediately above are not criticisms of the manuscripts cited but
rather are meant to establish connections among the various papers on the subject of
equilibrium sensitivity analysis that have appeared over a considerable period of time in
various journals and books.

4.2.1 Example 6 in Yang and Bell (2007)

In this example, Yang and Bell (2007) considered a 3 node, 2 arc network with 3 OD
pairs and 3 paths which is depicted in Fig. 5. There are two fixed demands of 5 units of
flow for each of the OD pairs (1, 2) and (2, 3). The demand for OD pair (1, 3) is
perturbed and becomes 5+ε13 . The three paths are p1={1}, p2={2} and p3={1,2}. The
arc cost functions are given by

c1 v1; ε1ð Þ ¼ v1 þ 1þ ε1
c2 v2ð Þ ¼ v2 þ 1

It is helpful to define

ε ¼ ε13
ε1

� �
:

When ε=0, the equilibrium arc flow solution is v*(0)=[10,10]T. Thus, the restricted
arc-path and OD-path incidence matrices are

Δ ¼ 1 0 1
0 1 1

� �
and Λ ¼

1 0 0
0 1 0
0 0 1

2
4

3
5:

1 2 3

1 2

Fig. 5 The network of Yang and Bell’s example 6
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Solving the linear programming (16), with b=[1,1,1]T, a path flow solution
h*=[5,5,5]T is obtained. The rank of [ΔT,ΛT] is equal to the number of paths with
positive flow, which implies that h* are all positive. Moreover, h0*, Δ0* and Λ0* are
identical to h*, Δ and Λ, respectively. By inspection, we have

∇hC
0 h�; 0ð Þ −Λ0T

Λ0 0

� �
¼

1 0 1 −1 0 0
0 1 1 0 −1 0
1 1 2 0 0 −1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

2
6666664

3
7777775

ð43Þ

Yang and Bell (2007) note that the inverse of the Jacobian of the path cost matrix,

∇hC
0 h�; 0ð Þ ¼

1 0 1
0 1 1
1 1 2

2
4

3
5
−1

ð44Þ

does not exist, and it would seem that the TFM is not applicable. However, the inverse
of the entire matrix presented on the right-hand side of Eq. (43) is easily shown to be
the following:

∇εC
0 h�; 0ð Þ −Λ0T

Λ0 0

� �−1
¼

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
−1 0 0 1 0 1
0 −1 0 0 1 1
0 0 −1 1 1 2

2
6666664

3
7777775

Also we note that

−∇εC
0 h�; 0ð Þ

∇εQ 0ð Þ
� �

¼

−1 0
0 0
−1 0
0 0
0 0
0 1

2
6666664

3
7777775

According to Eqs. (17–18), the derivative of arc flows with respect to ε is

∇εv
� ¼ 0 1

0 1

� �
ð45Þ

which is identical to the solution in Yang and Bell (2007). The derivative of equilibrium
costs with respect to ε is

∇εμ
� ¼

1 1
0 1
1 2

2
4

3
5 ð46Þ

which is also identical with the solution in Yang and Bell (2007). Thus, the TFM may
remain applicable even though the Jacobian of the path cost matrix is not invertible.
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More precisely, the non-invertibility problem encountered in expression (44) need not
be inherited by inverse matrix in Eq. (17).

4.2.2 Example 8 in Yang and Bell (2007)

In this example, Yang and Bell (2007) considered a 3 node, 4 arc network with 3 OD
pairs and 8 paths. The network topology is that of Fig. 3. The OD demands are given by
d13=2+ε13, d12=2+ε12 and d23=2+ε23. There are eight paths corresponding to three
OD pairs; they are h1={1,3}, h2={1,4}, h3={2,3}, h4={2,4}, h5={1}, h6={2},
h7={3} and h8={4}. The arc cost functions are given by

c1 v1; εð Þ ¼ v1 þ 1þ ε
c2 v2ð Þ ¼ v2 þ 1

c3 v3; εð Þ ¼ v3 þ 1þ ε
c4 v4ð Þ ¼ v4 þ 1

where ε∈ℜ1 is a now a scalar perturbation parameter. When ε=0, the equilibrium arc
flow solution is v*(0)=[2,2,2,2]T and the arc-path and OD-path incidence matrices are

Δ ¼
1 1 0 0 1 0 0 0
0 0 1 1 0 1 0 0
1 0 1 0 0 0 1 0
0 1 0 1 0 0 0 1

2
664

3
775 and Λ ¼

1 1 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1

2
4

3
5:

In this example, the rank of [ΔT,ΛT] is 5, but it appears to be impossible to find a
vector b such that the path flow solution of linear programming problem (16) having
only five non-zero path flow variables. Therefore, the non-degeneracy condition cannot
be satisfied, and it is inappropriate to employ the TFM for sensitivity analysis of the
example considered in this section.

4.2.3 Modifying Example Problems to Satisfy the Tobin and Friesz’s Regularity
Conditions

In example 8 of Yang and Bell (2007), the number of paths is greater than the number of
arcs plus the number of OD pairs. It can be hard to find a non-degenerate extreme point
that satisfies the regularity conditions needed for the TFM. This observation is readily
apparent when applying the TFM to example 8 of Yang and Bell (2007). In some cases,
and this example is one of them, it is possible to modify the problem of interest to satisfy
the missing regularity conditions. One way we can do that is reducing the number of paths
needed to make the non-degenerate extreme point exist. If we eliminate OD pairs (1, 2)
and (2, 3), this example will be a 3 node, 4 arc network with 1 OD pair and 4 paths, which
is similar to the example 7.3.2 in Josefsson and Patriksson (2007).

In particular, there are four paths corresponding to OD pair (1, 3), denoted by
p1={1,3}, p2={1,4}, p3={2,3} and p4={2,4}. The arc cost functions are:

c1 v1; εð Þ ¼ v1 þ 1þ ε
c2 v2ð Þ ¼ v2 þ 1

c3 v3; εð Þ ¼ v3 þ 1þ ε
c4 v4ð Þ ¼ v4 þ 1
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where ε∈ℜ1 is a now a scalar perturbation parameter. Moreover, the arc cost function
and the network topology are symmetric, reminiscent of the example 7.3.2 in Josefsson
and Patriksson (2007). In order to modify the counterexample to satisfy the requirement
of the TFM, we may easily make the cost functions asymmetric to attain this goal. For
simplicity, we modify the cost function of arc 2 to c2(v2)=v2. When ε=0, the
equilibrium arc flow solution is v*(0)=[1/2,3/2,1,1]T. Thus, the arc-path and OD-
path incidence matrices are

Δ ¼
1 1 0 0
0 0 1 1
1 0 1 0
0 1 0 1

2
664

3
775 and Λ ¼ 1 1 1 1½ �:

The rank of [ΔT,ΛT] is 3. Using b=[1,1,1,1]T, the linear program (16) yields the path
flow vector h*=[1/2,0,1/2,1]T. In that case, the rank of [ΔT,ΛT] is equal to the number
of paths with positive flow, which implies that h* is a non-degenerate extreme point.
Since the flow on path 2 is zero, we can eliminate path 2 to generate h0* which contains
only those path variables having positive path flows. Corresponding to h0* we have the
following reduced arc-path and OD-path incidence matrices:

Δ0 ¼
1 0 0
0 1 1
1 1 0
0 0 1

2
664

3
775 and Λ0 ¼ 1 1 1½ �:

Accordingly, we have

∇hC
0 h�; 0ð Þ −Λ0T

Λ0 0

� �
¼

2 1 0 −1
1 2 1 −1
0 1 2 −1
1 1 1 0

2
664

3
775

−∇εC
0 h�; 0ð Þ

∇εQ 0ð Þ
� �

¼
−1 −1 0
0 −1 0
0 0 0
0 0 1

2
664

3
775

and the derivative of arc flows with respect ε1, ε3 and ε13 is

∇εv
� ¼

−1
.
2 0 1

.
2

1
.
2 0 1

.
2

0 −1
.
2 1

.
2

0 1
.
2 1

.
2

2
6666664

3
7777775

In this modified example, all requirements of the TFM are satisfied. Therefore, the
derivative of differentiable solutions with respect to perturbation parameters can be
calculated using the TFM. Obviously the modified problem is significantly different
than the original problem; as such, sensitivity analysis of the modified problem may be
of little value.
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4.2.4 Applying Cho-Smith-Friesz Method on Counterexamples

Let us again consider example 8 in Yang and Bell (2007). When ε=0, the equilibrium
arc flow solution is v*(0)=[2,2,2,2]T. Thus, the restricted arc-path and OD-path inci-
dence matrices are

Δ ¼
1 1 0 0 1 0 0 0
0 0 1 1 0 1 0 0
1 0 1 0 0 0 1 0
0 1 0 1 0 0 0 1

2
664

3
775 and Λ ¼

1 1 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1

2
4

3
5:

In this example, the rank of [ΔT,ΛT] is 5. Clearly Λ has three independent rows.
Choosing two more linearly independent rows formΔ, say those corresponding to arcs
1 and 3, allows Δ to be partitioned in this fashion:

Δ ¼ Δ1 Δ2½ �T

where

Δ1 ¼ 1 1 0 0 1 0 0 0
1 0 1 0 0 0 1 0

� �
andΔ1 ¼ 0 0 1 1 0 1 0 0

0 1 0 1 0 0 0 1

� �
:

The individual submatrices of matrix Eq. (41) are the following:

∇vc v 0ð Þ; 0ð Þ ¼
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

2
664

3
775

M ¼ −1 −1 0 0
0 0 −1 −1

� �

−∇εc v 0ð Þ; 0ð Þ ¼
1 0 0 0 0
0 0 0 0 0
0 1 0 0 0
0 0 0 0 0

2
664

3
775

Δ2N 2∇εQ 0ð Þ ¼ 0 0 −1 −1 0
0 0 −1 0 −1

� �

Therefore, Eq. (41) yields

∇εv
� ¼

−1
.
2 0 1

.
2 1

.
2 0

1
.
2 0 1

.
2 1

.
2 0

0 −1
.
2 1

.
2 0 1

.
2

0 1
.
2 1

.
2 0 1

.
2

2
6666664

3
7777775

In the matrix immediately above, columns 1 through 5 are the derivatives of arc flows
with respect to the perturbations ε1, ε2, ε12, ε13 and ε23, respectively. The resulting
approximation of the CSFM is identical with Yang and Bell (2007). Thereby, it overcomes
the non-invertibility problem noted by Bell and Iida (1997). As such the CSFM is more
general than TFM in that it solves problems without requiring the PFR condition.
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5 Conclusion

This paper has reviewed several prior articles in which some defects of the Tobin-Friesz
method (TFM) are indicated and some examples are shown to explain that the TFMmay fail
or lead to an incorrect solution. However, we found this is not because the TFM is incorrect
but because some of the so-called counter examples were purposely fabricated to violate the
assumptions intrinsic to the TFM and the related Cho-Smith-Friesz method (CSFM). That
is, the counter examples reported in the literature are not true counter examples for the TFM
because they violate the regularity conditions on which the method is based.

Nonetheless, we readily acknowledge that the TFM must be applied with care. The
reward for exercising such care is the rather simple formulae that characterize the TFM.
In this paper, we have seen that, sometimes when the regularity conditions of the TFM
are violated, the equilibrium problem of interest may be modified to allow the method’s
application; this is especially so when cost symmetries are the complicating aspect of a
given problem. We also observed that sometimes the Cho-Smith-Friesz method
(CSFM) may be employed in lieu of the TFM to deal with noninvertible Jacobians.
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